A Cloud-Based Prediction Framework for Analyzing Business Process Performances

Abstract : This paper presents a framework for analyzing and predicting the performances of a business process, based on historical data gathered during its past enactments. The framework hinges on an inductive-learning technique for discovering a special kind of predictive process models, which can support the run-time prediction of some performance measure (e.g., the remaining processing time or a risk indicator) for an ongoing process instance, based on a modular representation of the process, where major performance-relevant variants of it are equipped with different regression models, and discriminated through context variables. The technique is an original combination of different data mining methods (namely, non-parametric regression methods and a probabilistic trace clustering scheme) and ad hoc data transformation mechanisms, meant to bring the log traces to suitable level of abstraction. In order to overcome the severe scalability limitations of current solutions in the literature, and make our approach really suitable for large logs, both the computation of the trace clusters and of the clusters’ predictors are implemented in a parallel and distributed manner, on top of a cloud-based service-oriented infrastructure. Tests on a real-life log confirmed the validity of the proposed approach, in terms of both effectiveness and scalability.
Type de document :
Communication dans un congrès
Francesco Buccafurri; Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Edgar Weippl. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9817, pp.63-80, 2016, Availability, Reliability, and Security in Information Systems. 〈10.1007/978-3-319-45507-5_5〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01635015
Contributeur : Hal Ifip <>
Soumis le : mardi 14 novembre 2017 - 16:06:55
Dernière modification le : mercredi 15 novembre 2017 - 01:15:12

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Eugenio Cesario, Francesco Folino, Massimo Guarascio, Luigi Pontieri. A Cloud-Based Prediction Framework for Analyzing Business Process Performances. Francesco Buccafurri; Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Edgar Weippl. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9817, pp.63-80, 2016, Availability, Reliability, and Security in Information Systems. 〈10.1007/978-3-319-45507-5_5〉. 〈hal-01635015〉

Partager

Métriques

Consultations de la notice

25