Towards interactive Machine Learning (iML): Applying Ant Colony Algorithms to Solve the Traveling Salesman Problem with the Human-in-the-Loop Approach

Abstract : Most Machine Learning (ML) researchers focus on automatic Machine Learning (aML) where great advances have been made, for example, in speech recognition, recommender systems, or autonomous vehicles. Automatic approaches greatly benefit from the availability of “big data”. However, sometimes, for example in health informatics, we are confronted not a small number of data sets or rare events, and with complex problems where aML-approaches fail or deliver unsatisfactory results. Here, interactive Machine Learning (iML) may be of help and the “human-in-the-loop” approach may be beneficial in solving computationally hard problems, where human expertise can help to reduce an exponential search space through heuristics.In this paper, experiments are discussed which help to evaluate the effectiveness of the iML-“human-in-the-loop” approach, particularly in opening the “black box”, thereby enabling a human to directly and indirectly manipulating and interacting with an algorithm. For this purpose, we selected the Ant Colony Optimization (ACO) framework, and use it on the Traveling Salesman Problem (TSP) which is of high importance in solving many practical problems in health informatics, e.g. in the study of proteins.
Type de document :
Communication dans un congrès
Francesco Buccafurri; Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Edgar Weippl. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9817, pp.81-95, 2016, Availability, Reliability, and Security in Information Systems. 〈10.1007/978-3-319-45507-5_6〉
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01635020
Contributeur : Hal Ifip <>
Soumis le : mardi 14 novembre 2017 - 16:07:09
Dernière modification le : lundi 8 janvier 2018 - 14:28:01
Document(s) archivé(s) le : jeudi 15 février 2018 - 14:20:07

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Andreas Holzinger, Markus Plass, Katharina Holzinger, Gloria Crişan, Camelia-M. Pintea, et al.. Towards interactive Machine Learning (iML): Applying Ant Colony Algorithms to Solve the Traveling Salesman Problem with the Human-in-the-Loop Approach. Francesco Buccafurri; Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Edgar Weippl. International Conference on Availability, Reliability, and Security (CD-ARES), Aug 2016, Salzburg, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9817, pp.81-95, 2016, Availability, Reliability, and Security in Information Systems. 〈10.1007/978-3-319-45507-5_6〉. 〈hal-01635020〉

Partager

Métriques

Consultations de la notice

77