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Review 

A Survey of Several Finite Difference Methods for Systems 
of Nonlinear Hyperbolic Conservation Laws 

GARY A. Soo 

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, 
and Lawrence Livermore Laboratory, P. 0. Box 808, Livermore, California 

The finite difference methods of Godunov, Hyman, Lax and Wendroff (two-step), 
MacCormack, Rusanov, the upwind scheme, the hybrid scheme of Harten and Zwas, the 
antidiffusion method of Boris and Book, the artificial compression method of Harten, and 
Glimm's method, a random choice method, are discussed. The methods are used to in­
tegrate the one-dimensional Eulerian form of the equations of gas dynamics in Cartesian 
coordinates for an inviscid, nonheat-conducting fluid. The test problem was a typical 
shock tube problem. The results are compared and demonstrate that Glimm's method has 
several advantages. 

1. INTRODUCTION 

In the past few years numerous methods have been developed for solving systems 
of nonlinear hyperbolic conservation laws 

ut + F(U)., = o, (1) 

where F is a smooth function on Rn of U and the derivative matrix DF(U) possesses 
strictly nonlinear or linearly degenerate eigenfunctions and eigenvalues in the sense 
of Lax [16]. In the terminology of gas dynamic this corresponds to systems having 
modes which admit respectively, discontinuities of shock type, or contact discon­
tinuities, only. For example, a single equation 

Ut + g(u)., = 0, 

is strictly nonlinear if g(u).,., =I= 0 and is linearly degenerate if g(u) = Cu, where C is a 
constant. 

There are several difficulties in solving such systems numerically. Inherent in any 
finite difference scheme is an assumption on the regularity of the solution. Typically 
such schemes produce oscillations behind a shock. All finite difference schemes 
have numerical diffusion, dispersion, or both due to the truncation error. As a 
result there will be diffusion across the contact discontinuity with each time step, 
causing the contact discontinuity to be smeared in the course of the calculation. 
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A shock is also smeared, though less dramatically. Finally, there is often difficulty 
in obtaining an accurate approximation to the smooth parts of the solution, 
particularly at points where certain higher order derivatives fail to exist. 

The finite difference methods of Godunov [6], Hyman [13], Lax and Wendroff [19], 
MacCormack [18], Rusanov [21], the upwind scheme [20], and the hybrid scheme of 
Harten and Zwas [12] will be discussed. Glimm's method, a random choice method, 
will also be considered. Glimm's method at first appearance may not seem to fit in the 
category of the other methods. However, it shares several features with the above 
difference schemes. All of these methods are fixed grid methods having the same grid 
structure. These methods require about the same amount of storage. All of the above 
finite difference schemes are finite difference approximations to the derivative arising 
in the conservation laws and can treat in principle an arbitrary system of conservation 
laws. Similarly Glimm's method can treat an arbitrary system of conservation laws. 
See Harten and Sod [11]. 

The finite difference schemes as well as Glimm's method share one other feature, 
namely, a family of waves interacting can be handled automatically. However, the 
degree of resolution to which such interactions are represented is not the same for all 
methods. 

Most finite difference methods when applied to problems with discontinuities 
produce oscillations behind the shock. Von Neumann and Richtmyer [26] developed 
an artificial viscosity term which was introduced into the Lagrangian form 
of the equations of gas dynamics. The goal of the artificial viscosity was to reduce 
the oscillations while allowing the shock transition to occupy only a few mesh 
points and having negligible effect in the smooth regions. All other forms of 
artificial viscosity are variations of the one introduced by von Neumann and 
Richtmyer. The one used in this survey due to Lapidus [14] is no exception. However, 
it is suited to the conservation laws and can be added to an existing method as 
a fractional step. One important feature of Lapidus' form of artificial viscosity is that 
a variant of it can be applied to general conservation laws. Artificial viscosity will not 
spread a contact discontinuity (see section on artificial viscosity or Sod [25]). The 
smearing of a contact discontinuity is due to the truncation error of the scheme and 
the smearing of a shock is due to the truncation error of the scheme as well as the 
artificial viscosity. The spreading of the contact discontinuity being much more severe, 
O(n1/(Hll) for a qth order accurate scheme, where n is the number of time steps. 
See Harten [8]. 

Recently methods have been developed for correcting the smearing of shocks and 
contact discontinuities. The "flux corrected transport" method of Boris and Book [I] 
is used to obtain a high degree of resolution without oscillations. The artificial 
compression method of Harten [8-10] is designed to sharpen results in regions con­
taining shocks and contact discontinuities. 

The inviscid, non-heat-conducting equations of gas dynamics can be written in 
conservation form with the flux F having the form discussed above. However, there is 
a large class of problems for which little is known. This is the case where F is either 
nonsmooth or not strictly nonlinear. Examples are the Buckley-Leverett equation, in 
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the case of a single equation (see Buckley and Leverett [27]) and the problem of an 
exothermic reacting gas, in the case of systems. In these cases special methods have to 
be considered. For the case of an exothermic reacting gas see Chorin [4] and Sod [24]. 

The only "high" -order method considered in this survey is the hybrid scheme of 
Harten and Zwas. Fourth- and sixth-order methods were originally considered for 
the equations of gas dynamics. However, with all of the high-order methods using the 
appropriate high-order artificial viscosity term, the coefficient of numerical diffusion 
was so large that the time step became prohibitively small. The only way in which a 
solution could be obtained with these high-order methods was to use the artificial 
viscosity due to Lapidus, which is third order. With the use of a low-order artificial 
viscosity term, all benefits obtained by using a high-order method are lost. 

In the following sections a brief discussion of the methods is given, their solution to 
a sample one-dimensional problem is compared, and the merits of the methods are 
discussed. Due to the nonstandardness of Glimm's method, as well as the difficulty in 
programming, its acceptance as an effective and efficient numerical tool may be 
restricted. For this reason the equations used by Glimm's method are derived and a 
flow chart for its implementation is given. For further details on these methods see 
Sod [25]. 

Basic Equations 

The one-dimensional equations of gas dynamics may be written in the (conservation) 
form: 

o1p + o.,(pu) = o, 
o1m + ox((m2/p) + p) = 0, 

o1e + 8,((m/p)(e + p)) = 0, 

(2a) 

(2b) 

(2c) 

where p is the density, u is the velocity, m = pu is momentum, p is pressure, and e is 
energy per unit volume. We may write e = pE + !pu2

, where E is the internal energy 
per unit mass. Assume the gas is polytropic, in which case 

E = pj(y - 1) p, 

where y is a constant greater than one. Furthermore, from (3) we have 

p = A(S)pY, 

where S denotes entropy. 
Equations (I}-(3) may be written in vector form 

where 

U 1 + F(U), = 0, 

and F(U) = [ (m2/~ + p ]· 
(m/p)(e + p) 

(3) 

(4) 

(5) 
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In order to deal with solutions containing shocks we write the equations in integral 
form, which is obtained by integrating Eqs. (2a)-(2c) (or Eq. (5)) over any region in 
the upper half of the (x, t) plane and applying Green's theorem 

Originator Order 

Godunov 

Lax-Wendroff 2 

(two-step) 

MacCormack 2 

Rusanov 

Upwind 

J p dx + J m dt = 0, 

Jmdx+ JC(m 2/p)+p)dt=O, 

J e dx + J ((m/p)(e + p)) dt = 0. 

TABLE I 

Standard Finite Difference Methods 

Scheme 

u;;:t = !Cu7,, +ut) - (LltfLlx)(F;+, - F;") 

u~+l = u." - (Llt/Llx)(F~+' - FM') 
t t t-t-t t-!-

u~+} = 1(un + u ") - (Lltj2Llx)(F~' - F n) 
z+ 2 2 r-1 t H 1 t 

u;+l = ut - (Lltj2Llx)(F;H - F;_
1

) 

+ i((a;+l + a,n)(u;+l -ut) 

e<;n = w(Llt/Llx)(u + c),n 

u;+l = u,n - sgn(u,n)(Llt(Llx)(Gt- G;+s<ul) 

- (Lltf2Llx)(S;+, - s;_,), · 

where G = (pu, pu2, u(e + p))r, S = (0, p, O)T, and 

s(u) = -1 if ut> 0 
if u(' < 0 

• a = max(l u 1 + c)Llt(Llx, where c denotes the local sound speed. 

(6) 

(7) 

(8) 

Stability• 

a<; 1 

a <; I 

a<; I 

a<; 1 

a< w <; 1/u 

a<; 1 
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2. DESCRIPTION OF THE METHODS 

The methods of Godunov [6], Lax and Wendroff (two-step) [19], MacCormack [18], 
Rusanov [21 ], and the upwind difference scheme [20] have been widely used and no 
benefit can be obtained by describing them here. Hence, these schemes will merely be 
listed in Table I. The remaining methods under consideration will be briefly discussed. 

Consider the nonlinear system of Eqs. (5). Divide time into intervals of length Lit 
and let Llx be the spatial increment. The solution is to be evaluated at time n Llx, 
where n is a nonnegative integer at the spatial increments i Llx, i = 0, ±1, ±2, ... , and 
at time (n + -t) Lit at (i + t) Llx. Let ut approximate U(i Llx, n Lit) and uf;-l approxi-
mate U((i + t) Llx, (n + t) Llt). -

Glimm's Method 

Recently the random choice method introduced by Glimm [7] has been developed 
for hydrodynamics by Chorin [3]. The method is a two-step method. To find u.":l and 
thus define the method, consider system (5) along with the piecewise constant initial 
data 

V(x, n Lit) = uf+l , x ~ (i + t) Llx, 

x < (i + t) Llx. 
(9) 

This defines a sequence of Riemann problems. If Lit < Llx/2(1 u I + c), where c is the 
local sound speed, the waves generated by the different Riemann problems will not 
interact. Hence the solution v(x, t) to the Riemann problem can be combined into a 
single exact solution. Let fn be an equidistributed random variable which is given by 
the Lebesgue measure on the interval [ -t, H Define 

(10) 

At each time step, the solution is approximated by a piecewise constant function. The 
solution is then advanced in time exactly and the new values are sampled. The method 
depends on the possibility of solving the Riemann problem exactly and inexpensively. 
Chorin [3] (see also Sod [22]) modified an iterative method due to Godunov [5] 
which will be described below. 

Consider system (5) with the initial data 

= Sr = (pr, Ur ,pr), 

X< 0, 

X~ 0. 
(11) 

The solution at later times looks like (see [15]) Fig. l, where S1 and S2 are either a 
shock or a centered rarefaction wave. The region S * is a steady state. The lines 11 and 
12 separate the states. The contact discontinuity dx/dt = u* separates the state S* 
into two parts with possibly different values of p*, but equal values of u* and p*. 
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t 

X 

FIG. 1. Solution of a Riemann problem. 

Using this iterative method we first evaluate p* in the stateS*. Define the quantity 

(12) 

If the left wave is a shock, using the jump condition U1[p] = [pu ], we obtain 

(13) 

where U1 is the velocity of the left shock and p* is the density in the portion of S* 
adjoining the left shock. Similarly, define the quantity 

(14) 

If the right wave is a shock, using the jump conditions Ur[p] = [pu], we obtain 

(15) 

where Ur is the velocity of the right shock and p* is the density in the portion of S* 

adjoining the right shock. 
In either of the two cases ((12) or (13) for M 1 and (14) and (15) for Mr) we obtain 

where 

Mr = (PrPr)112 4>(P*/Pr), 

Mz = (pzpz)112 4>(P*/pz), 

y-I I-x 
= 2ylf2 1 _ xt-tY ' 

X~ I, 

x~I. 

Upon elimination of u* from (12) and (14) we obtain 

( Pr Pz )/( I 1 ) p* = Uz- Ur +-M +-M -M + M . 
r l l r 

(16a) 

(16b) 

(17) 

(18) 
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Equations (16a), (16b), and (18) represent three equations in three unknowns for 
which it can be seen that there exists a real solution. Upon choosing a starting value 
p*0 (or M 1° and M/), we iterate using Eqs. (16a), (16b), and (18). For details of the 
starting values see Chorin [3] and Sod [25]. 

After p*, M 1 , and Mr have been determined we may obtain u* by eliminating p* 
from Eqs. (12) and (14), 

(19) 

from which the complete solution of the Riemann problem can be determined using 
the jump conditions for shock waves and the isentropic law and constancy of the 
Riemann invariants for the rarefaction waves. See the Appendix. 

The finite difference method due to Godunov [6] in Table I is for the Eulerian form 
of the equations of gas dynamics. The method developed by Godunov [5] for the 
Lagrangian form is also a two-step method where the second step is the second half 
step in Table I. However, the values of u"/.N and p"/N are replaced by u* (19) and 
p* (18) from the Riemann problem at i + !- · -

Artificial Viscosity 

In the methods of Godunov, MacCormack, and Lax and Wendroff (two-step), an 
artificial viscosity term was added. The artificial viscosity term used was introduced 
by Lapidus [14]. It has the advantage that it is very easy to add to an existing scheme 
and it retains the high-order accuracy of the scheme. Let fi"/+ 1 be the approximation at 
time (n + 1) Lit obtained by any one of the above schemes. This value is replaced by 
the new approximation 

u':'+l = fi':'+l + v Lit Ll'[l Ll'fin+I I • Ll'fin+I] (20) 
t t Llx HI •+1 ' 

where Ll'ii;n = ii;n - fi~1 and v is an adjustable constant. 
Equation (20) is a fractional step for the numerical solution of the following 

diffusion equation 

It is shown (see Ladidus [14]) that this new difference scheme (obtained by adding the 
artificial viscosity) satisfies the same conservation law that the previous equation did. 
The values of the constant v used varied from method to method. This is discussed in 
the section on numerical results. This artificial viscosity was not added in the smooth 
regions and not applied to the first component (mass) equation of (5). The artificial 
viscosity is not applied to the mass equation so as to minimize the amount of mass 
diffused across the contact discontinuity. 
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Harten's Corrective Method of Artificial Compression 

In this section we discuss the Artificial Compression Method (ACM) developed by 
Harten [9]. This method is designed to be used in conjunction with an already existing 
finite difference scheme. The purpose of this method is to sharpen the regions which 
contain discontinuities whether shocks or contact discontinuities. 

Only the basic idea of the ACM will be discussed for the case of a single conserva­
tion law. Let u(x, t) be a solution of the conservation law 

Ut+ f(u)x = 0 (21) 

which contains a discontinuity (uL(t), uR(t), S(t)), where uL and uR are the values on 
the left and right of the jump and S is the speed of the discontinuity. The discontinuity 
is either a shock or a contact. Assume, without loss of generality that at any given 
timet the solution u does not take on any values between uL(t) and uR(t). Consider the 
function g(u, t) with properties 

g(u, t) sgn [uR(t) - uL(t)] > 0 

g(u, t) ~ 0 

for u E (uL(t), uR(t)), 

for u if= (uL(t), uit)). 

This function g will be called an artificial compression flux. 
It can be seen that u is also a solution of the conservation law 

Ut + (f(u) + g(u, t))x = 0. 

(22) 

(23) 

(24) 

By (23) we see that when u is smooth Eq. (24) is identical with Eq. (21) and the shock 
speed S(t) remains the same. Finally it is observed (from (22)) that if (uL , uR , S) is a 
shock or contact for Eq. (21) then it is a shock for the modified equation (24). 

The artificial compression method solves the modified equation (24) rather than the 
original equation (21). For a complete discussion of the implementation of the method 
see Harten [9]. 

Let u~+1 represent the approximate solution vector to (5) obtained by using any one 
of the above first order difference methods. In solving the modified system(analogous to 
(24)) we use operator splitting. We first define the difference representation g; of the 
artificial compression flux g, 

(25) 

where 

and 

(26) 
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where k refers to the kth component of the fi, S~+t = fi~~~ - fi~kl. Let Si+i represent 
the vector whose kth component is sgn (S~H). Then the difference scheme which 
applies the ACM to the given solution u~+1 is 

un+l = iin+l- ~(g. -g. ) , 2Lix <+1 z-1 

(27a) 

-n+l Lit (Gn Gn ) 
= ui - 2LI i+ • - i-, , X - -

(27b) 

where G~H = gin - g~1 - I g~+1 - g;n I Si+-t, applied componentwise. See Harten [8]. 
The method of artificial compression is designed for first-order schemes and 

cannot be applied directly to higher-order schemes. The idea of ACM is based on the 
existence of a viscous profile. See Harten [9]. Higher-order schemes introduce other 
flux terms so that one obtains different (non physical) speeds of propagation. 

Self-Adjusting Hybrid Schemes 

The idea of self-adjusting hybrid schemes was introduced by Harten and Zwas [12]. 
Consider a nonoscillatory first-order scheme L1 and a kth-order (k ~ 2) scheme Lk , 

(28) 

(29) 

So as not to violate the conservation, hybridize L1 and Lk through their numerical 
fluxes. Define the hybrid operator L by 

(30) 

where 

(31) 

()i+i is a scalar quantity (called a switch) which satisfies 0 ~ {}i+i ~ I. At discon­
tinuities the automatic switch is such that {} R::i I. Hence at the discontinuities the 
hybrid scheme is essentially the nonoscillatory first-order scheme. 

Equation (30) can be written in the form 

(32) 

so that if () is o(LfxP) where the solution is smooth, then for p ~ k - 1 we have 

(33) 
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There are many choices for such schemes. The scheme chosen here is discussed in 
Harten [10]. Taking k = 2 we choose MacCormack's scheme and by adding the 
artificial viscosity term 

(34) 

to MacCormack's scheme we obtain the first-order scheme. 
The hybridized scheme becomes for system (5) 

(35) 

(36) 

The stability condition for the first-order scheme is 

Lit 3112 

max(l u I+ c) Llx ~ T, 

this being stricter than the stability condition for MacCormack's scheme. So this is 
the stability condition for the hybrid scheme. 

It remains to describe how switch 0 is chosen. There are many possible choices, the 
one selected is described in Harten [10]. Let Lli+t = Pi+1 - p;. Define 

(37) 
= 0, otherwise. 

In this case p = 1 and E > 0 is chosen as a measure of negligible variation in the 
density p. We define the switch 0 by 

Since in areas which contain a discontinuity the hybrid scheme is about first order 
we may apply the artificial compression method discussed above. However, the ACM 
must not be used in smooth regions. For this purpose the switch is used again, i.e., 
Eq. (27b) may be replaced with 

n+1 -n+l .:1 t (On Gn on Gn ) 
U; = U; - 2 A i+ l i+ > - i- 1 i- > · 

41X - - • -
(38) 
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Antidiffusion Method of Boris and Book 

In this section we shall discuss briefly the antidiffusion method developed by Boris 
and Book [1]. The purpose of this special technique known as ":flux correction" is to 
achieve high resolution without oscillations. 

It can be shown that a first-order difference scheme can be represented by 
an equation of the form 

Ut + j(u)x = Llt [g(u, LltjLlx) Ux]x, (39) 

where g(u, LltjLlx) is the coefficient of the diffusion term. 
The basis of the antidiffusion method is to use a stable modification of a diffusive 

difference scheme. Let the original scheme be represented by (39). The modification is 
represented by 

Ut + f(u)x = Llt [(g(u, LltJLlx) - r(u, LltJLlx)) Ux]x, (40) 

where r is a positive function. One can introduce the antidiffusion term by operator 
splitting. The first step consists of solving 

Ut + f(u)., = 0, (41) 

with the original difference scheme, say fi7+1 = Luin· Then in the second step let A be 
a difference operator approximating the diffusion equation 

Ut + Llt[r(u, LltjLlx) u,]., = 0. (42) 

The second step is the antidiffusion step, which is unstable by itself since it approxi­
mates the backward heat equation. We define 

It can be seen that if 

g(u, LltfLlx) - r(u, Llt/Llx) ;;, 0, (43) 

then the combined scheme AL is stable. However, (43) places more of a restriction on 
LltjLlx than the stability condition for L. 

We chose for L the two-step Lax-Wenfroff scheme. Following Boris et al. [2], the 
procedure is 

(44a) 

(44b) 
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where 

A' (-n+l -n+l) 
..:.Ji+t = YJ U;+l - U; , 

(44c) 

(44d) 

The parameter YJ is the diffusionjantidiffusion coefficient. The stability condition is 

max(l u I + c)(L1tjL1x) :(; 1. 

Hyman's Predictor-Corrector Method 

In [13] Hyman describes a predictor-corrector type scheme. The spatial derivatives 
are approximated by a second-order difference operator while the time derivative (or 
time integrator) uses the improved Euler scheme. The improved Euler scheme com­
bines a first-order explicit predictor with a second-order trapazoidal rule corrector. 

For stability and to insure proper entropy production an artificial viscosity term is 
added. The artificial viscosity term used is similar to that used by Rusanov [21]. 

The scheme is given by 

where 

u~+l = ut - (L1tj2)(DF~H + Pt), 

q,;H = (l/4L1x)(cx;+1 + cxt)(u;+l - ut), 

cxt = (u + c)? , 

and c is the local sound speed. 

(45a) 

(45b) 

The stability of the scheme depends on the number of applications of the corrector 
(45b) and on S. We took as the stability condition 

max (I u I + c)(L1tjL1x) :(; 1. 

In order to maintain stability, the artificial viscosity must not be completely removed 
in the smooth regions. However, it can be reduced in these regions by using a type of 
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switch. The one chosen was suggested by Hyman [13]. Replace cf>~H in (45a) by 
f3cpf+l where 

R-.l 
fJ- 3' 

=I, 

if ex~+ I > cxi n + (Lix/3) 

otherwise. 

This type of switch greatly reduces the smearing of the contact discontinuity as well as 
the shock wave. This switch is a type of artificial compression. 

3. THE SHOCK TUBE PROBLEM 

Figure 2 represents the initial conditions in a shock tube. A diaphragm at x0 

separates two regions (regions 1 and 5) which have different densities and pressures. 
The two regions are in a constant state. The initial conditions are p1 > p5 , p1 > p5 , 

and u1 = u5 = 0; i.e., both fluids are initially at rest. At time t > 0 (see Fig. 3) the 
diaphragm is broken. Consider the case before any wave has reached the left or right 
boundary. Points x1 and x2 represent the location of the head and tail of the rare­
faction wave (moving to the left). Although the solution is continuous in this region 

Regl.oo 1 Reg:Loo 5 

FIG. 2. Shock tube at t = 0. 

Region 1 Regioo 2 Pegtan 3 Region 11 Region 5 

FIG. 3. Shock tube at t > 0. 
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(region 2) some of the derivatives of the fluid quantities may not be continuous The 
point x3 is the position that an element of fluid initially at x0 has reached by time t. 
Point x3 is called a contact discontinuity. It is seen that across a contact discontinuity 
the pressure and the normal component of velocity are continuous. However, the 
density and the specific energy are not continuous across a contact discontinuity. 
Point x4 is the location of the shock wave (moving to the right). Across a shock all of 
the quantities (p, m, e, and p) will in general be discontinuous. 

In the study of the above numerical methods the following test problem was 
considered: PI = 1.0, PI = 1.0, ui = 0.0, p5 = 0.125, p 5 = 0.1, and u5 = 0. The 
ratio of specific heats y was chosen to be 1.4. In all of the calculations Llx = 0.01. For 
the Rusanov scheme the value of w (see Table I) was taken to be 1.0. In the scheme of 
Boris and Book the parameter 7J was taken to be 0.125. For Hyman's scheme the 
value of I) was taken to be 0.8. The constant in the artificial viscosity term v was taken 
to be 1.0 in all but one case. Also the value of a (see Table I) was taken to be 0.9. 

In Glimm's original construction a new value of g was chosen for each grid point i 
and each time level n. The practical effect of such a choice with finite Llx is disastrous 
since our initial data is not close to constant (which was an assumption made by 
Glimm). In fact, if g is chosen for each i and n, it is possible that a state will propagate 
to the left and to the right and thus create a spurious state. An improvement due to 

~ 
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FIG. 4. Godunov's method. 
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Chorin [3] is to choose gn only once per time step (hence the subscript n). The details 
of the method of selection of the random number are found in Chorin [3] and Sod [22]. 

Figure 4 indicates the results using the first-order accurate Godunov scheme. The 
corners at the endpoints of the rarefaction wave are rounded. The constant state 
between the contact discontinuity and the shock has not been fully realized. The 
transition of the contact discontinuity occupies seven to eight zones while the transi­
tion of the shock occupies five to six zones. 

Figure 5 indicates the results using the Godunov scheme with artificial compression. 
It should be noted that for this case the constant in the artificial term was taken to 
be 2.0 to ensure that the solution before application of artificial compression was 
oscillation free. For the artificial compression cannot be applied in the presence of 
oscillations. The corners at the endpoints of the rarefaction wave are still rounded, 
since the artificial compression method is not applied in smooth regions. There is a 
slight undershoot at the right corner of the rarefaction. Also there are oscillations at 
the contact discontinuity. The transition of the contact discontinuity occupies three 
to four zones while the transition of the shock occupies only one to two zones. 

Figure 6 shows the results of the two-step Lax-Wendroff scheme. There are very 
slight overshoots at the contact discontinuity and more noticeable overshoots at the 
shock. The rarefaction wave is quite accurate. The corners at the endpoints of the 
rarefaction are only slightly rounded. The transition of the contact discontinuity 
occupies six to eight zones while the shock wave occupies four to six zones. It is 
observed that the plots in Fig. 6 are quite similar to those in Fig. 7 obtained by 
MacCormack's method. 

Figure 7 represents the results of the second-order MacCormack scheme. There are 
slight overshoots at the contact discontinuity and more noticeable overshoots at the 
shock wave. The rarefaction wave is quite accurate. The corners at the endpoints of 
the rarefaction are only slightly rounded. The transition of the contact discontinuity 
occupies seven to eight zones while the transition of the shock occupies five to six 
zones. 

Figure 8 represents the first-order accurate Rusanov scheme. The contact dis­
continuity is barely visible in the density profile. The corners at the end points of the 
rarefaction wave are extremely rounded. The constant state between the contact 
discontinuity and the shock wave is barely existent. The transition of the contact 
discontinuity occupies 14-16 zones and the transition of the shock occupies 6-8 
zones. This scheme is extremely diffusive. 

Figure 9 represents the Rusanov scheme with artificial compression. The results 
with artificial compression are greatly improved. The corners at the endt;>Oints of the 
rarefaction wave are still rounded since the artificial compression method is not 
applied in this area. The constant state between the contact discontinuity and the 
shock is much more visible. The transition of the contact discontinuity occupies two 
to three zones while that of the shock wave occupies only one to two zones. 

Figure 10 represents the upwind difference scheme. It is observed that between the 
left constant state and the left endpoint of the rarefaction wave is a shock (dis­
continuity). This is clearly a non physical solution. This is a result of the method used 
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to stabilize the scheme, by using centered differences for the pressure term in the 
momentum equation. 

Figure 11 shows the results of the Glimm scheme. The shock wave and the contact 
discontinuity have been computed with infinite resolution, i.e., the number of zones 
over which the variation occurs is zero. Due to the randomness of the method the 
positions of the shock and the contact discontinuity are not exact. However, on the 
average their positions are exact. The corners at the end points of the rarefaction wave 
are perfectly sharp. It is observed that the rarefaction is not smooth (due to the 
randomness), yet it is extremely close to the exact solution. The constant states are 
perfectly realized. 

The Glimm scheme requires between two and three times as much time (see below) 
as the other finite difference schemes tested. However, the Glimm scheme requires far 
less spatial grid points for the same resolution. This is displayed in Table II, where 
nine interior grid points are used. All details are visible. 

The Glimm scheme on the average is conservative. One other check on the accuracy 
is to use the conservation laws (mass, momentum, and energy). For example, the 
total mass is evaluated by 

Q. = L p(i Ax) Ax. 
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TABLE li 

Profiles Obtained by Glimm's Method for Nine Interior Grid Points 

X p u p e ra + 

0.1 1.000 0.000 1.000 2.500 2.958 

0.2 1.000 0.000 1.000 2.500 2.958 

0.3 0.869 0.164 0.822 2.363 2.958 

0.4 0.426 0.927 0.303 1.778 2.958 

0.5 0.426 0.927 0.303 1.778 2.958 

0.6 0.426 0.927 0.303 1.778 2.958 

0.7 0.426 0.927 0.303 1.778 2.958 

0.8 0.266 0.927 0.303 2.853 3.624 

0.9 0.125 0.000 0.100 2.000 2.646 

a r+ is the Riemann invariant (c/(y- I))+ (u/2), where c is the local sound speed. 

TABLE Ill 

Total Mass, Momentum, and Energy for Glimm's Scheme 

tjilt Qp Qm Q. 

0.547 0.018 2.213 

2 0.550 0.019 2.217 

3 0.554 0.032 2.218 

4 0.550 0.039 2.219 

5 0.552 0.047 2.223 

6 0.550 0.059 2.222 

7 0.549 0.070 2.221 

8 0.550 0.079 2.224 

9 0.545 0.090 2.232 

10 0.546 0.097 2.247 

11 0.548 0.110 2.258 

12 0.545 0.119 2.267 

13 0.549 0.122 2.266 

14 0.552 0.136 2.266 

15 0.549 0.143 2.269 

16 0.553 0.149 2.275 

17 0.550 0.158 2.266 

18 0.546 0.164 2.267 

19 0.550 0.178 2.267 

20 0.543 0.190 2.272 
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In Table HI the values of the total mass, momentum, and energy are displayed. 
The mass and the energy are seen to be conserved on the average, i.e., there are 
fluctuations but they are contained within a small interval. The momentum is seen to 
increase linearly on the average (allowing for fluctuations). 

Figure 12 shows the results of the antidiffusion method of Boris and Book applied 
to the two-step Lax-Wendroff scheme. There is a slight overshoot at the right corner 
of the rarefaction. The rarefaction wave is very accurately computed. The corners at 
the end points of the rarefaction are only slightly rounded. The constant state between 
the contact discontinuity and the shock wave is only partially realized. The transition 
of the contact discontinuity occupies five to seven zones and the transition of the 
shock occupies one to two zones. The resolution is much better than the two-step 
Lax-Wendroff scheme alone (see Fig. 6). 

Figure 13 represents the hybrid scheme (35) and (36) of Harten and Zwas. The 
solution is free of oscillations. The corners at the endpoints of the rarefaction wave 
are only slightly rounded. The constant state between the contact discontinuity and 
the shock is only partly realized. The transition of the contact discontinuity occupies 
eight to nine zones and the transition of the shock occupies five to six zones. 

Figure 14 represents the hybrid scheme of Harten and Zwas with the use of artifical 
compression. Since the artifical compression is not applied in smooth regions the 
rarefaction is the same as in Fig. 13. The transition of the contact discontinuity 
occupies three to four zones and the transition ofthe shock wave occupies two to three 
zones. 

Figure 15 represents the results of Hyman's predictor-<:orrector scheme, where the 
corrector has been applied once. The solution is oscillation free. The corners at the 

TABLE IV 

Running Time per Time Step (in sec) on CDC 6600 

Schemes Without ACM WithACM 

Godunov 0.226 0.247 

Lax-Wendroff 0.226 

MacCormack 0.224 

Rusanov 0.224 0.240 

Upwind 0.225 

Glimm 0.364 

Anti diffusion 0.242 

Hybrid 0.258 0.269 

Hyman 0.276 

a Times include computation of exact solution, calls to printing, and plotting routines, which 
were the same for all cases. 
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endpoints of the rarefaction are almost perfectly sharp. The constant states between 
the rarefaction and the contact discontinuity and between the contact discontinuity 
are extremely well defined. The transition of the contact discontinuity occupies 
six to eight zones while the transition of the shock occupies three to four zones. 

The timing results for all of the methods are listed in Table IV. The times are for 
100 spatial grid points. The only substantial difference in timing is between Glimm's 
scheme and the other finite difference schemes. For Glimm's scheme requires between 
two and three times as much time. However, Glimm's scheme can give the same 
resolution with far less points (as seen in Table 11). From the point of view of the 
least number of grid points per desired resolution, the Glimm scheme can be seen to 
be much faster. 

4. CONCLUSIONS 

Of all the finite difference schemes tested, without the use of corrective procedures, 
Godunov's and Hyman's methods produced the best results. 

It is obvious from the figures that the Glimm scheme gives the best resolution of the 
shocks and contact discontinuities. Glimm's scheme is at best first-order accurate 
(see Chorin [3]) so that boundary conditions are easily handled. 

It is possible that the rarefaction wave obtained by Glimm's method can be 
smoothed out by a type of averaging. This is presently being considered. 

The hybrid method of Harten and Zwas combines first- and high-order schemes in 
such a way as to extract the best features of both. The high-order scheme produces 
better approximations to the smooth parts of the flow. 

The corrective procedures of Boris and Book and Harten improve the resolution 
of a given scheme. The artificial compression method being restricted to first-order 
schemes except when used in conjunction with the hybrid type schemes produces far 
better results than the antidiffusion method of Boris and Book. Both methods are 
easily added to existing programs (as a subroutine). The antidiffusion method requires 
slightly more storage than the artificial compression method since the former must 
retain two time levels of information for the computation of intermediate results 
(Eq. (44c)). 

A major disadvantage of the antidiffusion method of Boris and Book, the hybrid 
scheme of Harten and Zwas, and the artificial compression method of Harten is that 
there are a number of parameters to be chosen, which depend on the given problem. 
In the antidiffusion method the coefficient of diffusionjantidiffusion must be chosen. 
The value of this parameter can greatly affect the results. In the hybrid scheme a 
tolerance must be chosen for the automatic switch which is taken to be a measure of 
negligible variation in entropy or density for example. This tolerance depends on the 
given problem. In the artificial compression method a test must be included to locate 
the rarefaction (and other smooth regions). Many of the standard tests fail to work 
well enough for the use of artificial compression. 
~ ; With the method described for solving the Riemann problem in the Glimm scheme, 
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it can only be used for the equations of gas dynamics in rectangular coordinates. It is 
possible to generalize Glimm's method to other coordinate systems and different 
equations. See Harten and Sod [11]. 

The applicability of Glimm's method to other geometries has only just started to be 
explored. One successful application is to the equations of gas dynamics for a cylindri­
cally or spherically symmetric flow. See Sod [23]. 

The usefulness of Glimm's method in the analysis of reacting gas flow is given in 
Chorin [4] and Sod [24]. In Chorin's paper examples are given of deflagration and 
detonation waves, with infinite and finite rates of reaction. 

Since the Godunov iteration procedure provides an exact solution (up to the 
tolerence prescribed to terminate the iteration) to the Riemann problem, the one­
dimensional shock tube problem can be viewed as a "sitting duck" for Glimm's or 
any other numerical method using solutions of Riemann problems. However, it is 
observed that due to the randomness the results of Glimm's method are not exact. 

The true value of a numerical method should be measured by its ability to solve 
multidimensional problems. For such problems, Glimm's method or others which 
depend on the solution of one-dimensional Riemann problems may not have any 
advantage over the other methods considered here. This is presently being studied. 

APPENDIX: IMPLEMENTATION OF GLIMM'S METHOD 

In this appendix we discuss the equations required for the computer implementation 
of Glimm's method. 

As in Fig. I, the fluid initially at x ~ 0 is separated from the fluid initially at 
x > 0 by a slip line dxfdt = u* . There are a toal of 10 cases to consider. 

I. The sample point gn Llx lies to the left of the slip line (gn Llx < u* Llt/2). 

(a) If the left wave is a shock wave (p* > p1) and (1) if gn Llx lies to the left of 
the shock line dxfdt = U1 , we have p = p1 , u = u1 , and p = Pz, (2) if gn Llx lies to 
the right of the shock line dx/dt = U1 , we have p = p*, u = u*, p = p*, where p* 
can be obtained from (13) 

(46) 

(b) If the left wave is a rarefaction wave (p* ~ p1). Define the sound speed to 
be c = (ypfp}r. The rarefaction wave is bounded on the left by the line defined by 
dxfdt = u1 - c1 , where Cz = (ypz/p 1)\ and on the right by the line defined by dxfdt = 

u* - c*, where c* = (yp*fp*}~. The flow is adiabatic in smooth regions, so in this 
region A(S) in (4) is a constant, denoted by A, and we obtain the isentropic law 
p = Apv. p* is obtained by using the isentropic law 

(47) 
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Then we obtain from (46) 

(48) 

(I) If gn Jx lies to the left of the rarefaction wave, then p = p1 , u =Ut, and 

P=Pt· 

(2) If gn Jx lies inside the left rarefaction wave, we equate the slope of the 
characteristic dxfdt = u- c to the slope of the line through the origin and (gn Jx, 
Jtj2), obtaining 

(49) 

With the constancy of the Riemann invariant 

2c(y- 1)-1 + u = 2c1(y- I)-1 +Ut, (50) 

the isentropic law, and the definition of c, we can obtain p, u, and p. Using the isen­
tropic law we obtain 

p = PtPI:YPY = ApY. (51) 

Using Eq. (50) we obtain, by solving for c, 

y-1 
c = Cz + -

2
-(ut- u). (52) 

By substitution of (52) into (49) and solving for u we obtain 

_ 2 (2gn Jx + + (y- 1) ) 
u - y + 1 ~ Cz 2 Uz . (53) 

By substitution of (53) into (52) c is obtained; by substitution of (52) into the defini­
tion of c and solving for p we obtain 

(53) 

(3) If gn Jx lies to the right of the left rarefaction wave we obtain p = p* , 
u = u*, andp = p*. 

II. The sample point gn Jx lies to the right of the slip line (gn Jx ~ u* ..::lt/2). 

(a) If the right wave is a shock wave (p* > Pr) and (1) if gn Jx lies to the left 
of the shock line defined by dxfdt = Ur, we have p = p* , u = u* , and p = p* , 
where p* is obtained from (15) 

(54) 
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(2) If gn L1x lies to the right of the shock line defined by dxfdt = Ur , we have 
p = Pr, u = Ur' andp = Pr. 

(b) If the right wave is a rarefaction wave (p* ~Pr)· The rarefaction wave is 
bounded on the left by the line defined by dxfdt = u* + c*, where c* = (yp*fp*)t 
and p* can be obtained from the isentropic law 

(55) 

Then we obtain from (55) 

(56) 

and on the right by the line defined by dxfdt = Ur + Cr, Cr = (YPrfPr)t. 

(1) If gn L1x lies to the left of the rarefaction wave, then p = p* , u = u*, 
andp =p*. 

(2) If gn L1x lies inside the right rarefaction wave, we equate the slope of the 
characteristic dxfdt = u + c to the slope of the line through the origin and (gn L1x, 
L1tj2), obtaining 

U + C = 2gn L1xjLlt. (57) 

With the constancy of the Riemann invariant 

2c(y - 1)-1 - u = 2cr(y - 1)-1 - Ur (58) 

the isentropic law, and the definition of c, we can obtain p, u, and p. Using the isen­
tropic law we obtain 

(59) 

Using Eq. (58) we obtain, by solving for c 

y-1 
C = Cr + -

2
-(u- Ur). (60) 

Substitution of (60) into (57) and solving for u we obtain 

2 (2gn Llx y - 1 ) 
U = Y + 1 ----:1[ - Cr + - 2- Ur . (61) 

By substitution of(61) into (60) c is obtained; by substitution of (59) into the definition 
of c and solving for p we obtain 

(62) 
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(3) If gn Llx lies to the right of the right rarefaction wave we obtain p = p,, 
u = u, , and P = Pr . 

Equations (46)-(62) are the key to the programming of Glimm's method. For a 
summary see the flow chart (Fig. 16). 
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