
HAL Id: hal-01635958
https://hal.inria.fr/hal-01635958

Submitted on 30 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Overflow Free Fixed-point Eigenvalue Decomposition
Algorithm: Case Study of Dimensionality Reduction in

Hyperspectral Images
Bibek Kabi, Anand S Sahadevan, Tapan Pradhan

To cite this version:
Bibek Kabi, Anand S Sahadevan, Tapan Pradhan. An Overflow Free Fixed-point Eigenvalue De-
composition Algorithm: Case Study of Dimensionality Reduction in Hyperspectral Images. 2017
Conference On Design And Architectures For Signal And Image Processing (DASIP). , Sep 2017,
Dresden, Germany. 0028, <http://dasip2017.esit.rub.de/program.html>. <hal-01635958>

https://hal.inria.fr/hal-01635958
https://hal.archives-ouvertes.fr


ar
X

iv
:1

71
1.

10
60

0v
1 

 [
cs

.N
A

] 
 2

8 
N

ov
 2

01
7

An Overflow Free Fixed-point Eigenvalue Decomposition Algorithm:

Case Study of Dimensionality Reduction in Hyperspectral Images

Bibek Kabi1 and Anand S Sahadevan2 and Tapan Pradhan3

1Laboratoire d’Informatique de l’Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
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Abstract— We consider the problem of enabling robust range
estimation of eigenvalue decomposition (EVD) algorithm for
a reliable fixed-point design. The simplicity of fixed-point
circuitry has always been so tempting to implement EVD algo-
rithms in fixed-point arithmetic. Working towards an effective
fixed-point design, integer bit-width allocation is a significant
step which has a crucial impact on accuracy and hardware
efficiency. This paper investigates the shortcomings of the
existing range estimation methods while deriving bounds for the
variables of the EVD algorithm. In light of the circumstances,
we introduce a range estimation approach based on vector and
matrix norm properties together with a scaling procedure that
maintains all the assets of an analytical method. The method
could derive robust and tight bounds for the variables of EVD
algorithm. The bounds derived using the proposed approach
remain same for any input matrix and are also independent
of the number of iterations or size of the problem. Some
benchmark hyperspectral data sets have been used to evaluate
the efficiency of the proposed technique. It was found that
by the proposed range estimation approach, all the variables
generated during the computation of Jacobi EVD is bounded
within ±1.

Index Terms— Affine arithmetic, eigenvalue decomposition,
fixed-point arithmetic, formal methods, integer bit-width alloca-
tion, interval arithmetic, overflow, range analysis, satisfiability-
modulo-theory.

I. INTRODUCTION

Eigenvalue decomposition (EVD) is a key building block

in signal processing and control applications. The fixed-point

development of eigenvalue decomposition (EVD) algorithm

have been extensively studied in the past few years [1],

[2], [3], [4], [5], [6], [7], [8], [9], [10] because fixed-point

circuitry is significantly simpler and faster. Owing to its

simplicity, fixed-point arithmetic is ubiquitous in low cost

embedded platforms. Fixed-point arithmetic has played an

important role in supporting the field-programmable-gate-

array (FPGA) parallelism by keeping the hardware resources

as low as possible. The most crucial step involved in

the float-to-fixed conversion process is deciding the integer

wordlengths (IWLs) in order to avoid overflow. This step has

a significant impact on accuracy and hardware resources.

IWLs can be determined either using simulation [1], [11],

[12] or by analytical (formal) methods [13], [14], [15],

[16]. Existing works on fixed-point EVD have mainly used

simulation-based approach for finding the IWLs [1], [2], [3],

[4], [5], [6], [7], [8], [9], [10], [17] because of its capability to

be performed on any kind of systems. In simulation-based

methods, variable bounds are estimated using the extreme

values obtained from the simulation of the floating-point

model. This method needs a large amount of input matrices

to obtain a reliable estimation of ranges. Thus, the method is

quite slow. Moreover, it cannot guarantee to avoid overflow

for non-simulated matrices. This is primarily due to the

diverse range of input data. A stochastic range estimation

method is discussed in [18] which computes the ranges

by propagating statistical distributions through operations.

It requires large number of simulations to estimate system

parameters and an appropriate input data set to estimate

quality parameters [19], [14] and therefore, it does not

produce absolute bounds [20].

There are several limitations associated with analytical

(formal) methods. An analytical method based on L1 norm

and transfer function is described in [21]. This method

produces theoretical bounds that guarantee no overflow will

occur, but the approach is only limited to linear time-

invariant systems [19]. Interval arithmetic (IA) ignores corre-

lation among signals resulting in an overestimation of ranges

[13]. Affine arithmetic (AA) is a preferable approach that

takes into account the interdependency among the signals

[22], but ranges determined through AA explode during

division if the range of divisor includes zero [15], [16].

IA also suffers from the same problem. Both IA and AA

are pessimistic approaches leading to higher implementation

cost [23]. Satisfiability modulo theory (SMT) produces tight

ranges compared to IA and AA [15], [24]. However, it is

computationally expensive and much slower as compared

to IA and AA [16], [25]. IA and AA methods compute

the ranges of the intermediate variables by propagating the

bounds of the input data through the arithmetic operations.

SMT refines the range results provided by IA and AA. There

are common issues associated with IA, AA and SMT. Given a

particular range of the input matrix, these analytical methods

compute certain ranges of the intermediate variables based on

the arithmetic operations. However, if the range of the input

matrix changes, the bounds for the variables no longer remain

the same. Another issue with these analytical methods is that

the bounds of the variables obtained using these methods are

not independent of the number of iterations or the size of the

problem. We exemplify these common issues associated with
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IA, AA and SMT in the next section.

II. MOTIVATION

In this section, we illustrate the issues associated with

the existing range estimation methods through a motivational

example (dimensionality reduction of hyperspectral images

using fixed-point EVD). Along with the covariance matrices

of hyperspectral images, we have also used some random

symmetric positive semi-definite matrices generated from

MATLAB. We have chosen such an instance because it is

discovered from the literature that some of the works on

dimensionality reduction of hyperspectral images highlight

the overflow issues while using fixed-point EVD algorithm.

A sincere effort has been made to contemplate them.

The diverse range of the elements of the input data

matrices for different hyperspectral images (HSIs) limits the

use of fixed-point EVD for dimensionality reduction [26],

[27]. If the range of the input data is diverse, selecting a

particular IWL may not avoid overflow for all range of input

cases. Egho et al. [28] stated that fixed-point implementation

of EVD algorithm leads to inaccurate computation of eigen-

values and eigenvectors due to overflow. Therefore, the au-

thors implemented Jacobi algorithm in FPGA using floating-

point arithmetic. Lopez et al. [26] reported overflow issues

while computing EVD in fixed-point arithmetic. Burger et

al. [29] mentioned that while processing millions of HSI,

numerical instability like overflow should be avoided. Hence,

determination of proper IWLs for variables of fixed-point

EVD algorithm in order to free it from overflow for all range

of input data remains a major research issue.

The most widely used algorithm for dimensionality reduc-

tion is principal component analysis (PCA). PCA requires

computation of eigenvalues (λ) and eigenvectors (x) given

by

A = XΛXT, (1)

where A is the covariance matrix, Λ is a diagonal matrix

containing the eigenvalues and the columns of X contain

the eigenvectors. X is a new coordinate basis for the image.

There are several algorithms developed in the literature for

EVD of symmetric matrices [30], [31], [32]. Among all,

two-sided Jacobi algorithm is most accurate and numer-

ically stable [30], [33]. Most of the work attempted for

dimensionality reduction via EVD uses two-sided Jacobi

algorithm [28], [34], [35]. The same algorithm is used in

this paper for computing EVD of the covariance matrix of

the hyperspectral data. Apart from the accuracy and stability

of Jacobi algorithm, it also has high degree potential for

parallelism, and hence can be implemented on FPGA [5],

[6]. In [3], [5], [4], [6], [7], [8], [9], [10] this algorithm is

implemented on FPGA with fixed-point arithmetic to reduce

power consumption and silicon area. However, in all the

works, fixed-point implementation of Jacobi algorithm uses

the simulation-based approach for estimating the ranges of

variables. It does not produce promising bounds (as discussed

earlier in section I).

Jacobi method computes EVD of a symmetric matrix A

Algorithm 1 Two-sided Jacobi EVD algorithm

1: X = I;

2: for l = 1 to n do

3: for i = 1 to n do

4: for j = i+ 1 to n do

5: a = A(i, i);
6: b = A(j, j);
7: c = A(i, j) = A(j, i);

/* compute the Jacobi rotation which diagonalizes
(

A(i, i) A(i, j)
A(j, i) A(j, j)

)

=

(

a c
c b

)

*/

8: t =
sign( b−a

c
)·|c|

| b−a

2
|+

√

c2+( b−a

2
)
2

;

9: cs = 1/
√
1 + t2;

10: sn = cs · t;
/* update the 2×2 submatrix */

11: A(i, i) = a− c · t;
12: A(j, j) = b+ c · t;
13: A(i, j) = A(j, i) = 0;

/* update the rest of rows and columns i and j */

14: for k = 1 to n do except i and j
15: tmp = A(i, k);
16: A(i, k) = cs · tmp− sn · A(j, k);
17: A(j, k) = sn · tmp+ cs ·A(j, k);
18: A(k, i) = A(i, k);
19: A(k, j) = A(j, k);
20: end for

/* update the eigenvector matrix X */

21: for k = 1 to n do

22: tmp = X(k, i);
23: X(k, i) = cs · tmp− sn ·X(k, j);
24: X(k, j) = sn · tmp+ cs ·X(k, j);
25: end for

26: end for

27: end for

28: end for

/* eigenvalues are diagonals of the final A */

29: for i = 1 to n do

30: λi = A(i, i);
31: end for

by producing a sequence of orthogonally similar matrices,

which eventually converges to a diagonal matrix [30] given

by

Λ = JTAJ, (2)

where J is the Jacobi rotation and Λ is a diagonal matrix

containing eigenvalues (λ). In each step, we compute a

Jacobi rotation with J and update A to JTAJ , where J
is chosen in such a way that two off-diagonal entries of a

2 × 2 matrix of A are set to zero. This is called two-sided

or classical Jacobi method. Algorithm 1 lists the steps for

Jacobi method. In order to investigate the challenges with

fixed-point EVD algorithm, we have used four different types

of HSI collected by the space-borne (Hyperion), air-borne

(ROSIS and AVIRIS), handheld sensors (Landscape) and



Synthetic (simulated EnMap). The selected Hyperion image

subset contains the Chilika Lake (latitude: 19.63 N - 19.68

N, longitude: 85.13 E - 85.18 E) and its catchment areas

[36], [37]. ROSIS data was acquired during a flight campaign

at Pavia University, northern Italy [38]. AVIRIS data was

gathered by the AVIRIS sensor over the Indian Pines test site

in North-western Indiana. Landscape data is obtained from

the database available from Stanford University [39]. The

simulated EnMap image subset contains the Maktesh Ramon,

Israel (30.57 N, 34.83 E) [40]. The sizes of the covariance

matrix for the images are 120×120 for Hyperion, 103×103
for ROSIS, 200× 200 for AVIRIS, 148× 148 for Landscape

and 244× 244 for simulated EnMap. Out of 120, 103, 200,

148 and 244 bands, only a certain number of bands are

sufficient for obtaining suitable information due to the large

correlation between adjacent bands. Hence, the dimension

of the image should be reduced to decrease the redundancy

in the data. The principal components (PCs) are decided

from the magnitudes of the eigenvalues. The numbers of

PCs which explain 99.0% variance are retained for the

reconstruction purpose. The following paragraph describes

the shortcomings of the existing range estimation methods

while computing bounds for EVD algorithm.

Tables I and II shows the ranges obtained for Hyperion and

ROSIS using simulation, IA, AA and the proposed method.

The simulation-based range analysis is performed by feeding

the floating-point algorithm with each input matrix separately

and observing the data range. Notice that the ranges or the

required IWLs (Table III) estimated using the simulation-

based approach for Hyperion cannot avoid overflow in case

of ROSIS. In other words, based on the ranges obtained

using the simulation of Hyperion data one would allocate

24 bits to the integer part, but these number of bits cannot

avoid overflow in case of ROSIS. Simulation-based method

can only produce exact bounds for the simulated cases.

Thus, simulation-based method is characterized by a need

for stimuli, due to which it cannot be relied upon in prac-

tical implementations. In contrast, the static or analytical

or formal methods like IA and AA which depends on the

arithmetic operations always provide worst-case bounds so

that no overflow occurs. However, the bounds are highly

overestimated compared to the actual bounds produced by

simulation-based method as shown in Tables I and II. This

increases the hardware resources unnecessarily.

In order to examine the range explosion problem of IA

and AA, we computed the range of A using IA and AA

for random symmetric positive semi-definite matrices of

different sizes generated from MATLAB. Table IV shows

how the range of A explodes when computed through IA

and AA. All the range estimation using IA and AA have

been carried out using double precision floating-point format.

According to the IEEE 754 double precision floating-point

format, the maximum number that can be represented is in

the order of 10308. It is noticed in Table IV that whenever

the range is more than the maximum representable number,

it is termed as infinity. It is apparent from the algorithm

that variable A is some or the other way related to the

computation of all other variables. So, with the range of A
becoming infinity, the range of other variables also result in

infinity as shown in Tables I and II. The range of variable

A goes unbounded because of the pessimistic nature of

bounds produced by IA and AA. All the issues with existing

range estimation methods are handled meticulously by the

proposed method that produces unvarying or robust bounds

while at the same time tightens the ranges. This is quite

apparent from Tables I and II. In order to combat this,

TABLE I

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND AFFINE ARITHMETIC WITH RESPECT TO

THE PROPOSED APPROACH FOR HYPERION DATA WITH THE RANGE

OF THE COVARIANCE MATRIX AS [−2.42e−05, 4.46e+05].

Var Simulation IA AA Proposed

A [−1.02e+06, 9.58e+06] [−∞,∞] [−∞,∞] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0.71, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 9.58e+06] [−∞,∞] [−∞,∞] [0, 1]
b [0, 2.23e+06] [−∞,∞] [−∞,∞] [0, 1]
c [−1.02e+06, 1.16e+06] [−∞,∞] [−∞,∞] [−1, 1]
X [−0.874, 1] [−∞,∞] [−∞,∞] [−1, 1]
λ [6.47e−10, 9.58e+06] [−∞,∞] [−∞,∞] [0, 1]

TABLE II

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND AFFINE ARITHMETIC WITH RESPECT TO

THE PROPOSED APPROACH FOR ROSIS DATA WITH THE RANGE OF

THE COVARIANCE MATRIX AS [−2.67e−05, 5.81e+05].

Var Simulation IA AA Proposed

A [−3.27e+06, 2.04e+07] [−∞,∞] [−∞,∞] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0.71, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 2.04e+07] [−∞,∞] [−∞,∞] [0, 1]
b [0, 2.51e+06] [−∞,∞] [−∞,∞] [0, 1]
c [−3.27e+06, 2.13e+06] [−∞,∞] [−∞,∞] [−1, 1]
X [−0.768, 1] [−∞,∞] [−∞,∞] [−1, 1]
λ [2.23e−10, 2.04e+07] [−∞,∞] [−∞,∞] [0, 1]

TABLE III

COMPARISON BETWEEN THE INTEGER WORDLENGTHS REQUIRED

BASED ON THE RANGES ESTIMATED BY SIMULATION-BASED

APPROACH SHOWN IN TABLES I AND II

Var Hyperion ROSIS

A 24 25

a 22 22

b 24 25

λ 24 25

SMT has arisen which produce tight bounds compared to IA

and AA. However, SMT is again computationally costly. Its

runtime grows abruptly with application complexity. Hence,

applying SMT for large size matrices would be too complex.

Amidst the individual issues of the analytical methods, there

are also some common issues. Provided with a particular

range of the input matrix, the analytical methods (IA, AA and



TABLE IV

RANGE EXPLOSION OF A WHILE COMPUTING RANGE USING INTERVAL ARITHMETIC AND AFFINE ARITHMETIC.

Size Start l=1, i=1, j=2 l=3, i=3, j=4 l=4, i=4, j=6 l=6, i=6, j=8 End

n=2 [0.65, 0.95] [−0.59, 2.35] [−4.06, 4.18]
n=4 [0.03, 0.93] [−5.52, 14.94] [−2.19e+21, 2.20e+21] [−3.7e+28, 3.7e+28]
n=6 [0.18, 0.79] [−6.90, 28.62] [−6.96e+61, 7.08e+61] [−2.5e+91, 2.6e+91] [−4.5e+139, 4.5e+139]
n=8 [0.11, 0.75] [−9.77, 48.29] [−1.01e+126, 1.03e+126] [−2.6e+187, 2.6e+187] [−1.6e+301, 1.6e+301] [−∞,∞]
n=10 [0.09, 0.96] [−16.62, 96.48] [−4.77e+215, 4.88e+215] [−∞,∞] [−∞,∞] [−∞,∞]
n=12 [0.03, 0.97] [−21.06, 139.76] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

SMT) compute certain ranges of the intermediate variables

based on the arithmetic operations. Notwithstanding, the

ranges no longer remain the same, if the range of the input

matrix changes. In order to investigate this issue, we consider

two 2× 2 symmetric input matrices given by

C =

(

0.4427 0.1067
0.1067 0.4427

)

(3)

and

D =

(

33.4834 22.2054
22.2054 33.4834

)

. (4)

The ranges obtained using IA and SMT in case of matrix C
cannot guarantee to avoid overflow in case of D as shown in

Tables V and VI. The fact is also similar for ranges derived

using AA. This scenario is handled correctly by the proposed

method that produces robust and tight bounds in both the

cases C and D. The range estimation using SMT was carried

out using the freely available HySAT implementation [41].

There is one more common issue with these anaytical

methods. We know that, provided with a fixed range of the

input stimuli, these analytical (formal) methods successfully

produce robust bounds [24]. Even though the range of the

input matrix is fixed, the bounds produced by these analytical

methods would be robust only for a particular size of the

problem or number of iterations. In other words, the bounds

obtained will not be independent of the number of iterations.

In order to illustrate this, let us consider two random

TABLE V

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND SATISFIABILITY-MODULO-THEORY WITH

RESPECT TO THE PROPOSED APPROACH FOR INPUT MATRIX C .

Var Simulation IA SMT Proposed

C [0, 0.549] [−3.88, 3.92] [−2.0, 3.2] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 0.336] [0, 0.336] [0, 0.336] [0, 1]
b [0, 0.443] [0, 0.443] [0, 0.443] [0, 1]
c 0 0 0 [−1, 1]
X [−0.707, 0.707] [−2.88, 2.88] [−1.76, 1.76] [−1, 1]
λ [0.336, 0.549] [−2.29, 3.92] [−1.06, 3.22] [0, 1]

symmetric positive definite matrices of sizes 3 × 3 and 5

× 5 given by

Y =





46.7785 28.3501 18.8598
28.3501 20.1805 13.0975
18.8598 13.0975 8.6377



 (5)

TABLE VI

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND SATISFIABILITY-MODULO-THEORY WITH

RESPECT TO THE PROPOSED APPROACH FOR INPUT MATRIX D.

Var Simulation IA SMT Proposed

D [0, 55.68] [−147.57, 151.96] [−87.2, 103.3] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 11.278] [0, 11.278] [0, 11.278] [0, 1]
b [0, 33.483] [0, 33.483] [0, 33.483] [0, 1]
c 0 0 0 [−1, 1]
X [−0.707, 0.707] [−2.36, 2.36] [−1.54, 1.54] [−1, 1]
λ [11.278, 55.68] [−68.5, 151.96] [−12.6, 103.3] [0, 1]

and

Z =












107.6724 97.1687 107.1030 101.8092 78.4556
97.1687 118.4738 109.0664 114.7589 101.8092
107.1030 109.0664 126.1528 109.0664 107.1030
101.8092 114.7589 109.0664 118.4738 97.1687
78.4556 101.8092 107.1030 97.1687 107.6724













.

(6)

The bounds obtained using IA for the input matrices Y and Z
are shown in Table VII. The bounds are unnecessarily large

compared to the actual bounds produced by the simulation-

based approach shown in Table VIII. Now, the input matrices

are scaled through the upper bound of their spectral norm to

limit their range within −1 and 1. The new matrices Ŷ and

Ẑ whose elements range between −1 and 1 are given by

Ŷ =





0.2848 0.3945 0.3805
0.3945 0.2848 0.3945
0.3805 0.0163 0.2848



 (7)

and

Ẑ =













0.1160 0.2306 0.0349 0.3036 0.0860
0.2306 0.1160 0.2306 0.0349 0.3036
0.0349 0.2306 0.1160 0.2306 0.3435
0.3036 0.0349 0.2306 0.1160 0.2306
0.0860 0.3036 0.0349 0.2306 0.1160













. (8)

The ranges obtained for the scaled input matrices are shown

in Table IX. Even though after scaling, the range of the

variables obtained using IA are large and unbounded com-

pared to the original bounds obtained using simulation-based

method (Table X). The difference in unboundedness of the

ranges shown in Tables VII and IX is not substantially large.

This illustrates that the ranges obtained using IA are not



TABLE VII

RANGES COMPUTED BY INTERVAL ARITHMETIC FOR INPUT MATRICES

Y AND Z .

Variables IA (Y ) IA (Z)

Y or Z [−8.88e+9, 8.94e+9] [−4.51e+71, 4.51e+71]
t [−1, 1] [−1, 1]
cs [0, 1] [0, 1]
sn [−1, 1] [−1, 1]
a [−9.81e+8, 9.93e+8] [−1.80e+70, 1.81e+70]
b [−9.81e+8, 9.93e+8] [−1.80e+70, 1.81e+70]
c [−9.81e+8, 9.93e+8] [−1.80e+70, 1.81e+70]
X [−9587, 10607] [−4.26e+34, 4.38e+34]
λ [−8.88e+9, 8.94e+9] [−4.51e+71, 4.51e+71]

independent of the number of iterations. Similar is the case

for both AA and SMT. We can observe the phenomenon in

Table XI for one of the test hyperspectral data (simulated

EnMAP). Inspite of the range of covariance matrix being

[−3.71e−06, 0.032], the bounds estimated using IA and AA

exploded compared to the actual bounds obtained using

simulation-based approach. These examples comprehend that

the bounds derived using the existing analytical methods

are not independent of the number of iterations. Given the

issues of the existing range estimation methods, our proposed

method provides robust and tight bounds for the variables as

shown in Tables I, II, V, VI and XI. Moreover, the bounds

produced by the proposed method are independent of the size

of the problem. The key to all these advantages is the usage

of the scaling method and vector, matrix norm properties to

derive the ranges.

TABLE VIII

RANGES COMPUTED BY SIMULATION-BASED METHOD FOR INPUT

MATRICES Y AND Z .

Variables Simulation (Y ) Simulation (Z)

Y or Z [−0.123, 72.98] [−15.73, 526.54]
t [−1, 1] [−1, 1]
cs [0, 1] [0, 1]
sn [−1, 1] [−1, 1]
a [0, 72.97] [0, 526.54]
b [0, 20.18] [0, 526.54]
c [−0.123, 28.35] [−8.45, 191.52]
X [−0.61, 1] [−0.71, 1]
λ [0.08, 72.98] [6.9e−3, 526.54]

TABLE IX

RANGES COMPUTED BY INTERVAL ARITHMETIC FOR INPUT MATRICES

Ŷ AND Ẑ .

Variables IA (Ŷ ) IA (Ẑ)

Ŷ or Ẑ [−9.44e+7, 9.51e+7] [−8.08e+68, 8.08e+68]
t [−1, 1] [−1, 1]
cs [0, 1] [0, 1]
sn [−1, 1] [−1, 1]
a [−1.04e+7, 1.06e+7] [−3.23e+67, 3.23e+67]
b [−1.04e+7, 1.06e+7] [−3.23e+67, 3.23e+67]
c [−1.04e+7, 1.06e+7] [−3.23e+67, 3.23e+67]
X [−9587, 10607] [−4.26e+34, 4.37e+34]
λ [−9.44e+7, 9.51e+7] [−8.08e+68, 8.08e+68]

TABLE X

RANGES COMPUTED BY SIMULATION-BASED METHOD FOR INPUT

MATRICES Ŷ AND Ẑ .

Variables Simulation (Ŷ ) Simulation (Ẑ)

Ŷ or Ẑ [−1.31e−3, 0.78] [−0.028, 0.94]
t [−1, 1] [−1, 1]
cs [0, 1] [0, 1]
sn [−1, 1] [−1, 1]
a [0, 0.78] [0, 0.94]
b [0, 0.21] [0, 0.94]
c [−1.31e−3, 0.31] [−0.015, 0.34]
X [−0.61, 1] [−0.71, 1]
λ [8.59e−04, 0.78] [1.24e−5, 0.94]

TABLE XI

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND AFFINE ARITHMETIC WITH RESPECT TO

THE PROPOSED APPROACH FOR SIMULATED ENMAP DATA WITH THE

RANGE OF THE COVARIANCE MATRIX AS [−3.71e−06, 0.032].

Var Simulation IA AA Proposed

A [−0.072, 1.29] [−∞,∞] [−∞,∞] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0.71, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 1.29] [−∞,∞] [−∞,∞] [0, 1]
b [0, 1.29] [−∞,∞] [−∞,∞] [0, 1]
c [−0.067, 0.174] [−∞,∞] [−∞,∞] [−1, 1]
X [−0.823, 1] [−∞,∞] [−∞,∞] [−1, 1]
λ [1.24e−05, 0.942] [−∞,∞] [−∞,∞] [0, 1]

III. PROPOSED SOLUTION

Particularizing, there are mainly three issues associated

with the existing range estimation methods:

1) incompetence of the simulation-based approach to pro-

duce unvarying or robust bounds,

2) bounds produced by existing analytical (formal) meth-

ods are not independent of the number of iterations or

size of the problem, and

3) overestimated bounds produced by IA and AA.

Taking into account the issues 1 and 2, we propose in this

study, an analytical method based on vector and matrix

norm properties to derive unvarying or robust bounds for

the variables of EVD algorithm. The proof for deriving the

bounds make use of the fact that all the eigenvalues of a

symmetric semi-positive definite matrix are bounded within

the upper bound for the spectral norm of the matrix. Further

taking into consideration the issue 3, we demonstrate that if

the spectral norm of any matrix is kept within unity, tight

ranges for the variables of the EVD algorithm can be derived.

It is well-known that the spectral norm of any matrix is

bounded by [31], [42]

‖A‖2 ≤
√

‖A‖1‖A‖∞. (9)

For symmetric matrices, the spectral norm ‖A‖2 in (9) can

be replaced with the spectral radius ρ(A).

Theorem 1: Given the bounds for spectral norm as

‖A‖2 ≤
√

‖A‖1‖A‖∞, the Jacobi EVD algorithm applied



to A has the following bounds for the variables for all i, j,

k and l:

• [A]kl ∈ [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞]
• t ∈ [−1, 1]
• cs ∈ [0, 1]
• sn ∈ [−1, 1]
• [X ]kl ∈ [−1, 1]
• a ∈ [0,

√

‖A‖1‖A‖∞]
• b ∈ [0,

√

‖A‖1‖A‖∞]
• c ∈ [−

√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞]
• [λi]k ∈ [0,

√

‖A‖1‖A‖∞]

where i, j denote the iteration number and []k and []kl denote

the kth component of a vector and klth component of a

matrix respectively.

Proof: Using vector and matrix norm properties the

ranges of the variables can be derived. We start by bounding

the elements of the input symmetric matrix as

max
kl

|[A]kl| ≤ ‖A‖2 = ρ(A) ≤
√

‖A‖1‖A‖∞, (10)

where (10) follows from [31]. Hence, the elements of A
are in the range [−

√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞]. Line 30

in Algorithm 1 shows the computation of eigenvalues. We

know that ρ(A) ≤
√

‖A‖1‖A‖∞, so the upper bound for

the eigenvalues is equal to
√

‖A‖1‖A‖∞. In this work, the

fixed-point Jacobi EVD algorithm is applied to covariance

matrices. Due to the positive semi-definiteness property of

covariance matrices, the lower bound for the eigenvalues is

equal to zero. Thus, the range of λi is [0,
√

‖A‖1‖A‖∞].
The eigenvalues in Line 30 can also be calculated as

λi = ‖A(:, i)‖2. (11)

According to vector norm property we can say that

‖A(:, i)‖∞ ≤ ‖A(:, i)‖2, (12)

where ‖A(:, i)‖∞ is the maximum of the absolute of the

elements in A(:, i). From the upper bound of λi, (11) and

(12) we can say that each element of A(:, i) lie in the

range [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞]. Thus all elements of

A lie in the range [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞] for all

the iterations. Since we have considered symmetric positive

semi-definite matrices (unlike the off-diagonal entries the

diagonal elements are always positive), the diagonal elements

of A are in the range [0,
√

‖A‖1‖A‖∞]. Rest of the elements

lie in the range [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞]. Line 5,

6 and 7 in Algorithm 1 computes a, b and c respectively.

Since a and b are the diagonal elements of A, their range

is [0,
√

‖A‖1‖A‖∞]. c is the off-diagonal entry of A, there-

fore its range is [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞]. Line 8 in

Algorithm 1 computes t. Let t=r/s such that

r = sign
(b− a

c

)

· |c| and s =
∣

∣

∣

b− a

2

∣

∣

∣+

√

c2 +
(b− a

2

)2

.

(13)

According to (13), numerator (r) of t lies in the range

[−|c|, |c|]. | b−a
2 | and

√

c2 + ( b−a
2 )

2
are always positive. The

summation s is greater than or equal to |c|, because if

b = a then s is equal to c or if b 6= a then s is greater

than c since

∣

∣

∣

b−a
2

∣

∣

∣ is greater than or equal to zero and
√

c2 + ( b−a
2 )

2
is greater than |c|. From the range of a, b

and the denominator of t, we can say that |c| will always

be less or equal to | b−a
2 |+

√

c2 + ( b−a
2 )

2
. Thus, we can

conclude that t lies in the range [−1, 1] and arc tangent of

t is limited in the range [−π
4 ,

π
4 ]. The Jacobi EVD method

tries to make the off-diagonal entries of 2×2 submatrix of

A zero by overwriting A with JTAJ . According to 2×2

symmetric Schur decomposition discussed in [31], cs and sn
are cosine and sine trigonometric functions. Thus, the bounds

of cs and sn are [−1, 1]. Line 9 in Algorithm 1 computes cs
which involves square root operation and therefore the range

of cs can be modified to [0, 1]. As the range of cs and t
are [0, 1] and [−1, 1] respectively, using multiplication rule

of interval arithmetic [43] the range of sn (Line 10) can be

derived as [−1, 1]. Next we bound the elements of X . X is

the eigenvector matrix each column of which has unity norm

(eigenvectors of symmetric matrices are orthogonal). Hence

all elements of X are in the range [−1, 1] following (14).

‖X(:, i)‖∞ ≤ ‖X(:, i)‖2 = 1. (14)

Since the range of A is [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞],
according to Line 15 of Algorithm 1, the range of tmp can

be fixed as [−
√

‖A‖1‖A‖∞,
√

‖A‖1‖A‖∞].
The bounds obtained according to Theorem 1 remain un-

changed for all the iterations of the algorithm. The bounds

are independent of the number of iterations or the size of

the input matrix. Thus, the issue 2 has been handled accu-

rately. Now considering the issue 1, the bounds according

to Theorem 1 remain same (the pattern remains the same as

shown in Theorem 1) for any input matrix, but depend on

the factor
√

‖A‖1‖A‖∞. For different input matrices, the

magnitude of
√

‖A‖1‖A‖∞ will change and this, in turn,

will differ the bounds. The issue 1 has not yet been handled

prudently. Hence, we propose that if the input matrix is

scaled through m =
√

‖A‖1‖A‖∞ then we can achieve a

two-fold advantage: unvarying and tight bounds (solution for

issue 3). This will resolve all the issues. If the input matrix

is scaled as Â = A
m

, the EVD of matrix Â is given as

Âx = λ̂x, (15)

where Ax = λx and λ̂ = λ
m

. x is the eigenvector and λ
is the eigenvalue. After scaling through a scalar value, the

original eigenvectors do not change. The original eigenvalues

change by a factor 1
m

. We need not recover the original

eigenvalues because, in PCA, eigenvaues are only used

to calculate the required number of PCs. Since, all the

eigenvalues are scaled by the same factor, the number of PCs

do not change whether the number is fixed using original

eigenvalues or scaled ones. In applications, where original

eigenvalues are required, the number of IWLs required is
⌈

log2(
√

‖A‖1‖A‖∞)
⌉

depending on the magnitude of the

scaling factor. Only the binary point of the eigenvalues is



required to be adjusted online while for other variables it is

fixed irrespective of the property of the input matrix.

Theorem 2: Given the scaling factor as m =
√

‖A‖1‖A‖∞, the Jacobi EVD algorithm (Algorithm 1)

applied to Â has the following bounds for the variables for

all i, j, k and l:

• [Â]kl ∈ [−1, 1]
• t ∈ [−1, 1]
• cs ∈ [0, 1]
• sn ∈ [−1, 1]
• [X ]kl ∈ [−1, 1]
• a ∈ [0, 1]
• b ∈ [0, 1]
• c ∈ [−1, 1]
• [λ̂i]k ∈ [0, 1]

where i, j denote the iteration number and []k and []kl denote

the kth component of a vector and klth component of a

matrix respectively.

Proof: Using vector and matrix norm properties the

ranges of the variables can be derived. We start by bounding

the elements of the input symmetric matrix as

max
kl

|[Â]kl| ≤ ‖Â‖2 = ρ(Â) ≤ 1, (16)

where (16) follows from [31]. Hence, the elements of Â are

in the range [−1, 1]. The remaining bounds are derived in

the similar fashion as decribed in proof for Therorem 1.

The bounds on the variables of EVD algorithm obtained after

scaling remain constant for all the iterations and also do not

vary for any input matrix. Besides, the bounds are also tight.

IV. MORE DATA SETS WITH RESULTS

In this section, we present a few more hyperspectral data

sets, and we compare the bounds on variables of Jacobi

EVD algorithm produced by the existing range estimation

methods and the proposed approach. Tables XII and XIII

show the comparison between the bounds on the variables

obtained by existing range estimation methods with respect

to the proposed approach through the AVIRIS and Landscape

data sets. We can observe that the ranges estimated using

the simulation for AVIRIS data cannot avoid overflow in

case of Landscape. This is quite apparent from the number

of integer bits required, shown in Table XIV. As usual,

the bounds produced by IA and AA outbursted. However,

the proposed method produces robust and tight bounds. The

bounds obtained are independent of any range of the input

matrix and also the number of iterations.

Signal-to-quantization-noise-ratio (SQNR) is chosen as an

error measure to evaluate the accuracy of the proposed

method [25], [44]. It is given by

SQNR = 10 log10(E(|λfloat|2))/(E(|λfloat − λfixed|2)),
(17)

where λfloat and λfixed are the eigenvalues obtained from

double precision floating-point and fixed-point implementa-

tions. SQNR of the eigenvalues obtained through the pro-

posed fixed-point design is shown in Table XV. In Table XV,

TABLE XII

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND AFFINE ARITHMETIC WITH RESPECT TO

THE PROPOSED APPROACH FOR AVIRIS DATA WITH THE RANGE OF

THE COVARIANCE MATRIX AS [−5.01e+05, 1.07e+06].

Var Simulation IA AA Proposed

A [−2.66e+6, 2.68e+07] [−∞,∞] [−∞,∞] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0.71, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 2.68e+07] [−∞,∞] [−∞,∞] [0, 1]
b [0, 9.21e+06] [−∞,∞] [−∞,∞] [0, 1]
c [−2.38e+06, 3.66e+06] [−∞,∞] [−∞,∞] [−1, 1]
X [−0.939, 1] [−∞,∞] [−∞,∞] [−1, 1]
λ [15.80, 2.67e+07] [−∞,∞] [−∞,∞] [0, 1]

TABLE XIII

COMPARISON BETWEEN THE RANGES COMPUTED BY SIMULATION,

INTERVAL ARITHMETIC AND AFFINE ARITHMETIC WITH RESPECT TO

THE PROPOSED APPROACH FOR LANDSCAPE DATA WITH THE RANGE

OF THE COVARIANCE MATRIX AS [−5.47e+32, 6.81e+32].

Var Simulation IA AA Proposed

A [−5.06e+33, 4.32e+34] [−∞,∞] [−∞,∞] [−1, 1]
t [−1, 1] [−1, 1] [−1, 1] [−1, 1]
cs [0.71, 1] [0, 1] [0, 1] [0, 1]
sn [−1, 1] [−1, 1] [−1, 1] [−1, 1]
a [0, 4.32e+34] [−∞,∞] [−∞,∞] [0, 1]
b [0, 4.32e+34] [−∞,∞] [−∞,∞] [0, 1]
c [−5.06e+33, 2.12e+33] [−∞,∞] [−∞,∞] [−1, 1]
X [−0.932, 1] [−∞,∞] [−∞,∞] [−1, 1]
λ [1.0e+19, 4.32e+34] [−∞,∞] [−∞,∞] [0, 1]

TABLE XIV

COMPARISON BETWEEN THE INTEGER WORDLENGTHS REQUIRED

BASED ON THE RANGES ESTIMATED BY SIMULATION-BASED

APPROACH SHOWN IN TABLES XII AND XIII

Var AVIRIS Landscape

A 25 116

a 24 116

b 25 116

λ 25 116

TABLE XV

SIGNAL-TO-QUANTIZATION-NOISE-RATIO OF EIGENVALUES OBTAINED

IN FIXED-POINT ARITHMETIC (WLS CHOSEN ARE AS A GENERAL

BITWIDTH CONSIDERING THE WORST CASE) AFTER DETERMINING

RANGES THROUGH PROPOSED APPROACH.

WLs 50 bits 40 bits 32 bits

Hyperion 176.76 106.44 78.03

ROSIS 180.13 134.79 74.96

Landscape 180.65 122.36 77.18

AVIRIS 178.54 110.76 76.43

EnMap 180.67 130.24 78.36

we observe high magnitudes of SQNR which exhibit that the

set of ranges obtained according to Theorem 2 are sufficient

for avoiding overflow for any input matrix. For data sets like

Landscape, where the the range is exorbitant resulting in

large IWLs (Table XIV), wordlengths like 50, 40 or 32 bits

would never fit. In such cases, with the proposed approach it



TABLE XVI

MEAN-SQUARE-ERROR OF PCS OBTAINED IN FIXED-POINT ARITHMETIC (WLS CHOSEN ARE AS A GENERAL BITWIDTH CONSIDERING THE WORST

CASE) AFTER DETERMINING RANGES THROUGH PROPOSED APPROACH.

WLs Hyperion ROSIS Landscape

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5 PC1 PC2

32 8.1e-
7

4.9e-
7

3.7e-
6

4.3e-
6

0 1.8e-
7

4.5e-
6

6.5e-
6

2.4e-
6

1.2e-
9

1.1e-
8

40 0 0 8.5e-
7

1.9e-
7

0 0 0 0 0 1.8e-
10

7.4e-
11

50 0 0 0 0 0 0 0 0 0 0 0

was possible to fit all the variables within 32 bit wordlength

and obtain a high value of SQNR. A common measure

to compare two images is mean-square-error (MSE) [45].

MSE between PCA images of fixed-point implementations

with various WLs after derving the ranges through proposed

approach are shown in Table XVI. The required number of

PCs for Hyperion, ROSIS and Landscape are 4, 5 and 2 re-

spectively. The number of PCs explaining 99.0% variance in

case of AVIRIS and EnMap are relatively higher. Therefore,

the Table XVI only exhibits the results of Hyperion, ROSIS

and Landscape. However, similar results were obtained for

AVIRIS and EnMap. We observe that the MSE values are

negligibly small which signify that the ranges obtained

through the proposed approach are absolutely robust. Thus,

the error metrics (SQNR and MSE) imply that the number of

integer bits derived using the proposed approach is sufficient

for avoiding overflow. After deriving the proper ranges

through the proposed approach, the fixed-point design is syn-

thesized on Xilinx Virtex 7 XC7VX485 FPGA for different

WLs through Vivado high-level synthesis (HLS) design tool

[46]. We have used SystemC (mimics hardware description

language VHDL and Verilog) to develop the fixed-point

code [47]. Using the HLS tool, the SystemC fixed-point

code is transformed into a hardware IP (intellectual property)

described in Verilog. We compare the resource utilization of

simulation approach with respect to the proposed approach

(for the same level of accuracy) through the test hyperspectral

data sets. The comparative study is illustrated in Table XVII.

There is a noteworthy difference in the hardware resources.

The hardware resources in case of simulation approach are

considerably large compared to the resources used in case of

the proposed approach. For the sake of maintaining the same

level of accuracy (SQNR, MSE) as the proposed method, the

simulation approach uses 50 bit wordlength.

The proposed method also produces robust and tight ana-

lytical bounds for variables of singular value decomposition

algorithm [48].

V. CONCLUSION

In this paper, we bring out the problem of integer bit-width

allocation for the variables of eigenvalue decomposition

algorithm. We highlight the issues of the existing range

estimation methods in the context of EVD. Integer bit-

width allocation is an essential step in fixed-point hardware

design. In light of the significance of this step, this paper

introduces an analytical method based on vector and matrix

TABLE XVII

COMPARISON BETWEEN HARDWARE COST (%) OF FIXED-POINT

JACOBI ALGORITHM AFTER DETERMINING RANGES THROUGH

PROPOSED AND SIMULATION APPROACHES.

Proposed

WL Hyperion ROSIS AVIRIS

FF LUTs Power FF LUTs Power FF LUTs Power

32 1.62 6.29 0.413 1.62 6.32 0.42 1.63 6.51 0.45

Simulation

WL Hyperion ROSIS AVIRIS

FF LUTs Power FF LUTs Power FF LUTs Power

50 8 23 2.59 8 23 2.64 8 23 2.64

norm properties together with a scaling procedure to produce

robust and tight bounds. Through some hyperspectral data

sets, we demonstrate the efficacy of the proposed method

in dealing with the issues associated with existing methods.

SQNR and MSE values show that the ranges derived using

the proposed approach are sufficient for avoiding overflow

in case of any input matrix. There are many other nu-

merical linear algebra algorithms which can benefit from

the proposed method like QR factorization, power method

for finding largest eigenvalue, bisection method for finding

eigenvalues of a symmetric tridiagonal matrix, QR iteration,

Arnoldi method for transforming a non-symmetric matrix

into an upper Hessenberg matrix and LU factorization and

Cholesky factorization.

Dealing with the precision problem will be a scope for the

future work.
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[1] Z. Nikolić, H. T. Nguyen, and G. Frantz, “Design and implementation
of numerical linear algebra algorithms on fixed point dsps,” EURASIP

Journal on Advances in Signal Processing, vol. 2007, 2007.

[2] Y.-L. Chen, C.-Z. Zhan, T.-J. Jheng, and A.-Y. A. Wu, “Reconfig-
urable adaptive singular value decomposition engine design for high-
throughput mimo-ofdm systems,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 21, no. 4, pp. 747–760, 2013.

[3] D. Milford and M. Sandell, “Singular value decomposition using an
array of cordic processors,” Signal Processing, vol. 102, pp. 163–170,
2014.

[4] T. Pradhan, B. Kabi, A. Routray, and G. Anirudh, “Fixed-point
hestenes svd algorithm for computing eigen faces.”

[5] R. Mohanty, G. Anirudh, T. Pradhan, B. Kabi, and A. Routray,
“Design and performance analysis of fixed-point jacobi svd algorithm
on reconfigurable system,” IERI Procedia, vol. 7, pp. 21–27, 2014.

[6] P. M. Szecówka and P. Malinowski, “Cordic and svd implementation in
digital hardware,” in Mixed Design of Integrated Circuits and Systems

(MIXDES), 2010 Proceedings of the 17th International Conference.
IEEE, 2010, pp. 237–242.



[7] R. C. Grammenos, S. Isam, and I. Darwazeh, “Fpga design of a
truncated svd based receiver for the detection of sefdm signals,” in
Personal Indoor and Mobile Radio Communications (PIMRC), 2011

IEEE 22nd International Symposium on. IEEE, 2011, pp. 2085–2090.

[8] Y. Wang, K. Cunningham, P. Nagvajara, and J. Johnson, “Singular
value decomposition hardware for mimo: State of the art and custom
design,” in Reconfigurable Computing and FPGAs (ReConFig), 2010

International Conference on. IEEE, 2010, pp. 400–405.

[9] Z. Liu, K. Dickson, and J. V. McCanny, “Application-specific in-
struction set processor for soc implementation of modern signal
processing algorithms,” Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 52, no. 4, pp. 755–765, 2005.

[10] C. Shi and R. W. Brodersen, “Automated fixed-point data-type opti-
mization tool for signal processing and communication systems,” in
Design Automation Conference, 2004. Proceedings. 41st. IEEE, 2004,
pp. 478–483.

[11] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility
for c and c++ based digital signal processing programs,” Circuits and

Systems II: Analog and Digital Signal Processing, IEEE Transactions

on, vol. 45, no. 11, pp. 1455–1464, 1998.

[12] K.-I. Kum, J. Kang, and W. Sung, “Autoscaler for c: An optimizing
floating-point to integer c program converter for fixed-point digital
signal processors,” Circuits and Systems II: Analog and Digital Signal

Processing, IEEE Transactions on, vol. 47, no. 9, pp. 840–848, 2000.

[13] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk,
G. Constantinides et al., “Accuracy-guaranteed bit-width optimiza-
tion,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 25, no. 10, pp. 1990–2000, 2006.

[14] J. López, C. Carreras, O. Nieto-Taladriz et al., “Improved interval-
based characterization of fixed-point lti systems with feedback loops,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 26, no. 11, pp. 1923–1933, 2007.

[15] A. B. Kinsman and N. Nicolici, “Bit-width allocation for hard-
ware accelerators for scientific computing using sat-modulo theory,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 29, no. 3, pp. 405–413, 2010.

[16] S. Vakili, J. P. Langlois, and G. Bois, “Enhanced precision analysis
for accuracy-aware bit-width optimization using affine arithmetic,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 32, no. 12, pp. 1853–1865, 2013.

[17] T. Pradhan, B. Kabi, R. Mohanty, and A. Routray, “Development of
numerical linear algebra algorithms in dynamic fixed-point format:
a case study of lanczos tridiagonalization,” International Journal of

Circuit Theory and Applications, vol. 44, no. 6, pp. 1222–1262, 2016.

[18] B. Wu, J. Zhu, and F. N. Najm, “Dynamic-range estimation,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 25, no. 9, pp. 1618–1636, 2006.

[19] G. Constantinides, A. B. Kinsman, and N. Nicolici, “Numerical data
representations for fpga-based scientific computing,” IEEE Design &

Test of Computers, no. 4, pp. 8–17, 2011.

[20] A. Banciu, “A stochastic approach for the range evaluation,” Ph.D.
dissertation, Université Rennes 1, 2012.
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