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Abstract: Additive manufacturing enables the fabrication of complex internal structures akin
to foams within shapes. These �ne scale structures modify the large scale properties of the shape,
for instance making it lighter while preserving su�cient rigidity, or creating porosities enabling
uids to traverse.
Triangle meshes are not well suited for modeling and visualizing such structures. Instead, several
approaches have been proposed to model them as implicit solids, described by an indicator function
returning 1 when a point lies within the solid and 0 outside. Such representations are very compact
in memory, however interactive visualization and e�cient processing for fabrication can become
di�cult. This stems from the fact that to visualize or fabricate the structure, the function must
be queried at a high sampling rate. This results in a slow and memory intensive process.
In this paper we discuss our approach for dealing with such complex structures in the context
of interactive modeling for additive manufacturing. We describe an algorithm for the progressive
rendering of the structures, as well as an e�cient slicing procedure for preparing the geometries
for fabrication.
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Visualisation et fabrication de structures
internes complexes

R�esum�e : La fabrication additive permet d'int�egrer aux objets des structures
complexes, ressemblant �a des mousses. Ces d�etails de petite �echelle modi�ent
les propri�et�es �a grande �echelle de l'objet, par exemple en l'all�egeant ou en cr�eant
des porosit�es qui permettent �a des uides de circuler en son sein.

Les maillages triangulaires ne sont pas bien adapt�es �a la mod�elisation et �a la
visualisation de ce type de g�eom�etries. Des m�ethodes alternatives ont �et�e pro-
pos�ees, notamment pour les mod�eliser sous forme de solides implicites, d�e�ni par
une fonction indicatrice qui renvoie 1 lorsqu'un point est solide et 0 �a l'ext�erieur.
Ces repr�esentations sont tr�es compactes en m�emoire, cependant leur visualisa-
tion interactive et leur pr�eparation e�cace peut devenir coûteuse. Ceci vient du
fait que pour visualiser et pr�eparer la structure pour le processus de fabrication,
il faut �echantilloner la fonction indicatrice avec un pas de discr�etisation tr�es
�n, ce qui induit de longs temps de calcul et requiert une grande quantit�e de
m�emoire.

Dans cet article nous discutons d'une approche pour visualiser et mod�eliser
interactivement ce type de structures, dans le contexte de la fabrication ad-
ditive. Nous d�ecrivons un algorithme pour l'a�chage progressif de structures
complexes, ainsi qu'un algorithme de tranchage e�cace pour la fabrication ad-
ditive.

Mots-cl�es : visualisation,mod�elisation 3D,tranchage
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Figure 1: An implicit foam-like microstructure inspired by [14] �lling a complex
geometry (model Alien brain by SteedMaker https://www.thingiverse.com/thing:38290 )

1 Introduction

The resolution and manufacturing scale of additive processes has been increasing
at a fast pace in the past few years. This opens new possibilities in terms
of embedding micro-scale structures within shapes, modifying their large scale
behaviors.

Most existing techniques de�ne periodic or quasi-periodic structures within
volumes, e.g. [20, 16, 19]. This has signi�cant advantages in terms of visu-
alization, simulation and fabrication, since the periodicity allows to maintain
in memory a single representative tile of the structure, and to perform most
processing on this base periodic tile.

However, recent researches have shown interesting bene�ts regardingstochas-
tic microstructures akin to foams [18,?, 11, 12]. In particular, as they do not
follow a global arrangement { there is not underlying regular grid { their prop-
erties can be graded and oriented more easily within parts.

While such microstructures can be optimized in large scale problems [23],
most of the aforementioned methods rely on functional representations, also
known as hypertextures [2]. In this work we will use the generic termimplicit
solids as we are considering indicator functions that return 0 (empty) or 1 (solid)
at every point in space: F : R3 ! f 0; 1g. The function is expected to enforce
a number of properties, such as being evaluated in constant time and memory
regardless of the point of evaluation [7]. A large variety of 3D structures and
e�ects can be de�ned in this manner [2]1. Usually the function de�nes an in�nite
solid coveringR3. Thus, a major advantage of functional representations is that
they a�ord for an arbitrary quantity of geometric detail to be de�ned from a

1We encourage the interested reader to explore https://www.shadertoy.com with the key-
word hypertexture .
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compact, generative algorithm. The parameters of the functions may be varied
in space to gradually change the microstructure geometry, and hence control the
resulting mechanical properties [11]. Note that this approach extends trivially
to multiple materials, by using indicator functions that return 0 for empty, and
a material identi�er otherwise.

While constant with respect to spatial coordinates, the evaluation cost may
still be signi�cant. Thus, it is challenging to interactively visualize the struc-
tures during the design process, especially when they are part of a larger, com-
plex design. Similarly, preparing the model for fabrication requiresslicing its
geometry: decomposing the 3D shape into a set of planar layers that will be fab-
ricated. A typical approach is to �rst extract a triangular mesh of the geometry,
and then feed it to the fabrication software. However, triangle meshes are not
well suited when dealing with complex, foam-like structures: Their size quickly
grows beyond reasonable even at low tessellation factors. Thus, when dealing
with this type of geometries, it is best to consider both interactive visualization
and fabrication together.

In this paper, we �rst describe an approach to visualize foam like microstruc-
tures de�ned as implicit solids and embedded into meshes (Section 3). We then
describe an e�cient slicing technique for such complex geometries (Section 4).

2 Previous work

A number of prior works have considered the challenges of visualizing and fab-
ricating complex microstructures. Please note that we focus here only on the
works most closely related to ours, we invite the reader to refer to recent surveys
for a complete overview [4, 13, 10].

Park et al. [17] proposed the use of volumetric, procedural textures for multi-
material fabrication, de�ning both gradients and structures within the parts.
Pasko and colleagues [18, 3] explored the use of functional representations to
de�ne both periodic and aperiodic structures with graded properties. Slices are
generated as images, directly sampling the implicit solid at the coordinates cor-
responding to the pixel positions in space. Symvol by Uformia also allows to
model internal structures with functional representations. It provides interactive
feedback through multi-resolution rendering: a blurred view is �rst produced
and progressively re�ned to reveal the structures. Huang et al. [6] also consid-
ered fabrication of implicitly de�ned solids using images, in particular focusing
on preserving the topology of the shapes. Vidim�ce et al. [22] de�ne a voxel
based modeler for 3D printing. Procedural textures can be de�ned and com-
bined within the object volume. The implicit solids are sampled to produce the
slice images streamed to the printer. A hierarchical approach, where voxel size
is re�ned progressively, is used to provide interactive feedback [21]. Lefebvre et
al. [8] proposed the concept of slice shaders: they build upon graphics hardware
capabilities to apply a pixel shader changing the choice of material within the
image of a slice, prior to contour extraction. This allows on-the-y synthesis of
microstructure geometries during slicing, however the microstructures cannot
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be visualized beforehand.

3 Modeling and visualization

In this work we model shapes as triangle meshes embedding implicit solids
de�ned by indicator functions, written as GLSL shader code. We assume in-
put meshes to be non self-intersecting, two manifold: they properly de�ne the
boundary of a �nite volume. We also assume that the implicit solid is r {regular
with a known value of r : this implies that sampling the implicit on a grid of cell
size less than rp

3
faithfully captures the topology of the structure [15, 6]. The

bound allows to compute a step size to perform ray-marching in the volume, as
described Section 3.1. We focus on implicit solids de�ning stochastic, homoge-
neous volume structures akin to foams. Our approach extend to other types of
structures, but is especially well suited for this particular case.

We discuss in Section 3.2 a �rst approach for visualization and analyze its
drawbacks. We detail in Section 3.3 our approach for gradual rendering of
microstructures.

3.1 Ray-marching a r -regular implicit solid

In its simplest form, ray-marching consists in tracing a ray through every pixel,
from the near view plane towards the far view plane. The algorithm then
marches along the ray, advancing by regularly spaced steps. At each step it
queries the value of the implicit solid until a �rst intersection is found (the
indicator function returns 1).

To achieve visually good results, the step size has to be much smaller than
the r value of the implicit solid, incurring a large computational overhead. In
addition, if the step size is not small enough,swimming artifacts can occur: the
surface seems to slightly oscillate as the viewpoint moves. This is due to the
change of the precise location of the query points between successive frames.

Our algorithm avoids these issues by building upon ther -regular property.
Instead of simple ray-marching, we perform a DDA algorithm in a virtual grid
having cell size rp

3
. Whenever a solid cell is encountered, we perform a binary

search to detect the precise intersection position. This has the advantage of
always sampling the same locations { no swimming occurs { while using the
largest possible step size.

The ray-marching algorithm is triggered by rendering a proxy shape { typi-
cally a box enclosing the domain where the micro-structure is de�ned. This
invokes a fragment shader in each covered pixel, which then performs ray-
marching.

3.2 A �rst approach

A �rst approach is to directly perform ray-tracing through both the mesh and
the implicit solid. As the implicit is restricted to appear only within the input
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mesh, the algorithm would locate the two �rst intersections with the mesh {
de�ning an interior interval of the model { and then perform ray-marching
within the implicit along this interval. If no intersection is found, the process
resumes with the next solid interval of the mesh.

This is ine�cient for two reasons. First, ray-tracing a mesh remains signif-
icantly less e�cient than rasterizing it using graphics hardware. Acceleration
structures have to be built, which can be done e�ciently but complicates the
task in the context of interactive modeling, where objects change very often.
Second, ray-marching will potentially perform a large number of steps before a
�rst intersection is found. This can incur slow, and uneven per-frame rendering
times.

3.3 Our approach

To alleviate the di�culties of the aforementioned approach, ray-tracers typically
rely on multi-resolution rendering. During interaction a �rst image is produced
with a lower resolution (and hence less rays). As the viewpoint remains �xed
the image is progressively re�ned. Unfortunately, this approach is not very well
suited for rendering micro-structures. The foam like geometry quickly averages
out when resolution is decreased, and therefore the steps with less resolution do
not provide a meaningful preview.

Instead, we propose to gradually display the structures, from front to back.
The approach we propose builds upon two techniques. The �rst is hardware
accelerated construction ofdexel bu�ers. The second is the notion ofgradual
rendering.

Dexel bu�er. In our approach, instead of directly tracing rays to �nd inter-
sections with the mesh triangles, we rely on the rasterizer. We setup the graphics
hardware to rasterize all triangles in the view, andrecord all the fragments pro-
duced in a dexel bu�er [5]. This operation is both simple and e�cient on modern
graphics hardware, through e.g. the use of the OpenGLimage load store ex-
tension [9]. This directly retrieves all the solid intervals along the rays, for each
screen pixel.

Gradual rendering. Once the dexel bu�er constructed, we traverse the solid
intervals in order in each pixel, and ray-march them to �nd the �rst intersection
with the implicit solid, if any.

However, ray-marching remains expensive with uneven per-pixel and per-
frame performance. Instead, we propose to ray-march for only a �xed number
of steps, from front to back. As the view remains �xed, each next frame will
explore a next batch of steps. Each pixel, at each frame, performs the same
amount of computations resulting in a stable frame rate. Pixels for which an
intersection was already found simply do nothing.

This requires tracking the status of ray-marching in every pixel. We record
in an auxiliary bu�er, for each pixel, the current position of the raymarcher
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within the implicit virtual grid. At every frame, each pixel starts by reading its
initial position in the bu�er and resumes from there. It records its last explored
position after having marched the �xed number of steps.

It is interesting to consider the space that is explored at every frame: it
is a thick z-slab of the mesh, which is continuous across pixels. The micro-
structures we consider are similar to foam and thus homogeneous in space.
Many intersections are likely to be found within a continuous slab, and these will
overall well capture the local foam geometry, giving a precise visual indication
to the user during interaction.

Extension to multiple objects. While the principle we described so far
works very well for a single mesh and implicit micro-structure, it does not scale
directly to a general scenario where multiple shapes �lled with microstructures
co-exist. In particular, we cannot reasonably use an additional framebu�er
to track the ray-marching status of each pixel. To allow for this scenario we
introduce dexel tags.

Dexel tags are special records inserted in the dexel bu�er. They track meta
information regarding, for instance, the ray-marching status of a given implicit
primitive. Each dexel entry now tracks both the standard list of fragments, as
well as a list of inserted tags.

When the ray-marching shader is invoked in a pixel for a given implicit, it
�rst checks whether a dexel tag is present. If not, this is the �rst invocation
and the shader �nds the �rst solid interval of its proxy shape. If it is present,
ray-marching is initialized from the tag, which contains both a pointer towards
the last fragment of the current solid interval, and the location from which to
resume ray-marching along the ray.

Results. Figure 2 shows the e�ect of gradual ray-marching across multiple
frames. The microstructure is a dense foam �lling an object with a moderate
geometric complexity (see Figure 1 for a global view). The indicator function
is expensive to compute as it involves searching for closest points that are ran-
domly distributed in a virtual grid (see [14] for details). Figure 3 shows another
example with a completely di�erent structure, de�ned by a sine wave perturbed
by noise.

Our approach allows for a fast design iteration loop, with immediate feedback
and interactive exploration. During a viewpoint change, the rendering shows
only a thin slab of the internal structures, but this is su�cient to visualize where
the surface is and to grasp a notion of scale. As soon as the view is �xed, the
structure is gradually re�ned. The view is complete after a few seconds (the
time depends on the implicit evaluation cost and the marching step).

4 Fabrication

Fabricating foam like structures requires extracting cross-sections of the geom-
etry at every slice. Prior works have proposed to extract images directly from
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Figure 2: Gradual ray-marching on the object shown in Figure 1. From left to
right: First rendered frame, then frames after respectively 3 sec, 6 sec and 20 sec.
Images rendered at 10162 resolution on a GeForce GTX 980. The ray-marching
step is 10�m .

Figure 3: Gradual ray-marching on the CuteOcto model (thing:27053 by Maker-
Bot). From left to right: First rendered frame, then frames after respec-
tively 1 sec and 4 sec. Images rendered at 10162 resolution on a GeForce
GTX 980. The ray-marching step is 10�m , the solid implicit is f (p) =
sin (p:x � 6:0 + 6:0 � noise(p � 3:0=4:0)) < 0:75?1 : 0, wherenoise is a tri-linearly
interpolated random scalar �eld with values in [ � 1; 1].
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the implicit volume de�nition [18, 8, 6]. Indeed, each slice can be discretized
in a 2D regular grid, which then corresponds to a plane in a virtual voxel grid
surrounding the object [22]. By evaluating the implicit solid function at each
pixel center, its status (solid/empty) is easily determined. This is illustrated in
Figure 4, left.

This may then be directly send to the printer { for instance DLP stereo-
lithography machines expect images [18, 22] { or contours can be extracted for
further processing [8, 6].

Fully instantiating one image per slice can however be detrimental to per-
formance. Indeed, the images quickly become large: a 100mm3 object using a
discretization step of 10�m requires each slice image to be 10000� 10000 pixels.
Directly manipulating these images requires signi�cant memory and bandwidth
to track the state of each slice pixel, which slows down processing.

Instead we propose a novel approach to directly extract the cross contours
of the solid areas within each slice, in an e�cient parallel streaming algorithm.
The memory representation is very compact, and its size depends only on the
surface area.

4.1 Interval slicing

The core idea of our technique is to e�ciently locate the contours of each slice.
Instead of working within slices independently, we produce the contours of all
the slices simultaneously. Because our output is compact the result usually
easily �ts in memory. In cases where it does not, our approach can trivially
process sub-regions independently, and merge the results. Our approach also
supports streaming, where slices are generating progressively from bottom to
top, sweeping through the volume e�ciently.

To understand our approach let us consider an example, shown in Figure 4,
right. We consider the contours in the binary images of successive slices. The
highlighted edges reveal an interesting property: They are all located on inter-
vals along the two neighboring pixel columns. Our algorithm builds upon this
and e�ciently computes the intervals of slices supporting edges between pixel
columns.

Whenever needed, the edges of a given slice can be retrieved by gathering the
intervals including the slice. Each interval corresponds to exactly one (oriented)
edge. The edges are then linked back together to form closed contours. This
process can be made even more e�cient by sweeping through the intervals and
producing the edges of all the slices simultaneously.

We describe these ideas in more details below.

Slice intervals. We consider the general case of adaptive slicing, where slice
thicknesses may vary within a same object. The input to our slicing process is a
slicing plan. It is an ordered sequence of slice thicknessesP = ( t0; :::; t i ; :::; tn ).
Each slice is identi�ed by its integer id i . The thicknesses are enough to deter-
mine the full sequence of slicing plane heights: starting from the object bottom,
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Figure 4: Left: Each slice can be thought of as an image with pixels either
solid or empty. The �gure reveals the solid columns produced by the slices for
neighboring pixelsp and q. One slice image is overlaid, with pixelp in the 'solid'
state. Right: We now consider the contours of the solid areas within the slices,
and in this case the edge betweenp and q. As can be seen, the edge belongs
to a contour when the slice is within an interval where either p or q are solid,
but not both. In this case there are two intervals, producing the red and green
edges in the slice contours.

each slicing planej is located at height hj = t j

2 +
P j � 1

i =0 t i (assuming the usual
half-slice slicing plane location, without loss of generality).

A slice interval is simply an integer range of slice ids [i; j ] with j � i . We
store slice intervals along each edge of a 2D pixel grid aligned with the XY axis
(with Z the build direction), as illustrated in Figure 4, left. We denote by I p;q

and I q;p the set of intervals on each side of the face between two neighboring
pixels p; q. For clarity, let us assume now that intervals in a set I p;q do not
overlap.

A slice i belongs to the set if it belongs to one of its intervals:

i 2 I p;q , there exists [s; t] 2 I p;q such that s � i � t

From intervals to edges. Given the intervals we can easily determine whether
there is an (oriented) edge between neighboring pixelsp; q at slice i . Indeed,
an edge with positive orientation exists if and only if the slice belongs to an
interval on p's side and not onq's side: i 2 I p;q and i =2 I q;p . Conversely, there
is a negative orientation edge if and only if the slice belongs to an interval on
q's side and not onp's side: i 2 I q;p and i =2 I p;q .

In other words, a positive edge exists ifi belongs to interval in the set
di�erence I p;q n I q;p , and a negative edge exists ifi belongs to an interval in the
set di�erence I q;p n I p;q .

This principle can be extended to meshes with self-intersections. A slice
may then belong to multiple overlapping intervals in the sets I p;q and I q;p ,
and comparing the number of enclosing intervals is su�cient to properly de�ne
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edges. The same generalization can be performed on CSG between volumes,
postponing the CSG operations on the slice intervals of the objects.

Interval construction. Construction is performed with either implicit solids
(microstructures) or meshes. The base idea is to determine whether the actual
object lies above or below each slicing plane, in each column.

To understand the process, let us consider
a ray p along the center axis of a slice pixel
column. Consider that the object starts at
height zs (green dots in the Figure inset).
Two cases occur. Ifzs � hi then the entry
occurs below the slicing plane of i and pixel
p of slice i is the �rst in a solid column. We
add a lower slice interval bound [i in I p;q for
all four neighbors q. If zs > h i then the entry
occursabovethe slicing plane of i and pixel p
of slice i + 1 is the �rst in a solid column. We
add a lower slice interval bound [i + 1 in I p;q

for all four neighbors q. We proceed similarly
for cases where the object ends at heightze

(blue dots in the Figure inset), adding upper
boundsi � 1] and i ] depending on the position
of the slicing plane height hi with respect to
zs. After all interval bounds are found, we
sort the lower/upper bounds and cancel (merge) pairs of the formi � 1]; [i . The
remaining bounds form the correct slice intervals. We illustrate an example in
the Figure inset. In this case, the slice intervals for pixelp and its neighbors
will be f [1; 1]; [3; 4]g.

Interestingly, this process can be carried outwithout ever computing inter-
sections between the solid and the ray p, resulting in a very fast algorithm.
Indeed, it does not matter where the object exactly is, the only important in-
formation is whether it is starting/ending just above or below the slice. Let us
denote by bi the bottom location of each slice,bi =

P j � 1
i =0 t i .

In the case of implicit solids, it su�ce to directly compute the solid state at
each pair (bi ,hi ) and (hi ,bi +1 ) to detect whether the object is starting/ending
above or below the slice. Where exactly this happens is irrelevant, allowing
to directly sample the implicit instead on performing an expensive intersection
localization (note that this assumes that the object varies at a lower frequency
than the slicing frequency, we discuss �ltering later).

For meshes we proceed similarly. Whenever a triangle is inserted into the
data-structure, we determine for each slice potentially covering the triangle
whether any pair (bi ,hi ) and (hi ,bi +1 ) lies on either sides of the triangle. This
never actually computes the exact intersection location along the ray (the check
requires a cross product to verify that the x,y location of p is covered by the
triangle, and two dot products to determine the sides of each pair points wrt.
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the triangle plane). This has the added advantage of being a numerically ro-
bust predicate, assuming triangle coordinates lie on a high resolution integer
grid (�xed point arithmetic).

It is worth emphasizing that the slice intervals do not fully record the geome-
try: a very complex model will have many more intersections and solid intervals
than there are slice intervals. Similarly, as the intervals only require to record
slice ids { and not depth { they can be encoded using less precision. For instance,
encoding a slice id on 16 bits already allows objects up to 655 cm in height using
10 �m slices. Therefore, generating the slice interval is much less expensive than
generating all solid intervals, in particular on complex geometries.

Streaming. The generation of intervals can be performed in an vertically
streamed manner. The idea is to produce the intervals by visiting triangles
sorted by their minimum height, simultaneously classifying the pairs (bi ,hi ) and
(hi ,bi +1 ) for implicit solids. As soon as all triangles and pairs below a height
limit have been processed, all intervals are known up until this height and the
slices can be produced.

If some triangles span large height intervals along the vertical axis, they
have to be split ahead of time in smaller triangles to ensure streaming can be
performed progressively.

Filtering. In some cases it is important to consider not only binary informa-
tion for the slices, but also a percentage of occupancy. This enables, for instance,
optimal slicing [1]. Our data-structure can be modi�ed to accommodate for this.

Instead of simply recording interval bounds, we record with each bound an
occupancy vector. This is a small discrete column of voxels, that lies within
the slice thickness along the rayp. Each voxel simply records the solid state
at the voxel center. The voxel column may be conveniently stored in the bits
of an integer (e.g. 32 bits). This is not expensive since the information is only
stored where necessary: at the beginning/end of intervals where the occupancy
actually varies.

Whenever an interval bound is discovered, the voxel column is �lled to cap-
ture the solid state within the slice (in the spirit of supersampling). For instance,
for a triangle mesh the column will have a �rst half solid/empty and the second
half empty/solid. This again does not rely on computing the exact intersec-
tion, but simply checks on which side of the triangle each voxel center lies.
When the interval bounds are merged, it is simple to properly merge the voxel
columns. Using the bound closing/opening status, the in/out information can
be computed (a temporary vector of integers computing a winding number is
required). This is even simpler for implicit solids: whenever examining a pair
(bi ,hi ) or (hi ,bi +1 ) the voxel column is directly sampled.

This information can be used during interval merging to perform e.g. optimal
slicing or �ltering e�ects.
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5 Conclusion

We have introduced two algorithms for visualization and fabrication of foam like
structures. These structures are characterized by a very complex yet homoge-
neous structures at �ne scale. Multi-resolution approaches for visualization are
not best suited as the lack of resolution quickly hides the local structures. In-
stead, we proposed a gradual rendering, from front to back. Both our technique
and multi-resolution can be employed simultaneously.

We then introduced interval slicing which quickly extracts slice contours by
recording slice intervals along the faces of pixel columns aligned with the build
direction. This shares the same advantages as image/voxel based approaches
in terms of simplicity and parallelism, but provides a much more compact and
e�cient output, strongly reducing bandwidth requirements.
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