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Abstract. The article concerns the problem of imbalanced data classi-
fication, when classes, into which elements belong, are not equally repre-
sented. In the classification model building process cross-validation tech-
nique is one of the most popular to assess the efficacy of a classifier.
While over-sampling methods are used to create new objects to obtain
the balance between the number of objects in classes, inappropriate us-
age of the preprocessing moment has a direct impact on the achieved
results. In most cases they are overestimated. To present and assess this
phenomenon in this paper three preprocessing techniques (SMOTE, Safe-
level SMOTE, SPIDER) and their modifications are used to make new
elements of data sets to balance cardinalities of classes, and two clas-
sification methods (SVM, C4.5) are compared. k-folds cross-validation
technique (k=10) considering two moments of preprocessing approaches
is performed. The measures as precision, recall, F -measure and area un-
der the ROC curve (AUC) are calculated and compared.

1 Introduction

The problem of imbalanced classes in datasets is deemed to be one out of ten the
most important data exploration tasks nowadays. Therefore more and more sci-
entists focus on developing methods that can provide the improvement of model
performance for such difficult data. Many techniques to deal with the problem
have been proposed [4, 8].
The issue appears when the cardinality of at least one class is lower than the
cardinality of remaining classes. In the two classes task the imbalance ratio de-
scribes the proportion of the majority (negative) class objects to the minority
(positive) class and can vary depending on a dataset.
Classification models created on the basis of such data have to cope with mis-
classification errors of the minority class. This is the consequence of the fact
that many classifiers consider the misclassification errors equally for all objects,
regardless of the class to which they belong. However, in such cases the costs of
incorrectness vary markedly. Considering for instance cancer diseases, the num-
ber of ill patients can be significantly smaller than the healthy or the sick for
other reasons. Another well-known example is fraud detection, when a fraud oc-
curs relatively infrequently. In mentioned situations the great emphasis is placed



2

on the correct classification of minority class objects, definitely greater than in
the majority class elements.
To reduce the impact of imbalance between the number of objects in particular
classes, three groups of approaches have been proposed: data level, algorithm
level and cost-sensitive level.
The algorithms belonging to the first category – data-level approach – operate
on data objects solely and they are independent from the classification models.
In undersampling methods superfluous objects are removed, thus the subset of
original dataset is created to be used in model building process. In oversampling
methods existing objects, from positive class in particular, can be replicated or
new objects can be created. The third approach is constituted by hybrid meth-
ods – superfluous objects are removed and new necessary elements are created.
The second group describes algorithm-level approaches in which instead of data,
existing model-building algorithms are adjusted to classify objects regardless of
the disparity between cardinalities of classes.
Finally, the last category considers unequal misclassification costs, because false
negative and false positive costs are not the same as in cancer patients example.
An important issue here is to determine the cost ratio or the cost matrix. The
aim of cost-sensitive level methods is to build models with minimum misclassi-
fication costs.
By creating new objects, replicating or removing existing ones, the number of
objects as well as the distributions of classes in a dataset are changed. Then to
proceed the classification process and assess the efficacy of classification meth-
ods, one has to be cautious. In certain articles, the authors do not apply data
preprocessing in appropriate moment while using cross-validation techniques,
and they test the performance of the model on the artificial examples as well. It
can lead to the overestimated results of the classification.
The aim of this paper is to compare the results obtained for two different mo-
ments of imbalanced datasets preprocessing and their influence on the classifi-
cation performance measures as well as to assess empirically the overestimation
level. Three data-level approaches using k-nearest neighbour technique [5] are
considered: SMOTE [3], Safe-level SMOTE [2] and SPIDER [10] and two classi-
fiers are used: C4.5 and SVM using John Platt’s sequential minimal optimization
algorithm for training a support vector classifier.

2 Data preprocessing

In this paper three approaches to the construction of classifiers from imbalanced
data sets are compared: SMOTE, Safe-level SMOTE and SPIDER.

2.1 SMOTE

The SMOTE (Synthetic Minority Over-sampling Technique) [3] is the most ver-
satile method and enables to create new objects of the minority class. For each
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p positive object, among its k nearest neighbours also belonging to the posi-
tive class, N/100 objects are sampled randomly with replacement, where N is a
number of objects to generate. To compute the position of a new element, the
difference between feature vector values of the considered object and a chosen
neighbour should be calculated and multiplied by a gap – a random number
between 0 and 1. The new object is then generated by adding that result to the
feature vector of an examined p object.

2.2 Safe-level SMOTE

Safe-level SMOTE [2] is a modification of the original SMOTE algorithm. It
draws particular attention to the classes of objects that encircle examined posi-
tive objects. For each examined positive p element the safe-level indicator (slp) is
defined and calculated as the number of positive instances among its k nearest
neighbours. Additionally, one randomly selected neighbour is chosen (n), and
for this element safe-level indicator (sln) is also computed. In the next step safe

level ratio (slratio =
slp
sln

) is calculated and one of five cases is chosen:

– if slratio = ∞ and slp = 0, no new object is generated, because p and n are
treated as noisy, i.e. elements situated in the negative class area;

– if slratio = ∞ and slp ̸= 0, n is noisy; p object is replicated; so gap = 0;
– if slp = sln, then slratio = 1 and gap is a random number between 0 and 1;

new object will be situated between p and n;
– if slratio > 1, p object is safer than n object, because in its surroundings there

are more safer positive objects, hence gap is a random number between 0
and 1

slratio
to situate a new object closer to p;

– if slratio < 1, n object is safer than p object, hence gap is a random number
between 1 − slratio and 1 to situate a new object closer to n.

The number of iterations is matched to balance the cardinalities of classes.

2.3 SPIDER

The selective preprocessing algorithm SPIDER [10] combines local over-sampling
of the minority class with filtering difficult objects from the negative class. The
method assigns to each object one of two labels: safe – if its classification result
using k-nearest neighbour rule (k = 3) is correct, or noisy otherwise. The special
D set is created and all noisy majority class objects are transferred into it to
remove them from a dataset at the end of the algorithm. Three techniques of a
dataset modification can be mentioned.
Weak amplification method increases the importance of the minority class ob-
jects labelled as noisy by their replications. The number of replications depends
on the number of safe objects among three neighbours of each examined element.
Additionally, all noisy majority class elements are removed from a dataset.
Weak amplification and relabelling adds an adjective step to the previous method.
For elective noisy positive object, some among its three negative noisy neighbours
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are relabelled as positive elements. Modified negative elements are removed from
the D set.
The third method is called strong amplification and is focused on all positive
class objects. The importance of each safe element is increased by its replication
– the number of copied objects equals the number of negative objects among
its nearest neighbours. The modification of noisy positive elements depends on
the k-nearest neighbours classification results when k = 5. In the correct result
case, the number of replications is the same as for safe objects, otherwise in-
stead of three, five nearest neighbours for each examined element are taken into
considerations.

3 Classification model performance

Predictive model creating is one of the main goals of machine learning process.
Models built using existing elements from a dataset should give an answer which
class a new unclassified object should be assigned to. To compare model building
algorithms we need methods that can predict performance of a model for objects
that were unused in a training process, because the model is fitted to the data on
which it was constructed. Therefore training and test sets should be independent
and it is very necessary issue if we try to assess performance of the classification
models in real situations.

3.1 Estimating the predictive model performance

For the purpose described in a previous paragraph a cross-validation method
was proposed. It divides the input set into independent training and test sets.
If the input dataset is large, it can be just randomly divided into two parts:
training and test sets, for example in proportion 2:1. It is called a hold-out
method. The main advantage of this approach is low cost of computing resources.
A big disadvantage is uncertainty that the class distributions are represented in
both parts properly, hence received results may not present a real efficacy of a
model. This problem can be solved with repeated random division of the input
dataset, but still there is no certitude that appropriate elements have been chosen
to the test sets.
An approach that should provide proper representation of objects in a test set
is k-fold cross-validation technique [7]. This method divides the input set into k
parts. In each of k iterations k-th part is used as a test set and other objects are
used for a model training. In advance of a division the order of the objects should
be changed randomly. Additionally, the stratification process can be performed
to preserve the distributions of classes in training and test tests.
In this paper 10-folds cross-validation process has been chosen for calculations.

In the class imbalance problem, when data need preprocessing, there is another
issue to reflect – the moment of preprocessing. It might seem to be correct
to prepare datasets first and then initiate classification process, as presented
in the Figure 1. However, it is not appropriate mode of an action, since new
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artificial objects will take part in testing process, and the results will be affected
directly [11]. Due to that fact the appropriate approach is to run preprocessing
algorithms for each training set internally during cross-validation process to not
include synthetic elements into test sets, as shown in the Figure 2.

Input set

Data preprocessing

k-fold cross-validation

Training set 1 Test set 1

Classifier 1

training

Classifier 1 evaluation

Training set k Test set k

Classifier k

training

Classifier k evaluation

Final results calculation

k

Fig. 1: Incorrect cross-validation process

3.2 Classification quality assessment methods

Comparison methods of various classification techniques constitute an important
element of the machine learning process. In the case of two classes problem, the
elements of the class that is the object of an interest are denoted as positive,
while remaining objects are denoted as negative.
We use the following notation:

– TP (true positives) – a number of positive objects classified correctly
– TN (true negatives) – a number of negative objects classified correctly
– FN (false negatives) – a number of positive objects classified incorrectly as

negative
– FP (false positives) – a number of negative objects classified incorrectly as

positive

These four terms form the cells of the confusion matrix. Additionally, on the
basis of them various measures are built.

3.3 Performance measures

The most popular and well-known measures describing the performance of a
classifier are the accuracy Q (1) computed as the proportion of the objects
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Input set

k-fold cross-validation
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Classifier 1

training

Classifier 1 evaluation

Training set k Test set k

Classifier k
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Classifier k evaluation
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Data

preprocessing

Data

preprocessing

k

Fig. 2: Correct cross-validation process

classified correctly:

Q =
TP + TN

TP + FP + TN + FN
, (1)

and the error rate Errrate (2) respectively, as the proportion of misclassified
objects:

Errrate =
FP + FN

TP + FP + TN + FN
. (2)

These measures are not appropriate for the case of the imbalanced class problem,
when the error weights of the misclassified objects belonging to the minority class
are not equal as for the majority class or the remaining classes. To comprehend
of such a problem precision (3) and recall (4) have been introduced:

Precision =
TP

TP + FP
, (3)

Recall = Sensitivity = TPrate =
TP

TP + FN
. (4)

Furthermore, there is F-measure that is defined as the harmonic mean of preci-
sion and recall

F =
(1 + β2) · Precision ·Recall

β2 · Precision + Recall
, (5)

and AUC is the the area under the ROC curve [9]

AUC =
1 + TPrate − FPrate

2
, (6)

where FPrate = FP
FP+TN .
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4 Experiment

The experiment concerning the influence of the data preprocessing moment on
the final results of the classification methods has been performed. 25 datasets
from KEEL [1] repository were selected and their characteristics is presented in
the Table 1. These datasets were created on the basis of 10 datasets from UCI
repository [12].
Calculations have been performed using classes as parts of the Weka data min-

Table 1: Characteristics of the datasets
dataset #objects #attributes #minority IR

ecoli-0vs1 220 7 77 1.86
ecoli1 336 7 77 3.36
ecoli2 336 7 52 5.46
ecoli3 336 7 35 8.60
ecoli4 336 7 20 15.80
glass* 214 9 51 3.20
glass0 214 9 70 2.06
glass1 214 9 76 1.82
glass2 214 9 17 11.59
glass4 214 9 13 15.46
glass5 214 9 9 22.78
glass 6 214 9 29 6.38
haberman 306 3 81 2.78
iris0 150 4 50 2.00
new-thyroid1 215 5 35 5.14
new-thyroid2 215 5 35 5.14
pima 768 8 268 1.87
vehicle0 846 18 199 3.25
vehicle1 846 18 217 2.90
vehicle2 846 18 218 2.88
vehicle3 846 18 212 2.99
vowel0 988 13 90 9.98
wisconsin 683 9 239 1.86
yeast1 1484 8 429 2.46
yeast3 1484 8 163 8.10

ing software [6] and own application. Precision, recall, F-measure and AUC have
been calculated for two moments of preprocessing and for two classification al-
gorithms and ten preprocessing variants. To reduce the randomness of the re-
sults each 10-folds cross-validation process was repeated 10 times with different
random number generator seed. Next, the differences between two points were
calculated and examined. As modification of SMOTE algorithm also the number
of synthetic objects was verified.
The numbers in the SMOTE100, 200, . . . , 500 versions denote % of the minority
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class elements that were generated. The SMOTEAuto indicates that after pre-
processing process the number of objects in the classes was balanced. For the
SVM method C=100 and linear kernel have been chosen to be presented in the
paper.
To compare the differences between appropriate and inappropriate preprocessing
moments during model evaluation, the t-test for dependent observations or the
Wilcoxon signed-rank test were applied according to the normal or non-normal
distributions of samples. The significance level was set at the level of 0.05. To
unify the results, median values and the range as adequate statistics for all cases
are presented in the Table 2.

For the whole range of datasets and methods, the average value of the precision
difference between appropriate and inappropriate moment of preprocessing is at
the level of 0.1792 ± 0.1259 (median 0.1691). The average value of the recall
difference equals 0.0711 ± 0.0976 (median 0.0478); the average value of the F-
measure difference: 0.1373±0.1099 (median 0.1244) and the average value of the
AUC difference: 0.0421 ± 0.0507 (median 0.0274).
For the C4.5 algorithm these results are as follows: precision: 0.1814 ± 0.1261
(median 0.1719); recall: 0.1154 ± 0.1011 (median 0.0920); F-measure: 0.1546 ±
0.1141 (median 0.1420) and AUC: 0.0659 ± 0.0546 (median 0.0532). For the
SVM algorithm adequately: precision: 0.1768 ± 0.1259 (median 0.1667); recall:
0.0267 ± 0.0701 (median 0.0178); F-measure: 0.1200 ± 0.1028 (median 0.1063)
and AUC: 0.0183 ± 0.0320 (median 0.0111). All these results are statistically
significantly different than zero.
Apart from statistics, p-values for particular methods and algorithms are pre-
sented in the Table 2. In almost all cases there is a statistically significant differ-
ence between average results in two moments of preprocessing. Only for spider-
type methods in few cases there is no statistical difference for SVM algorithm.
The linear decision function not proper for the structure of data in classes may be
the reason. Additionally two figures present the variability of F-measure differ-
ences (Fig. 3) and AUC differences (Fig. 4) for particular datasets and methods.
Horizontal lines on the graphs show median value for each method.
The largest differences between mean values and two moments of preprocess-
ing have been noticed for glass2 (precision: 0.42; recall: 0.26; F-measure: 0.36;
AUC: 0.12), glass4 (precision: 0.30; recall: 0.21; F-measure: 0.27; AUC: 0.11)
and haberman (precision: 0.33; F-measure: 0.23; AUC: 0.07). The quantities of
the difference are astounding and further investigation will be performed. Inap-
propriate moment of data preprocessing while using cross-validation techniques,
regardless of the classification method, may have large impact on the results
giving too optimistic result of the classification process.

5 Conclusions

Class imbalance datasets is nowadays a common occurrence, mainly due to the
possibility of collecting large amounts of information. This phenomenon may
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Table 2: Results for precision, recall, F measure and AUC using three prepro-
cessing methods and their modifications for two classification algorithms

Precision

C4.5 SVM
method Me Range p Me Range p

slsmote 0.1826 0.0000; 0.6311 <0.0001 0.2439 0.0000; 0.5825 <0.0001
smote100 0.0685 0.0065; 0.1986 <0.0001 0.1050 0.0000; 0.2023 <0.0001
smote200 0.1637 0.0000; 0.3183 <0.0001 0.1826 0.0000; 0.3125 <0.0001
smote300 0.1866 0.0000; 0.3880 <0.0001 0.2345 0.0000; 0.3671 <0.0001
smote400 0.2184 0.0000; 0.4446 <0.0001 0.2631 0.0000; 0.4154 <0.0001
smote500 0.2297 0.0000; 0.4527 <0.0001 0.2796 0.0000; 0.4747 <0.0001
smoteAuto 0.2043 0.0000; 0.5665 <0.0001 0.2092 0.0000; 0.5835 <0.0001
spider-strong 0.1866 -0.0011; 0.5403 <0.0001 0.1367 0.0000 ;0.4031 <0.0001
spider-weak 0.1290 0.0000; 0.4388 <0.0001 0.1268 -0.0135; 0.3277 <0.0001
spider-weak-rel 0.1169 0.0000; 0.4445 <0.0001 0.1263 -0.0135; 0.3078 <0.0001

Recall

method Me Range p Me Range p

slsmote 0.1271 0.0128; 0.6533 <0.0001 0.0452 0.0000; 0.2945 <0.0001
smote100 0.0709 -0.0277; 0.2647 <0.0001 0.0097 -0.0296; 0.0944 0.0001
smote200 0.0843 0.0064; 0.2294 <0.0001 0.0318 -0.0036; 0.2153 <0.0001
smote300 0.0858 0.0000; 0.2955 <0.0001 0.0293 0.0000; 0.2307 <0.0001
smote400 0.1000 -0.0022; 0.3458 <0.0001 0.0242 -0.0007; 0.2138 <0.0001
smote500 0.0971 0.0111; 0.3117 <0.0001 0.0273 0.0000; 0.1910 <0.0001
smoteAuto 0.0896 -0.0020; 0.4203 <0.0001 0.0236 -0.0050; 0.1330 <0.0001
spider-strong 0.1222 0.0009; 0.5724 <0.0001 0.0010 -0.2037; 0.2171 0.587
spider-weak 0.1002 0.0000; 0.5204 <0.0001 -0.0108 -0.1910; 0.2185 0.129
spider-weak-rel 0.0932 0.0000; 0.4998 <0.0001 -0.0229 -0.1802; 0.1800 0.048

F Measure

method Me Range p Me Range p

slsmote 0.1618 0.0066; 0.6437 <0.0001 0.1561 0.0000; 0.5205 <0.0001
smote100 0.0852 0.0066; 0.2576 <0.0001 0.0761 0.0000; 0.1472 <0.0001
smote200 0.1254 0.0088; 0.2703 <0.0001 0.1070 0.0000; 0.2714 <0.0001
smote300 0.1496 0.0094; 0.3492 <0.0001 0.1508 0.0000; 0.2951 <0.0001
smote400 0.1641 0.0097; 0.4080 <0.0001 0.1773 0.0000; 0.3658 <0.0001
smote500 0.1654 0.0104; 0.3937 <0.0001 0.1907 0.0000; 0.3934 <0.0001
smoteAuto 0.1440 0.0059; 0.5113 <0.0001 0.1422 0.0000; 0.4893 <0.0001
spider-strong 0.1495 0.0004; 0.5578 <0.0001 0.1022 -0.0657; 0.2886 <0.0001
spider-weak 0.1169 0.0004; 0.4786 <0.0001 0.0587 -0.0455; 0.2317 0.0004
spider-weak-rel 0.1181 0.0004; 0.4731 <0.0001 0.0841 -0.0261; 0.2125 <0.0001

AUC

method Me Range p Me Range p

slsmote 0.0684 0.0065; 0.1986 <0.0001 0.0215 0.0000; 0.1475 <0.0001
smote100 0.0341 0.0003; 0.0993 <0.0001 0.0053 -0.0081; 0.0462 <0.0001
smote200 0.0451 0.0006; 0.1152 <0.0001 0.0164 0.0000; 0.1054 <0.0001
smote300 0.0516 -0.0006; 0.1418 <0.0001 0.0126 0.0000; 0.1089 <0.0001
smote400 0.0516 -0.0001; 0.1461 <0.0001 0.0112 -0.0010; 0.1069 <0.0001
smote500 0.0457 0.0018; 0.1542 <0.0001 0.0109 -0.0004; 0.0972 <0.0001
smoteAuto 0.0450 -0.0011; 0.1994 <0.0001 0.0111 -0.0017; 0.0779 <0.0001
spider-strong 0.0757 0.0004; 0.2834 <0.0001 0.0076 -0.0921; 0.1122 0.063
spider-weak 0.0639 0.0004; 0.2552 <0.0001 0.0051 -0.0866; 0.1122 0.440
spider-weak-rel 0.0621 0.0004; 0.2613 <0.0001 0.0068 -0.0818; 0.0937 0.303
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Fig. 3: Variability of F measures differences

Fig. 4: Variability of differences between AUC values
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have a direct impact on the performance of classification methods, because most
classifiers are designed to maximize the accuracy or minimize the error rate.
Assuming the equality of misclassification errors, the classifiers are usually over-
whelmed by negative class objects, which leads to degradation of the perfor-
mance of the classifier. Data preprocessing can be a good approach overcoming
the disparity between classes cardinalities. However, the calculations should be
performed in an attentive matter to not obtain excessively positive results. Even
if the results are overestimated for about a few percent, each incorrect decision
should be avoided.
There is a significant influence of the moment choice when preprocessing is per-
formed. Results differences vary depending on a chosen classification algorithm
and specific dataset. In most cases rates are inflated if preprocessing is performed
before cross-validation. There are two reasons of this issue. Firstly, synthetic ob-
jects that are put into test sets are closely related to their prototypes in training
sets, causing overfitting of a model. Secondly, proportions of classes in test sets
in this method are not the same as real proportions that were given in the input
sets and it affects the values of calculated rates.
The results occurred astounding and further investigation for various classifica-
tion methods and datasets will be performed.
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