J. Alcalá-fdez, A. Fernández, J. Luengo, J. Derrac, and S. García, Keel datamining software tool: Data set repository, integration of algorithms and experimental analysis framework. Multiple-Valued Logic and Soft Computing, pp.255-287, 2011.

C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem, Proceedings of Advances in Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference
DOI : 10.1007/978-3-540-24694-7_32

URL : http://sci2s.ugr.es/keel/pdf/algorithm/congreso/2009-Bunkhumpornpat-LNCS.pdf

N. V. Chawla, K. W. Bowyer, L. O. Hall, and K. W. , Smote: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, vol.16, pp.321-357, 2002.

N. V. Chawla, N. Japkowicz, and A. Kotcz, Editorial, SIGKDD Explorations, pp.1-6, 2004.
DOI : 10.1145/1007730.1007733

T. Cover and H. P. , Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

URL : http://ssg.mit.edu/cal/abs/2000_spring/np_dens/classification/cover67.pdf

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference and prediction, 2009.

H. He and E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and Data Engineering, vol.21, issue.9, pp.1263-1284, 2009.

W. J. Krzanowski and D. J. Hand, ROC Curves for Continuous Data, CRC, vol.111, 2009.
DOI : 10.1201/9781439800225

URL : http://www.crcnetbase.com/doi/pdfplus/10.1201/9781439800225.fmatt

J. Stefanowski and S. Wilk, Selective Pre-processing of Imbalanced Data for Improving Classification Performance, Proceedings of Data Warehousing and Knowledge Discovery: 10th International Conference, 2008.
DOI : 10.1007/978-3-540-85836-2_27

M. Altini, Dealing with imbalanced data: undersampling, oversampling and proper cross-validation, http://www.marcoaltini.com/blog/dealing-with- imbalanced-data-undersampling-oversampling-and-proper-cross-validation