Representatives of Rough Regions for Generating Classification Rules

Abstract : Rough set theory provides a useful tool for describing uncertain concepts. The description of a given concept constructed based on rough regions can be used to improve the quality of classification. Processing large data using rough set methods requires efficient implementations as well as alternative approaches to speed up computations. This paper proposes a representative-based approach for rough region-based classification. Positive, boundary, and negative regions are replaced with their representatives sets that preserve information needed for generating classification rules. For data divisible into a relatively low number of equivalence classes representatives sets are considerably smaller than the whole regions. Using a small representation of regions significantly speeds up the process of rule generation.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.79-90, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_8〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01637465
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 15:43:41
Dernière modification le : samedi 18 novembre 2017 - 01:16:36
Document(s) archivé(s) le : dimanche 18 février 2018 - 14:38:40

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Piotr Hońko. Representatives of Rough Regions for Generating Classification Rules. Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.79-90, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_8〉. 〈hal-01637465〉

Partager

Métriques

Consultations de la notice

33