H. Cheng, Z. Dai, Z. Liu, and Y. Zhao, An image-to-class dynamic time warping approach for both 3D static and trajectory hand gesture recognition, Pattern Recognition, vol.55, pp.137-147, 2016.
DOI : 10.1016/j.patcog.2016.01.011

H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, Querying and mining of time series data, Proc. VLDB Endow, pp.1542-1552, 2008.
DOI : 10.14778/1454159.1454226

K. L. Elmore and M. B. Richman, Euclidean Distance as a Similarity Metric for Principal Component Analysis, Monthly Weather Review, vol.129, issue.3, pp.540-549, 2001.
DOI : 10.1175/1520-0493(2001)129<0540:EDAASM>2.0.CO;2

E. Keogh, Exact indexing of dynamic time warping, Proceedings of the 28th International Conference on Very Large Data Bases VLDB '02, VLDB Endowment, pp.406-417, 2002.
DOI : 10.1016/b978-155860869-6/50043-3

URL : http://www.cs.ust.hk/vldb2002/VLDB2002-papers/S12P01.pdf

E. J. Keogh and M. J. Pazzani, Scaling up dynamic time warping for datamining applications, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.285-289, 2000.
DOI : 10.1145/347090.347153

URL : http://www.cs.ucr.edu/~eamonn/kdd_2000.pdf

E. J. Keogh and M. J. Pazzani, Derivative Dynamic Time Warping, First SIAM International Conference on Data Mining SDM'2001, 2001.
DOI : 10.1137/1.9781611972719.1

URL : http://www.siam.org/proceedings/datamining/2001/dm01_01KeoghE.pdf

T. Kocyan, J. Martinovi?, K. Slaninová, and D. Szturcová, Searching the longest common subsequences in distorted data, 27th European Modeling and Simulation Symposium, EMSS 2015, pp.84-92, 2015.

D. L. Lee, H. Chuang, and K. Seamons, Document ranking and the vector-space model. Software, IEEE, vol.14, issue.2, pp.67-75, 1997.
DOI : 10.1109/52.582976

J. Lyons, N. Biswas, A. Sharma, A. Dehzangi, and K. K. Paliwal, Protein fold recognition by alignment of amino acid residues using kernelized dynamic time warping, Journal of Theoretical Biology, vol.354, pp.137-145, 2014.
DOI : 10.1016/j.jtbi.2014.03.033

A. Movchan and M. L. Zymbler, Time Series Subsequence Similarity Search Under Dynamic Time Warping Distance on the Intel Many-core Accelerators, p.SISAP, 2015.
DOI : 10.1109/ICASSP.2012.6289085

M. Müller, Information Retrieval for Music and Motion, 2007.
DOI : 10.1007/978-3-540-74048-3

F. Petitjean and J. Weber, Efficient Satellite Image Time Series Analysis Under Time Warping, IEEE Geoscience and Remote Sensing Letters, vol.11, issue.6, pp.1143-1147, 2014.
DOI : 10.1109/LGRS.2013.2288358

URL : https://hal.archives-ouvertes.fr/hal-00940767

L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition, 1993.

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover et al., Addressing Big Data Time Series, ACM Transactions on Knowledge Discovery from Data, vol.7, issue.3, pp.1-1031, 2013.
DOI : 10.1145/2513092.2500489

D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs, 2010 IEEE International Conference on Data Mining, pp.1001-1006, 2010.
DOI : 10.1109/ICDM.2010.21

URL : http://www.cs.ucr.edu/~mueen/pdf/icdm2010.pdf

J. Singh, H. V. Knapp, J. Arnold, and M. Demissie, HYDROLOGICAL MODELING OF THE IROQUOIS RIVER WATERSHED USING HSPF AND SWAT, Journal of the American Water Resources Association, vol.46, issue.6, pp.343-360, 2005.
DOI : 10.13031/2013.15643

K. Slaninová, T. Kocyan, J. Martinovi?, P. Drá?dilová, and V. Sná?el, Dynamic time warping in analysis of student behavioral patterns, Proceedings of the Dateso 2012 Annual International Workshop on DAtabases, TExts, Specifications and Objects. CEUR Workshop Proceedings, pp.49-59, 2012.

M. Toyoda and Y. Sakurai, Discovery of cross-similarity in data streams, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), pp.101-104, 2010.
DOI : 10.1109/ICDE.2010.5447927

Q. Xu and R. Zheng, Automated detection of burned-out luminaries using indoor positioning, International Conference on Indoor Positioning and Indoor Navigation, 2015.

J. Zhao, K. Liu, W. Wang, and Y. Liu, Adaptive fuzzy clustering based anomaly data detection in energy system of steel industry, Information Sciences, vol.259, pp.335-345, 2014.
DOI : 10.1016/j.ins.2013.05.018