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Graph clustering using early-stopped random
walks

Ma lgorzata Lucińska1 and S lawomir T. Wierzchoń2

1 Kielce University of Technology, Kielce, Poland
2 Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland

Abstract. Very fast growth of empirical graphs demands clustering al-
gorithms with nearly-linear time complexity. We propose a novel ap-
proach to clustering, based on random walks. The idea is to relax the
standard spectral method and replace eigenvectors with vectors obtained
by running early-stopped random walks. We abandoned iterating the
random walk algorithm to convergence but instead stopped it after the
time that is short compared with the mixing time. The computed vec-
tors constitute a local approximation of the leading eigenvectors. The
algorithm performance is competitive to the traditional spectral solu-
tions in terms of computational complexity. We empirically evaluate the
proposed approach against other exact and approximate methods. Ex-
perimental results show that the use of the early stop procedure does not
influence the quality of the clustering on the tested real world data sets.
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1 Introduction

Graph partitioning is the problem of dividing a graph into groups, with dense
connections within groups and only sparser connections between them. It is an
ubiquitous technique which has applications in many fields of computer science
and engineering, such as image segmentation [16], in the World Wide Web [7],
in biochemical neural networks [24], and in bioinformatics for protein family
classification [5] among others.

Graph partitioning methods can also be categorized as either global or local
optimizers. Global methods try to discover structure of the whole graph. In local
partitioning, the goal is to find a group containing a given seed vertex. Hence,
essentially, it is the task of finding a bipartition of the graph into two vertex
sets.

A class of algorithms widely used to detect clusters in graphs is based on
spectral methods, [12]. Here, to partition a graph, the eigenvectors of a suitably
chosen matrix are used. This matrix represents connectivity between vertices
to be grouped. The eigenvector associated to the second smallest eigenvalue of
the matrix is called the Fiedler vector, named after Fiedler for his contributions
to algebraic graph theory [6]. The Fiedler vector is one of the most important
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spectral characteristics, carrying information about structural properties of the
graph.

As spectral algorithms represent global partitioning methods, they are rela-
tively slow and thus have been mostly superseded by faster local algorithms, see
e.g. [13]. Moreover, global solutions are infeasible in cases of graphs with only
partly known structure, as for example the WWW network.

We propose a solution that combines the spectral method with lazy random
walks. In our algorithm the Fiedler vector is approximated by running lazy ran-
dom walk. After choosing a seed vertex A, for each vertex i, we update the
probability of being absorbed by this A before the random walker will be cap-
tured by other distant vertex. The method is local in the sense that we obtained
a rough, local approximation of the Fiedler vector by early stopping the updat-
ing process. Random walk process is not run till the convergence but stopped
after the maximum probability change does not exceed an established threshold.
Our method allows for bipartitioning graphs in times that scale almost linearly
with their size. The procedure is motivated by machine learning practices, that
try to find not an exact solution but more general one, not influenced by noise or
mistakes. We have verified our approach experimentally, using real-world testing
sets, including protein networks.

In section 2 the notation and related terms are presented, later we give basic
facts concerning random walks. The next section describes related works. Our
solution is presented in details in section 5. Then, in section 6, we compare
performance of our algorithm with another solution. Finally, in section 7, the
main conclusions are drawn.

2 Notation and related terms

Let G = (V,E) be a graph with the vertex set V and the edge set E ⊆ V 2. The
graph is undirected, i.e. each edge e ∈ E is an unordered pair of nodes from V ,
and simple, i.e. the graph has no loops.

The matrix S = [sij ] plays a role of the affinity matrix for G. The degree of
a node i equals d(i) =

∑
j sij , and D is the diagonal matrix with d(i)’s on its

diagonal. In our solution we use an adjacency matrix A = [aij ] with aij = 0 if
there is an edge between i-th and j-th vertex and aij = 0.

A clustering C = {C1, C2, ...CK} is a partitioning of V into the nonempty
mutually disjoint subsets C1, C2, ...CK .

The Laplacian matrix associated with graph G is the n×n matrix L = D−S.
Since S is a symmetric matrix, L is also symmetric. The normalized Laplacian, is
defined as: Ln = D−1/2LD−1/2. The right eigenvector associated to the second
smallest eigenvalue of the Laplacian matrix is called the Fiedler vector [6]. As it
carries significant structural information regarding the connectivity of the graph
it forms the basis of spectral graph partitioning heuristics, see, e.g. [12] for a
review. The Fiedler vector of L is used to produce a bipartition of the graph
such that those vertices that have negative values in the eigenvector form one
side of the bipartition GS and the vertices with positive values are the other
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side G\GS. For motivation of the use of Fiedler vectors for graph bipartitioning
consult e.g. [12].

3 Random walks on graphs

Most of the information included in this section comes from the survey of
Lovász [11].

Given a graph G we can define simple random walk on G. Consider a random
walker, who initially starts at the origin vertex j. At each step the walker picks
uniformly at random one neighboring vertex i and moves to it with the following
probability:

P (j, i) =

{ 1
d(j) if j ∼ i

0 otherwise
(1)

Let A and B be two vertices of the graph G. The probability p(i) that a random
walker starting at node i reaches the node A before it reaches node B equals:

p(i) =
∑
j∼i

1

di
p(j) (2)

If we know the probability p(j) that each of the neighbors of node i sent a
random walker to A before B then p(i) is an average of these probabilities. One
can see a striking similarity between the probability vector p and the Fiedler
vector. Each Laplacian eigenvalue λ and the corresponding eigenvector f fulfil
the following equation:

Df − λf = Sf (3)

and after transformation:

(di − λ)fi =
∑
j∼i

fj (4)

As the second Laplacian eigenvalue is usually mach smaller than the degree of
a vertex, we receive the following approximation for the i-th component of the
Fiedler vector:

fi ≈
∑

j∼i fj

di
(5)

Taking into consideration formulas (2) and (5) we can see that the vector p
can constitute a good approximation of the Fiedler vector, especially for com-
ponents corresponding to vertices with high degrees. If the second eigenvalue of
the Laplacian equals zero (as in a case of two or more groups) formula 5 gives
exact values of the Fiedler vector components.

This version of the random walks has one major drawback. It does not al-
ways converge: consider for instance a bipartite one-dimensional graph; the walk
started at a vertex on the left will continue hopping back and forth between left
and right without ever converging to any distribution.
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Since W = D−1S is the natural random walk transition matrix associated
with a connected, undirected graph G, it follows that:

Z = αI + (1 − α)W (6)

represents one step of the α-lazy random walk transition matrix, in which at
each step there is a holding probability α ∈ [0, 1]. In a lazy random walk at time
t the walker:

– takes a step of the original random walk with probability 1 − α,
– stays at the current vertex with probability α.

The probability that in the step t + 1 he is at the vertex i equals:

prt+1(i) = αprt(i) + (1 − α)
∑
i∼j

1

dj
prt(j) (7)

Regardless of starting distribution, lazy random walk always converges to
stable distribution. In stable distribution, every vertex is visited with probability
proportional to its degree:

π(j) =
d(j)∑
i d(i)

The fact that W and Z are not symmetric matrices makes their analysis
complicated. The normalized lazy random walk matrix is defined as:

Zs = D1/2ZD−1/2 = αI + (1 − α)D−1/2SD−1/2

The matrices Zs and Z have the same eigenvalues and related eigenvectors.
If Z has eigenvalue µi with an eigenvector fi, Zs has the same eigenvalue with
eigenvector D1/2f . Moreover the eigenvalues µi of the matrices Z and Zs are
related with the eigenvalues ω of the matrix W in the following way: µi =
α+(1−α)ωi. On the other hand matrices W and Ln have the same eigenvalues.

Let pr0 be an arbitrary initial distribution, and prt be the distribution after t
steps of the lazy random walk. Then the rate of convergence of the lazy random
walk to the stationary distribution π [11],

∥prt − π∥2 ≤ (1 − λ)t ·

√
maxj d(j)

mini d(i)
(8)

where λ is the spectral gap defined as the difference between the first and the
second eigenvalues of Z : λ = µ1 − µ2. The eigenvalues of W lie in [−1, 1], and
thus those of Z lie in [−1 + 2α, 1]. We can think of α as a constant in [0, 1], so
the smallest eigenvalue is bounded away from -1. The largest eigenvalue is still 1.
For any connected graph, the gap is simply:

λ = (1 − α)(ω1 − ω2) (9)

Then for any ϵ > 0 the number of steps tϵ for the lazy random walk distribu-

tion pt to be within ϵ of the stationary distribution π is O( 1
λ(G) log d̄(G)

ϵ ), where

d̄(G) = maxj,i∈V
d(j)
d(i) is the degree of G.
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4 Literature overview

The new trend is to replace eigenvectors with vectors obtained by running ran-
dom walks. As it was showed in section 3 the second eigenvector of the Laplacian
can be approximately computed by iterating random walks. In a case of early
stopping of distribution evaluation one does not obtain an eigenvector, but either
an approximate eigenvector or a locally-biased analogue of the leading eigen-
vector. An important aspect of replacing an eigenvector with a random walk
early distribution vector is its robustness. Mahoney [13] explained the idea on
the ground of machine learning. Let us suppose that there is a ”ground truth”
graph that we want to partition, but the graph that we actually have available
to compute with, is a noisy version of this ground truth graph. So, if we want to
compute the leading nontrivial eigenvector of the unseen graph, then computing
the leading nontrivial eigenvector of the observed graph is in general not a good
idea. The reason is that it can be very sensitive to noise, e.g., mistakes or noise in
the edges. On the other hand, if we perform a random walk and keep the random
walk vector, then that is a better estimate of the ground truth eigendirection.
The idea is that eigenvectors are unstable but random walks are not unstable.

One of the first early-stopped solution presented Wu and Huberman [21] in
their clustering algorithm. They applied an electrical circuit analogue in order to
reveal a graph structure. They imagined each edge to be a resistor with the same
resistance, and connected a battery between A and B so that they have fixed
electrical potentials, eg. 1 and 0. Vertices A and B belong to different clusters.
Having made these assumptions the graph can be viewed as an electric circuit
and current flows through each edge (resistor) as random walks. By solving
Kirchhoff equations they obtained the potential value of each node. Using this
information it is possible to partition the graph into two parts. A node belongs
to G1 if its electrical potential is greater than a certain threshold, and it belongs
to G2 if its potential is less than that threshold. Let us assume that C connects
to n neighbors D1; . . . ;Dn. According to Kirchhoff equation the total current
flowing into vertex C should sum up to zero:

n∑
i=1

Ii =

n∑
i=1

VDi − VC

R
= 0

where Ii is the current flowing from Di to C, and VC and VDi are potentials of
the appropriate nodes. Thus

VC =
1

n

n∑
i=1

VDi
.

That is, the potential of a node is the average of the potentials of its neighbors
and can be computed as:

Vi =
1

di

∑
(i,j)∈E

Vj =
1

di

∑
j∈G

Vjsij
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where di is the degree of node i and sij is the affinity matrix of the graph. There
is a straight analogy between random walks and electric network. The voltage at
an arbitrary vertex i equals the probability of reaching A from i before reaching
B (equation 2).

Starting from the node with potential 1, they consecutively updated a node’s
potential to the average potential of its neighbors. Repeating the updating pro-
cess for a finite number of rounds, one reaches an approximate solution within
a certain precision, which depends on the number of iteration rounds. In other
words, the obtained precision depends on number of repeated rounds and not
on the size of the graph, so the total computational cost is always O(n+m). Al-
though the solution is very fast it demands answering a critical question: ”How
to pick the two poles so that they lie in different communities?” The authors
proposed some heuristical methods to solve the problem, but they increased the
computational complexity of the algorithm.

The MCL algorithm [4] simulates random walks within a graph by alterna-
tion of two operators called expansion and inflation. The first one coincides with
taking the power of a stochastic matrix using the normal matrix product (i.e.
matrix squaring). Inflation corresponds with taking powers entrywise of the ma-
trix, followed by a scaling step, so that the matrix elements (on each column)
correspond to probability values. The goal of the last procedure is to favor same
paths inside one cluster over others leading to different clusters. Its computa-
tional complexity is of O(md2), where d represents an average number of nonzero
elements in one column of the stochastic matrix.

Mathematically motivated approach showed Spielman and Teng, who intro-
duced a local partitioning algorithm with a remarkable approximation guarantee
and bound on its computational complexity [17] and [18]. Their algorithm has
a bounded work/volume ratio, which is the ratio between the work performed
by the algorithm on a given run (meaning the number of operations or com-
putational complexity), and the volume of the set it outputs. Their algorithm
computes a sequence of vectors that approximate the sequence of probability
distributions of a random walk from the starting vertex. The support of these
vectors is kept small by removing tiny amounts of probability mass at each step.

Their most recent algorithm uses graph sparsification [19], that is the task of
approximating a graph by a sparse graph. They introduced a new notion of spec-
tral sparsification. A spectral sparsifier is a subgraph of the original whose Lapla-
cian quadratic form is approximately the same as that of the original graph on
all real vector inputs. By applying the method inside the inverse power method,
they computed approximate Fiedler vectors in time O(mlogcm), where m is the
number of edges in the original graph and c is some absolute constant

Andersen, Chung, and Lang developed an improved version of the Spielman
and Teng’s algorithm for computing approximate PageRank vectors [1]. Instead
of computing a sequence of vectors pt+1 they found personalized PageRank vec-
tor, which simplifies the process of finding cuts and allows greater flexibility
when computing approximations. Their method allows us to find cuts using ap-
proximations with larger amounts of error, which improves the running time.
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5 The ESLRW Algorithm

We have modified the method of Wu and Huberman, and according to the α-lazy
random walk process, propose the following formula, describing the evolution of
the distribution p(t) at the vertex i:

pt+1(i) = αpt(i) + (1 − α)
1

di
·

∑
(i,j)∈E

pt(j) (10)

Our intention was to trace the evolution of a probability distribution prop-
agation on graph and use it for graph bipartitioning. We have focussed on the
beginning stages of the process in order to observe the system before it reaches
a stationary state. This way we kept a reasonably small computational cost and
solution simplicity. We used the lazy random walk instead of the ordinary ran-
dom walk to avoid cycling of the distribution values. Moreover we can see from
equation (8) that the rate of convergence grows with increasing value of spectral
gap. Taking into consideration formula (9) we decided to use α smaller then 0.5,
which is the the standard value for lazy random walks. Although our purpose
was not to reach the convergence we just wanted to make the process a bit faster.
In our experiments α = 0.3

Our algorithm differs from the Wu-Huberman’s solution. There is no neces-
sity to indicate two distant vertices A and B belonging to different clusters,
with p values one and zero, respectively. The vertex with the highest degree
was chosen as the seed vertex A, in order to make the process faster. As our
algorithm runs for a small number of iterations, there are always vertices with p
value equal zero, so one of them can constitute vertex B to meet the conditions
of equation 2.

The evolution of the distribution probability is stopped when the maximum
change of the vector component p(i), i ∈ V , is smaller than an established
threshold θ. We did not take into consideration the change of the whole vector
but only of the components that fluctuate considerably during the process of
evaluation. This heuristics is motivated by fact that the probability changes
in the subgraph of the seed vertex are larger than in the rest of the graph.
Between two not very well separated subgraphs there is a bottleneck that allows
for spreading the walk, but it significantly slows down mixing. The bottleneck
makes the other part of the graph difficult to reach from the location of the seed
and limits the speed of convergence.

It is clear that probability distribution of random walk in the subgraph con-
taining the seed vertex differs from those in the other subgraphs. In order to
extract vertices belonging to the same subgraph as the seed vertex, we looked
for the largest gap between probability values at all vertices and divide the whole
set at the gap.

In our algorithm it is no necessity to give the number of clusters. We used
the modularity function, a well known partitioning quality measure introduced
by Newman and Girvan [9], in order to decide whether to bipartition the graph
farther. After the first bipartitioning we checked with the help of the modularity,
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whether the next division gives better clustering. So the next stage of the ESLRW
algorithm involves calculation of the modularity function.

According to Newman a good division of a graph into partitions is not merely
one in which there are few edges between groups; it is one in which there are fewer
than expected edges between groups. The modularity Q is, up to a multiplicative
constant, the number of edges falling within groups minus the expected number
in an equivalent graph with edges placed at random, or in functional form:

Q =
1

2m

∑
i,j

[
aij −

didj
2m

]
δ(gi, gj)

where δ(gi, gj) = 1 if gi = gj and 0 otherwise, gi stands for a group of the vertex
i, and m is the number of edges in the graph. Although modularity is widely
used to evaluate the cluster structure of a graph, it is prompt to increase as
the number of divisions increases, including even within-cluster divisions. We
assumed that a sequential division of a graph makes sense if Q increases by ten
percentage of the previous modularity value. It avoids unnecessary growth of the
number of clusters.

If cutting a set of vertices through a selected gap would not cause a reasonable
gain of modularity, partitioning of the set is not executed and the set is labeled
as complete. The algorithm finishes if all its vertices belong to complete sets.

To sum up our algorithm consists of the following steps:

– Given a graph construct its adjacency matrix
– Calculate the vector p
– Use the vector p to bipartition the graph
– Decide if the current group should be sub-divided, and recursively repartition

the segmented parts if necessary.

To create the matrix S the k-nearest neighbors were determined for each point i
on the basis of the Euclidean distance. The adjacency matrix was obtained with
the help of a mutual k-nearest neighbor graph. The graph was constructed by
connecting i to j if i is among the k-nearest neighbors of j and vice versa. If two
vertices are connected, the appropriate value in the adjacency matrix A equals
1, otherwise it is 0. The parameter k was chosen experimentally.

After constructing the adjacency matrix of the graph, the vector p is calcu-
lated according to formula (10). Values of the p vector depend on the starting
point of the random walk. If the starting point is located in the middle of the
group and does not have connections with vertices belonging to other groups the
calculation is fast and partitioning exact. To make our algorithm as simple as
possible we resign from additional steps and decide to choose always the vertex
with the maximum degree.

Computational complexity of the bipartitioning depends on one round com-
plexity and the number of iterations. The round involves updating distribution
probabilities at each vertex and is proportional to the number of vertices n. The
random walk is executed till the maximum value, by which the distribution at
one vertex is updated, exceeds a given threshold. Additionally we limited the



Graph clustering using early-stopped random walks 9

maximum number of iterations to itmax = 100. To sum up the computational
complexity of bipartitioning in our algorithm is O(n · it), where it stands for the
number of iterations and is smaller than itmax. Taking into consideration the
fact that in our experiments we used graphs with the number of nodes varying
between 3000 and 20000, the number of iterations is comparably small. We can
say that our solution almost linearly depends on the size of the graph. As the
procedure is recursively repeated till all the clusters are found and all the vertices
labeled as complete, the whole complexity of the ESLRW algorithm is O(n · it · k),
where k represents the number of clusters.

6 Experimental results

We compared the performance of the ESLRW algorithm (implemented in MAT-
LAB) to other clustering algorithms: NJW [15], K-means, K-means-based Nyström
spectral clustering (K-NASP) [23], and LI-ASP [3]. The first two are popu-
lar standard algorithms and the NJW uses exact values of symmetric Laplacian
eigenvectors. The last algorithm is a new approximate solution in which two
improvements were made comparing to traditional spectral clustering. First, a
sparse affinity graph was adopted to improve the performance of spectral clus-
tering on a small representative dataset. Second, local interpolation was uti-
lized to improve the extension of the clustering result. The main computation
of the LI-ASP includes three parts: obtaining the representative points, running
spectral clustering on the representative points and extending the clustering re-
sult by the local interpolation. The computational complexity of this solution
is O(p3) + O(n · m · p · k2), where p stands for the number of representatives,
p ≪ n. K-means-based Nyström spectral clustering K-NASP uses Nyström law
rank matrix approximation with the landmark points chosen as the K-means
cluster centers. This method allows to extrapolate the complete grouping solu-
tion using only a small number of samples. The computational complexity of the
algorithm is O(m · n).

We conducted experiments with several real-world large datasets of various
sizes, described as follows:

– MNIST [20] consisting of handwritten digits, with a total of 70,000 exam-
ples; each example is a 28x28 gray-level image, and the dimensionality is
784. Considering the MATLAB memory limitation, we chose the first 2000
examples in the training set of each digit in our experiments. In addition,
we also constructed two subsets of MNIST, MNIST358 and MNIST1479.
MNIST358 consists of the examples of digits 3, 5, and 8, and MNIST1479
consists of the examples of digits 1, 4, 7, and 9.

– USPS [10], the US Postal Service (USPS) handwritten digit dataset, in which
each sample is a 16x16 image. It contains ten digits 0-9. Two subsets of USPS
similar to those of MNIST were also formed, which are denoted by USPS358
and USPS1479.



10 M. Lucińska, S.T. Wierzchoń

Table 1. A summary of datasets.

Dataset ♯ of instances ♯ of features ♯ of classes

MNIST 20000 784 10
MNIST358 6000 784 3
MNIST1479 8000 784 4
USPS 9298 256 10
USPS358 2357 256 3
USPS1479 3919 256 4
Pendigit train 7494 16 10
Pendigit test 3492 16 10
LetterRec 20000 16 26

– Pendigit [2], a handwritten digit data set consisting of 250 samples from 44
writers. In our experiments the training and testing sets were used as two
datasets, which are denoted by Pendigit train and Pendigit test, respectively.

– LetterRec [2] containing the features of 26 capital letters of the English
alphabet. The character images are based on 20 different fonts. They are
randomly distorted.

Table 1 summarizes basic information of these datasets. It is worth noting
that the number of the instances in each dataset is more than 2000.

All the datasets are labeled, which enables evaluation of the clustering re-
sults against the labels using the accuracy of clustering (ACC) and normalized
mutual information (NMI), as measures of division quality. For both measures
higher number means better partitioning. We refer an interested reader to [14]
for details regarding the measures. The same benchmark datasets were applied
in experiments for the LI-ASP algorithm by Cao et al.. We also used their results.

The performance of the algorithms show Table 3 and Table 2. Not all results
are presented because the datasets of 20000 points were too large for NJW MAT-
LAB implementation. We can see the superiority of the ESLRW algorithm over
the other tested solutions. The results prove that the presented method is com-
petitive to the other solutions in terms of the quality of partitioning, measured
with the help of the accuracy of clustering and the NMI quality measure.

We have also applied the ESLRW algorithm to find protein complexes. In
our experiments we used two well known yeast PPI datasets. The first dataset
(PPI-D1) is prepared by Gavin et al. [8] and the second dataset (PPI-D2) is
a combined PPI dataset containing yeast protein interactions generated by six
individual experiments [22]. The first one consists of 990 and the second one of
1440 proteins. We compared our solution with the a standard algorithm used
for protein networks - the MCL algorithm. Our method outperformed the other
algorithm in terms of modularity measure. For the first set PPI-D1 modularity
of our algorithm was 0.8157 and of the other one 0.7692, and for the second set
PPI-D2 respectively 0.8134 and 0.7835.
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Table 2. Comparison of K-MEANS, NJW, K-NASP, LI-ASP, and ESLRW algorithms
in terms of the accuracy of clustering.

Algorithm K-MEANS NJW K-NASP LI-ASP ESLRW

MNIST 0.4912 / 0.5284 0.6999 0.7403
MNIST358 0.1357 0.7548 0.5781 0.7175 0.7220
MNIST1479 0.3502 0.3623 0.4446 0.5032 0.5449
USPS 0.5921 0.6562 0.6319 0.6746 0.9420
USPS358 0.7170 0.9163 0.9189 0.9606 0.9845
USPS1479 0.5214 0.9615 0.5816 0.9446 0.9770
Pendigit test 0.6710 0.8263 0.6306 0.7705 0.8210
Pendigit train 0.6686 0.7889 0.6955 0.8113 0.8193
LettRec 0.3631 / 0.2728 0.3197 0.3240

Table 3. Comparison of K-MEANS, NJW, K-NASP, LI-ASP, and ESLRW algorithms
in terms of the NMI.

Algorithm K-MEANS NJW K-NASP LI-ASP ESLRW

MNIST 0.4912 / 0.5102 0.7138 0.7758
MNIST358 0.1357 0.4670 0.1284 0.4284 0.6008
MNIST1479 0.3502 0.4700 0.3015 0.4365 0.6491
USPS 0.5921 0.7723 0.6178 0.7347 0.8809
USPS358 0.7170 0.9163 0.7224 0.8387 0.9187
USPS1479 0.5214 0.8662 0.5747 0.8506 0.9066
Pendigit test 0.6710 0.8263 0.7198 0.7793 0.8646
Pendigit train 0.6686 0.8008 0.7388 0.7949 0.8623
LettRec 0.3631 / 0.3752 0.4315 0.4460

7 Conclusions

The computational complexity of the presented algorithm is reasonably small. It
depends on the number of iterations, that never exceeds 100. The number con-
stitutes only small percentage of iterations needed for convergence. For example
in case of the Pendigit test set, the number of iterations to achieve the accuracy
of 0.001 is of 3.5 · 103 whereas in our algorithm the early stop was made after 75
rounds.

We have presented a fast algorithm that uses random walk procedure for
graph bipartitioning. The solution uses a close relation between the Fiedler vec-
tor and the vector, whose components are probabilities of reaching a seed vertex
before the other distant vertex starting from i. We calculated the local rough
approximation of the Fiedler vector. The vector was obtained after considerably
small number of algorithm iterations. The algorithm gives promising results de-
spite its simplicity. Our experiments show superiority of graph partitioning with
the use of the local approximation of the Fiedler vector over cuts resulting from
the vector itself. Because of small computational complexity our method seems
to be adequate for discovering structures in large graphs.
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