R. Andersen, F. R. Chung, and L. K. , Local Graph Partitioning using PageRank Vectors, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), pp.475-486, 2006.
DOI : 10.1109/FOCS.2006.44

K. Bache and M. Lichman, UCI Machine Learning Repository, 2013.

J. Z. Cao, P. Chen, Q. Dai, and B. W. Ling, Local information-based fast approximate spectral clustering, Pattern Recognition Letters, vol.38, pp.63-69, 2014.
DOI : 10.1016/j.patrec.2013.11.005

S. Van-dongen, Graph Clustering Via a Discrete Uncoupling Process, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.1, pp.121-141, 2008.
DOI : 10.1137/040608635

A. J. Enright, S. Van-dongen, and C. A. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, vol.30, issue.7, pp.1575-1584, 2002.
DOI : 10.1093/nar/30.7.1575

M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J, vol.23, issue.98, pp.298-305, 1973.

G. Flake, S. Lawrence, L. Giles, C. , C. et al., Self-organization and identification of Web communities, Computer, vol.35, issue.3, pp.66-71, 2002.
DOI : 10.1109/2.989932

URL : http://www.neci.nec.com/~lawrence/papers/web-computer02/web-computer02.ps.gz

A. C. Gavin, Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, vol.25, issue.6868, pp.141-147, 2002.
DOI : 10.1093/nar/25.17.3389

M. Girvan and M. E. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, pp.7821-7826, 2002.
DOI : 10.1086/285382

URL : http://www.pnas.org/content/99/12/7821.full.pdf

J. J. Hull, A database for handwritten text recognition research, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, issue.5, p.550554, 1994.
DOI : 10.1109/34.291440

L. Lováasz, Random walks on graphs: A survey, Combinatorics, p.146, 1993.

U. Von-luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1017/CBO9780511810633

M. Mahoney and L. Orecchia, A local spectral method for graphs: With applications to improving graph partitions and exploring data graphs locally, Journal of Machine Learning Research, vol.13, pp.2339-2365, 2012.

C. D. Manning, P. Raghavan, and H. Schtauze, Introduction to Information Retrieval, 2008.
DOI : 10.1017/CBO9780511809071

A. Ng, M. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in Neural Information Processing Systems, 2001.

J. Shi and J. Malik, Normalized cuts and image segmentation, Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR '97, pp.731-752, 1997.

D. A. Spielman and S. Teng, Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems, Proceedings of the thirty-sixth annual ACM symposium on Theory of computing , STOC '04, 2004.
DOI : 10.1145/1007352.1007372

D. A. Spielman and S. Teng, A local clustering algorithm for massive graphs and its application to nearly-linear time graph partitioning. CoRR, abs/0809, p.3232, 2008.
DOI : 10.1137/080744888

URL : http://arxiv.org/pdf/0809.3232

D. A. Spielman and S. Teng, Spectral Sparsification of Graphs, SIAM Journal on Computing, vol.40, issue.4, pp.981-1006, 2011.
DOI : 10.1137/08074489X

L. Yann and C. Corinna, The MNIST database of handwritten digits, 2009.

F. Wu and B. A. Huberman, Finding communities in linear time: a physics approach, The European Physical Journal B - Condensed Matter, vol.38, issue.2, pp.331-338, 2004.
DOI : 10.1140/epjb/e2004-00125-x

N. M. Zaki, S. Lazarova-molnar, W. El-hajj, and P. Campbell, Protein-protein interaction based on pairwise similarity, BMC Bioinformatics, vol.10, issue.1, 2009.
DOI : 10.1186/1471-2105-10-150

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-10-150?site=bmcbioinformatics.biomedcentral.com

K. Zhang and J. Kwok, Improved Nyström low rank approximation and error analysis, Proceedings of the International Conference on Machine Learning (ICML), 2008.
DOI : 10.1145/1390156.1390311

URL : http://www.cse.ust.hk/~twinsen/nystrom.pdf

H. Zhou and R. Lipowsky, Dynamic pattern evolution on scale-free networks, Proc. of the National Academy of Science USA, pp.10052-10057, 2005.
DOI : 10.1007/978-3-540-24688-6_137

URL : http://www.pnas.org/content/102/29/10052.full.pdf