Abstract : This paper proposes a new method for recognition of face expressions, called FE8R. We studied 6 standard expressions: anger, disgust, fear, happiness, sadness, surprise, and additional two: cry and natural. For experimental evaluation samples from MUG Facial Expression Database and color FERET Database were taken, with addition of cry expression. The proposed method is based on the extraction of characteristic objects from images by gradient transformation depending on the coordinates of the minimum and maximum points in each object on the face area. The gradient is ranked in $$[-15,+35]$$ degrees. Essential objects are studied in two ways: the first way incorporates slant tracking, the second is based on feature encoding using BPCC algorithm with classification by Backpropagation Artificial Neural Networks. The achieved classification rates have reached 95 %. The second method is proved to be fast and producing satisfactory results, as compared to other approaches.
https://hal.inria.fr/hal-01637498 Contributor : Hal IfipConnect in order to contact the contributor Submitted on : Friday, November 17, 2017 - 3:45:13 PM Last modification on : Tuesday, April 24, 2018 - 1:40:02 PM Long-term archiving on: : Sunday, February 18, 2018 - 3:15:48 PM
Majida Albakoor, Khalid Saeed, Mariusz Rybnik, Mohamad Dabash. FE8R - A Universal Method for Face Expression Recognition. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. pp.633-646, ⟨10.1007/978-3-319-45378-1_55⟩. ⟨hal-01637498⟩