Attribute Reduction Based on MapReduce Model and Discernibility Measure

Abstract : This paper discusses two important problems of data reduction. The problems are related to computing reducts and core in rough sets. The authors use the fact that the necessary information about discernibility matrices can be computed directly from data tables, in the case of this paper so called counting tables are used. The discussed problems are of high computational complexity. Hence the authors propose to use the relevant heuristics, MRCR (MapReduce Core and Reduct Generation) implemented using the MapReduce model.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.55-66, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_6〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01637503
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 15:45:25
Dernière modification le : samedi 18 novembre 2017 - 01:16:38
Document(s) archivé(s) le : dimanche 18 février 2018 - 14:49:38

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Michal Czolombitko, Jaroslaw Stepaniuk. Attribute Reduction Based on MapReduce Model and Discernibility Measure. Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.55-66, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_6〉. 〈hal-01637503〉

Partager

Métriques

Consultations de la notice

11