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Pattern Recognition with Rejection

Combining Standard Classification Methods
with Geometrical Rejecting
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and Anna Zawadzka?

! Faculty of Economics and Informatics in Vilnius, University of Bialystok
Kalvariju g. 135, LT-08221 Vilnius, Lithuania
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Abstract. The motivation of our study is to provide algorithmic ap-
proaches to distinguish proper patterns, from garbage and erroneous
patterns in a pattern recognition problem. The design assumption is to
provide methods based on proper patterns only. In this way the approach
that we propose is truly versatile and it can be adapted to any pattern
recognition problem in an uncertain environment, where garbage pat-
terns may appear. The proposed attempt to recognition with rejection
combines known classifiers with geometric methods used for separating
native patterns from foreign ones. Empirical verification has been con-
ducted on datasets of handwritten digits classification (native patterns)
and handwritten letters of Latin alphabet (foreign patterns).

Keywords: pattern recognition, classification, rejecting option, geomet-
rical methods

1 Introduction

The task of pattern recognition is a classical machine learning problem. As an
input we pass a training dataset, consisting of labelled patterns belonging to
c classes. In the process we expect to form a model that assigns correct labels
to new patterns (new observations).

It is important to have in mind that patterns in their original form are often
some sort of signal, for instance images or voice recordings. Due to the fact that
the original patterns are often collected using some signal-acquiring devices,
we may encounter patterns that do not belong to any of the proper classes.
Such situation may happen, when the device that we have used to acquire data
has been automatically reset due to power outage and poor default calibration
distorts the segmentation process. Another scenario is when we collect data in
a noisy (out of lab) environment and apart from proper patterns there are a lot
of unexpected residual ones. The problem with such patterns, say — garbage
patterns, is that we cannot predict their characteristics and therefore we cannot
include information about them in the model training process.
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The motivation for our study is to provide algorithmic approaches used for
distinguishing proper patterns, that we call native patterns from garbage and
erroneous patterns, that we call foreign patterns. The task described in this paper
we call foreign patterns rejection. The design assumption is to provide methods
based on native patterns only. In this way the framework that we propose is
truly versatile and it can be adapted to any pattern recognition problem in an
uncertain environment, where foreign patterns may appear.

The study focuses on designing methods for recognition with rejection and
employs them to (a) distinguish native patterns from foreign ones and (b) im-
prove classification quality of native patterns. A specific objective of this study is
to examine the cooperation of various standard classifiers (SVMs, random forests
and kNNs) with geometric methods used for rejection. We focus on the influ-
ence of rejection mechanisms on native patterns classification, i.e., improvement
of Fine Accuracy measure. The proposed methods are empirically verified on
datasets of handwritten digits (native patterns) and handwritten Latin letters
(foreign patterns).

We would like to emphasise that the novelty of the contribution presented in
this paper is not in the methods that we use, but in how we employ them and
on what we achieve with them.

The remainder of this paper is organized as follows. Section [2.1| presents the
background knowledge on foreign patterns detection present in the literature.
Sections and address background algorithms, present in the literature.
Section [3] presents the proposed approach. In Section [@] we discuss experiments.
Section 5| concludes the paper and highlights future research directions.

2 Preliminaries

Data collection and processing are vital study problems across multiple domains
of science. Along with a substantial automation of data acquisition we face dif-
ficulties that appear due to poor data quality. The research we present in this
paper has been motivated by the issue of contaminated datasets, that apart from
proper patterns contain garbage.

In this section we start the discussion with a review of relevant literature
positions in machine learning that tackle the issue of contaminated datasets.
Then, in order to provide a self-contained description of the employed methods
we present backbone literature algorithms applied. In what follows we present
the Minimum Volume Enclosing Ellipsoid (MVEE) algorithm and a suite of three
classification methods: Random Forests (RF), Support Vector Machines (SVM),
and K-Nearest Neighbors algorithm (kNN). Listed methods are employed in
various configurations to native patterns classification with foreign patterns re-
jection. Our approach, based on those algorithms, is discussed in Section

2.1 Literature Review

The rejecting option in pattern recognition problem has gained a rather weak
attention despite its importance in practice. Also, there is a relatively short list of
papers raising the problem of rejecting foreign patterns, cf. [8] for a short survey.



Here we only hint some issues present in literature. Due to space limitations we
are neither able to comprehensively cover the subject, nor can we provide a deep
background of the methods employed in this study.

Discussion on approaches related to foreign patterns rejection may start with
one-class classification methods. Especially, there are two noteworthy examples:
centroid-based methods and One-Class Support Vector Machine.

Centroid-based methods rely on distinguishing cluster centres (centroids).
Region reserved for proper patterns is usually defined by the distance between
centre and the furthest proper pattern.

One-Class SVM has been introduced in [12]. While “regular” SVM algorithm
forms hyperplane separating two classes, the One-Class SVM separates data
points from the entire feature space. Notably, the One-Class SVM provides a soft
decision rules, as there is a v parameter determining the fraction for outliers.

When it comes to the study on actual foreign patterns rejection, there are
relatively few papers to review. This issue, in spite of its importance, remains
somehow neglected. Among notable studies one may mention rank-based meth-
ods, for instance ones described in [2H6I7ITIIT3IT5]. In a nutshell, mentioned
papers propose to attach confidence scores along with class labels. Rejection oc-
curs when none of native class labels was assigned with a satisfying confidence.

2.2 Ellipsoids for Foreign Patterns Rejection

Both native and foreign patterns are represented with a vector of features ex-
tracted from the pattern of interest. Features are usually real numbers, therefore
every pattern is a point in a multidimensional Euclidean space. What is more,
we may propose a hypothesis that the set of native patterns belonging to the
same class forms a cluster in the feature space. Assuming that this assumption
is correct, we may be able to find minimal enclosing boxes for each native class.

In computational geometry, the smallest enclosing box problem is that of find-
ing the oriented minimum bounding box enclosing a set of points. As opposed
to convex hull, which is the most accurate point set container with smallest vol-
ume and which is enclosed by linear hyperplanes. Bounding boxes are far less
complex. In many cases, when there is a need for computing convex hull and
testing inclusions of other points, an approximation of such hull can be used,
which helps in reducing time needed for computations, since most of alterna-
tive methods have lower construction and inclusion-testing complexities. Some
of such approaches include using figures like hypercubes, diamonds, spheres or
ellipsoids to successfully enclose given set of points.

When comparing highlights and drawbacks of each method from two per-
spectives: computational complexity and ease of point inclusion testing, ellip-
soids seem to be a reasonable choice. Constructed ellipsoid is superior to the
minimal cuboid in many ways. It is unique, gives better approximation of the
object it contains and if E(S) is the bounding ellipsoid for a point set S with
convex hull C(S) in dimension d, then: £ E(S) C C(S) C E(S), where scaling is
with respect to the centre of E(S).

To sum up, adaptation of the smallest enclosing box problem to foreign pat-
terns rejection, or native patterns identification, seems to be a very natural



approach. The justification is fairly simple: if we enclose patterns belonging to
native classes, using for instance ellipsoids, formed geometrical model will dis-
criminate a region of the features space reserved for native patterns between
a region where we may encounter foreign patterns. With this premise in mind,
let us present a detailed description of the MVEE algorithm.

MVEE problem is solved by several known algorithms that can be categorized
as first-order, second-order interior-point or combination of the two. For small
dimensions d, the MVEE problem can be solved in O(d®(¥m) operations using
randomized or deterministic algorithms [I4]. In this paper the algorithm based
on Khachiyan solution is used.

An ellipsoid in its centre form is given by the formula:

E={zecR"(z—c)TA(x —c) <1}
where ¢ € R" is the centre of the ellipse E and A € S}, is a positive definite
matrix. Points lying inside the ellipsoid satisfy (z; — )T A(z; —¢) < 1+¢, where
€ parameter defines the error margin in determining point belonging to ellipsoid,
i.e. it allows to enlarge the ellipsoid.

However, constructing minimal volume bounding ellipsoid is not a convex
optimization problem. It turns out that the solution is not easily obtainable so
the dual problem has to be found. For a more precise and in depth solution
description see [14]. The main problem, when using ellipsoids as identifiers, lies
in constructing them. Two main factors that decide about identification effec-
tiveness are tolerance and acceptance parameters. Tolerance can be viewed as
a threshold for ellipsoid construction accuracy. The lower the parameter is, the
better minimal volume ellipsoid is created. On the other hand, even with a good
training set, there is a risk of including native patterns that lie outside of the
created ellipsoid. Acceptance parameter has been introduced to prevent such
unwanted behaviour. It defines a threshold for point rejection for points lying
outside of the created figure.

2.3 Native Patterns Classification

The task of native patterns classification relies on forming a model based on a la-
belled training dataset that assigns proper class labels to new patterns. There
is a multitude of classification algorithms, among which we have selected three
different ones that are used in our methods. It is necessary to emphasize that
if someone would like to adapt our method to their own domain, those algo-
rithms could be substituted with some other classification tools that may be
more efficient in that domain. Without further ado let us move towards a brief
description of the methods that we apply in our study.

Support Vector Machines are a set of supervised learning methods used for
classification, regression and outliers detection. The SVM algorithm relies on
a construction of hyperplane with a maximal margin that separates patterns of
two classes [B]. SVMs are effective in high dimensional spaces, memory efficient,
and quite versatile with many kernel functions that can be specified for the
decision function. Although in some cases, where the number of features is much



greater than the number of samples, this method can give poor results, and is not
cost-efficient when calculating probability estimates. However, it is well suited for
the problem presented in this paper. For a multi-class classification “one-against-
one” approach is used. For ¢ classes ¢- (¢ — 1)/2 classifiers are constructed, each
one is trained with data from two different classes. In our study we use decimal
digits as classes. Therefore, the following 45 class-against-class SVMs are built:
“Ovs 17, “0vs2”,...“0vs 97, “1lvs2”, ...“1lvs 9", ...“8vs9”. Classification
decision is taken by a voting method, i.e. a new pattern subjected to classification
is counted to the most frequent class among these 45 binary classifiers. The case
when two or more classes are most frequent, a second choice decision is made
for actual classification. For instance, the closest pattern from most popular
classes or minimal sum of distances from the processed pattern to ones from
most popular classes may decide.

Random Forests is a popular ensemble method. The main principle behind
ensemble methods, in general, is that a group of “weak learners” can come
together to form a “strong learner”. In the Random Forests algorithm ([3]) the
weak learners are decision trees, which are used to predict the membership of
objects in the classes. For vector of independent variables representing one object
they calculate the value of the class the object belongs to by dividing value space
into two or more subspaces. More precisely, an input data is entered at the top of
the tree and as it traverses down the tree the data gets bucketed into smaller and
smaller sets. In this method a large number of classification trees is generated. To
grow each tree a random selection with replacement is made from the examples
in the training set D. Those subsets Dy are called bootstrap training sets. At
each node m variables are selected at random out of the set of input variables
and the best split on these m is used to split the node. After a relatively large
number of trees is generated, they vote for the most popular class. Random
Forests join few important benefits: (a) they are relatively prone to the influence
of outliers, (b) they have an embedded ability of feature selection, (c) they are
prone to missing values, and (d) they are prone to overfitting.

k-Nearest Neighbors is an example of a “lazy classifier”, where the entire
training dataset is the model. There is no typical model building phase, hence
the name. Class membership is determined based on class labels encountered in
k closest observations in the training dataset [I]. In a typical application, the
only choice that the model designer has to make is selection of k and distance
metrics. Both are often extracted with a help of supervised learning procedures.

3 Methodology

In general, there are two approaches that could be used to determine whether an
object is rejected (classified as foreign). The first one assumes use of classification
methods, which originally were not designed for rejecting. In the second approach
classifiers are used only as a classification tool, whereas rejecting is realized by
other methods, for instance geometrical figures or unsupervised cluster analysis.
In this paper let us focus on the latter.
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Fig. 1: Ellipsoids employed for rejecting: global rejection (left part) and local
rejecting (right part). Questions marks (?) stand for foreign patterns, circles,
squares, triangles and pentagons — for native patterns.

3.1 External Global and Local Rejecting

While ellipsoids are good for identification of native patterns region, they lack in
pattern classification quality. This is caused by the fact that ellipsoids may over-
lap with each other, which results in conflicts when we want to univocally assign
class labels. Although this can be solved by calculating distance between those
patterns and each ellipsoid’s centre, or by taking the value of ellipsoid-inclusion
equation as a classification measure, tests have proven that such approaches are
more prone to errors than other “standard” classifiers mentioned in this paper.
Considering both strengths and weaknesses of classifiers and identifiers (for na-
tive region identification), the combined solution has been prepared that employs
both tools (classifiers and ellipsoids), making use of their advantages.

Classifiers have high success rate, but cannot distinguish between foreign
patterns and native ones. Contrary to that, ellipsoids tend to be better in reject-
ing foreign patterns, what makes them good at identifying patterns that should
not be classified. The natural way of dealing with that problem would be to
use ellipsoids as first-entry identifier that purifies input set by removing foreign
patterns. The result of such rejection would be sent to the chosen classifier that
would classify remaining native patterns. Due to the order of actions in this
processing scenario we call this global rejection scheme. Schema of this method
is presented in the left part of Figure [I} Please note that we show there a case
of imperfect rejection/classification task, i.e. rejected and misclassified native
patterns, as this is typically the case in real-world problems.

Another way of using ellipsoids as identifiers is to treat them as correction
tools for an already classified dataset. This means that foreign patterns are not
removed before classification. Instead, class-corresponding ellipsoid are employed
to reject foreign patterns classified to the corresponding class. This is somewhat



different from the previous approach because patterns can be rejected even if
there is an ellipsoid that would pass inclusion test. The schema of this clas-
sification/rejection scenario can be seen in the right side of Figure (1} Because
rejection occurs at the local level of each native class we call this approach a local
rejection scheme.

3.2 Quality Evaluation

In order to evaluate the quality of the proposed methods patterns from the
following groups are counted:

CC (Correctly Classified) — the number of correctly classified patterns, i.e. na-
tive patterns classified as native ones with correct class label,

TP (True Positives) — native patterns classified as native (no matter, into
which native class),

FN (False Negatives) — native patterns incorrectly classified as foreign,

FP (False Positives) — foreign patterns incorrectly accounted as native,

TN (True Negatives) — foreign patterns correctly accounted as foreign.

These numbers are then used to form measures reflecting specific aspects of

classification and rejection, cf. Table [1] Notions that we use are well-known in
the domain of pattern recognition, cf. []]:

Strict Accuracy measures classifier’s performance. It is the ratio of the num-
bers of all correctly classified patterns to all ones being processed.
Accuracy is a “softer” characteristic derived from the Strict Accuracy. Accu-
racy describes the ability to distinguish between native and foreign patterns.
The difference is that we do not require that the native patterns are labelled
with their proper class label.

Native Precision is the ratio of the number of not rejected native patterns to
the number of all not rejected patterns (i.e. all not rejected native and foreign
ones). The higher the value of this measure, the better ability to distinguish
foreign patterns from native ones. Native Precision does not evaluate how
effective identification of native patterns is.

Native Sensitivity is the ratio of the number of not rejected native patterns to
all native ones. The higher the value of Native Sensitivity, the more effective
identification of native patterns. Unlike Native Precision, this measure does
not evaluate separation between native and foreign patterns.

Strict Native Sensitivity takes only correctly classified native patterns and
does not consider native patterns, which are not rejected and assigned to
incorrect classes, unlike Native Sensitivity, where all not rejected native pat-
terns are taken into account.

Fine Accuracy is the ratio of the number of native patterns classified to
correct classes, i.e. assigned to their respective classes, to the number of all
native patterns not rejected. This measure conveys how precise is correct
classification of not rejected patterns.

Foreign Precision corresponds to Native Precision, i.e. it is the ratio of the
number of rejected foreign patterns to the number of all rejected elements.
Foreign Sensitivity corresponds to Native Sensitivity.



Table 1: Quality measures for classification and rejection.

Native Precision = _TP Accuracy = TP+TN
TP+FP TP+FN+FP+TN
Foreign Precision = % Strict Accuracy = TP+§1(\311'1£§+TN
Native Sensitivity = % Fine Accuracy = %
Foreign Sensitivity = % Strict Native Sensitivity = %

Precision - Sensitivity
F—measure = 2 -

Precision + Sensitivity

— Precision and Sensitivity are complementary and there exists yet another
characteristic that combines them: the F—measure. It is there to express the
balance between precision and sensitivity since these two measures affect
each other. Increasing sensitivity can cause a drop in precision since, along
with correctly classified patterns, there might be more incorrectly classified.

4 Experiments

In this section we move towards description of a series of experiments where we
apply rejection strategies discussed theoretically in Sections In what follows
we describe datasets, experiments’ settings, and results.

4.1 Datasets

We present a study on handwritten digits recognition and handwritten letters
(from the Latin alphabet) rejection. In other words, native patterns set is made of
digits (it is a ten class problem), while foreign patterns are 26 different handwrit-
ten letters. The justification to assume such foreign dataset for testing purposes
is that appearance of other real-world symbols, but not belonging to any proper
class, is a common issue in a character recognition problem.

We would like to stress again, that foreign patterns do not participate in
the model building phase. The entire scheme is based on native patterns only.
Handwritten letters are used only for rejection mechanisms quality evaluation.
Samples of processed patterns are displayed in Figure [2|

The native training dataset consisted of 10,000 handwritten digits with ap-
proximately 1,000 observations in each class taken from publicly available MNIST
database [9]. We split each class in proportion ca. 7:3 and as a result we got two
sets. The first one includes 6,996 patterns and is used for training. The second
set, the test set, contains 3,004 patterns. The dataset of foreign patterns contains
26,383 handwritten Latin letters, ca. 1,000 letters in each class. This dataset was
created by 16 students, writing about 70 copies of each letter.

All patterns were normalized and feature vectors comprising of 106 numeri-
cal features were created. Examples of features are: maximum/position of max-
imum values of projections, histograms of projections, transitions, offsets; raw
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Fig. 2: Sample of: native patterns (top) and foreign patterns (bottom).

moments, central moments, Euler numbers etc. The best first search for the
optimal feature subset has been performed using FSelector R package [10] and
then analysis of variance was employed to select good features. The final feature
vector contained 24 elements. We considered features standardization but the
training data is sufficiently consistent (there are no outliers), so we normalized
those features to bring linearly all values into the range [0,1].

4.2 Experimental Settings

Solutions presented in this paper have been implemented in Python program-
ming language, using scientific libraries [I6/I7/I8]. The MVEE algorithm, avail-
able as MATLAB code has been rewritten in Python language, using NumPy
library for matrix representation and operations. Several tests have been per-
formed in order to find best suited method parameters for both classifiers and
identifiers. For finding those values the Grid Search [I8] has been used for SVM
and RF.

MVEE parameters. Each ellipsoid was created and used with two parameters:
tolerance and acceptance. The tolerance argument was used during creation
phase, as “accuracy measurement”. Lower value means that created enclosing
figure is more fitted to the construction set. Acceptance parameter defines how
far can a point lie outside the ellipsoid to still be identified as belonging to
it. In other words, it treats enclosing ellipsoid as being bigger than it really
is. Parameters tests involved computing effectiveness of MVEE algorithm for
certain tolerance and acceptance values. We tested values from such ranges:

— tolerance = [0.5, 0.2, 0.1, 0.01]

— accuracy = [0.1, 0.01, 0.001, 0.0005]

The results revealed that for the given training and test sets the best parameter
combination was tolerance=0.5 and accuracy=0.1 and those values were used in
the final, combined method described later in this document.

SVM parameters. SVM method available in the Scikit package offers a few
built-in kernels that were used during computations: radial basis function and
polynomial. Additionally, there are two more parameters that were tested: C (de-
scribed as penalty parameter C of the error term), and v (known as kernel coef-
ficient). Values that were tested:

— kernel = ['rbf’, 'poly’]

- C=11,2,4,5, 16]

— vy =[271,272273,0,00025

The best found combination of those parameters used rbf kernel along with C=8
and v = 27! values.



Random Forests parameters. The Scikit library was used to test random
forests. Random forests with the following number of trees were tested: 1, 2, 3,
5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150. It turned out
that the best number of trees to build the forest was 100.

kNN parameters. We tested the following values of k (the number of neigh-
bours): 1, 2, 3, 4, 5, 10, 20, 30, 40, 50. The best found value of k was four. There
is also one parameter — metric, but we use the standard Euclidean metric.

4.3 Results of Experiments

In this section we present the results of our experiments. We use quality measures
presented in Section [3:2] We investigate classification quality, rejection quality
and rejection’s impact on classification quality. We compare two scenarios: global
(rejection on is the entire dataset) and local (rejection mechanism is separate
for each native class).

Influence of Rejection on Native Patterns Classification Adding a re-
jection mechanism, ideally, may be a method for improvement of classification
rates. It would be perceived as a positive side of the rejection mechanism, if
it would be able to reject those native patterns, which would be incorrectly
classified when there is no rejection mechanism at all.

Trained models partially fulfill this wish. Conducted tests, reported in Ta-
ble 2| show that Fine Accuracy improved for both local and global rejection
schemes and for all classifiers. This means that we have a better recognition rate
(the proportion of correctly classified patterns) in the data that was accounted
as native. However, we have to notice that both rejection mechanisms rejected
some native patterns. Hence, Strict Accuracy and Strict Native Sensitivity are
slightly higher when we do not have any rejection mechanism.

Results indicate that performing pattern rejection after their initial classifi-
cation (the local rejection scheme), brings better results than using the global
scheme. This could be explained by the fact that in the local rejection scheme we
use one ellipsoid per each class and we apply those ellipsoids after classification.

Table 2: Classification with random forests, svms and knn and rejection with
ellipsoids on the set of native patterns: no rejection vs. local and global rejec-
tions. Notice that all three measures turn to the same proportion CC/TP for no
rejection mode.

No rejection Global rejection Local rejection
Basic Classifier [ RF [ SVM [KNN || RF [ SVM [ kNN [| RF [ SVM [ kNN
Data Set Native Patterns, Train Set

Strict Accuracy 1 0.985 | 0.955 || 0.941 | 0.938 | 0.936 || 0.942 | 0.942 | 0.942
Fine Accuracy 1 0.985 [ 0.955 1 0.987 |1 0.972 1 0.989 | 0.984
Strict Native Sens. 1 0.985 |0.955 || 0.879 | 0.852 | 0.854 || 0.864 | 0.857 | 0.845

Data Set Native Patterns, Test Set

Strict Accuracy || 0.952 | 0.966 |0.930 || 0.946 | 0.946 | 0.944 || 0.951 | 0.952 | 0.953
Fine Accuracy || 0.952 | 0.966 | 0.930 || 0.972 | 0.982 | 0.959 || 0.977 | 0.985 | 0.976
Strict Native Sens. || 0.952 | 0.966 |0.930 || 0.842 | 0.852 | 0.831 || 0.837 | 0.845 | 0.825
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Fig. 3: Quality evaluation for global and local rejection schemes realized with
ellipsoids with different classifiers: random forests, SVMs, and kNNs.

In contrast, in the global scheme we have a joint set of ellipsoids that we apply
to the entire dataset. In the local rejection scenario native patterns identification
regions are applied individually to each subset obtained from the classifier. As
a result there is a chance that classification would contribute to foreign patterns
filtration. The same conclusion, about superiority of local rejection over global
one concerns strict classification error ratios.

When comparing the overall quality achieved by mechanisms based on dif-
ferent classifiers we see a slight advantage of SVM.

Separating Letters from Digits Figure [3| presents rejection results. We com-
pare various quality measures for models constructed based on random forests,
SVM, and kNN with ellipsoids for the global and the local rejection schemes.

First, let us mention that for the global rejection all rejection rates are the
same for all classifiers. This is due to the specificity of this model, where rejection
occurs first, so classification procedure does not modify the content of the set
subjected to rejection. However, the global approach turned out to be slightly
worse than the local approach.

Results show that in the local rejection model all classifiers combined with
ellipsoids behave well and provide similar quality of rejection.

5 Conclusions

Enhancing classifiers’ ability to classify objects by coupling them with ellipsoids
for foreign patterns rejection has proven to yield good results. Conducted exper-
iment on handwritten digits contaminated with handwritten letters showed that
the local rejection scenario with fine-grained rejection ellipsoids one per each
native class perform better than the global approach with a single, but less fine-
grained rejection mechanism. We also report that the differences in classification
ratios in the local rejection model coupled with different classifiers turned out
to be very slight. SVM turned out to be the best, and its advantage is visible
when we evaluate the rate of native patterns that were rejected that wanted to
reject, because otherwise they would have been classified into incorrect class.

We are aware that to truly confirm obtained results, test should be repeated
on different data sets. Described in this paper set consisting of letters and digits,
although being very large, might not match wide spectrum of problems.

Let us conclude this paper by saying that various adaptations of the idea
of foreign patterns rejection have a vital role in modern machine learning. It is



needless to mention areas such as text mining, fraud detection, or medical diag-
nosis systems where we deal with various reincarnations of the foreign patterns.
From this perspective we believe that the study in this direction is worth further
efforts.
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