Optimization of Combining of Self Organizing Maps and Growing Neural Gas

Abstract : The paper deals with the issue of high dimensional data clustering. One possible way to cluster this kind of data is based on Artificial Neural Networks (ANN) such as Growing Neural Gas (GNG) or Self Organizing Maps (SOM). Parallel modification, Growing Neural Gas with pre-processing by Self Organizing Maps, and its implementation on the HPC cluster is presented in the paper. Some experimental results are also presented. We focus on effective preprocessing for GNG. The clustering is realized on the output layer of SOM and the data for GNG are distributed into parallel processes.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.277-286, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_25〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01637519
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 15:46:12
Dernière modification le : samedi 18 novembre 2017 - 01:16:40
Document(s) archivé(s) le : dimanche 18 février 2018 - 14:53:49

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Lukáš Vojáček, Pavla Dráždilová, Jiří Dvorský. Optimization of Combining of Self Organizing Maps and Growing Neural Gas. Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.277-286, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_25〉. 〈hal-01637519〉

Partager

Métriques

Consultations de la notice

42