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Abstract. In this paper we investigate the case of ambiguous shape
reconstruction from two light-source photometric stereo based on illumi-
nating the unknown Lambertian surface. So-far this problem is merely
well-understood for two linearly independent light-source directions with
one illumination assumed as overhead. As already established, a neces-
sary and sufficient condition to disambiguate the entire shape reconstruc-
tion process is controlled by the satisfaction of the corresponding second-
order linear PDE with constant coefficients in two independent variables.
This work extends the latter to an arbitrary pair of light-source direc-
tions transforming the above constraint into a special nonlinear PDE. In
addition, a similar ambiguity analysis is also performed for a special con-
figuration of two light-source directions assumed this time as orthogonal
and contained in the vertical plane. Finally, this work is supplemented
by illustrative examples exploiting symbolic computation used within a
framework of continuous reflectance map model (i.e. an image irradiance
equation) and applied to a genuine Lambertian surfaces.

Keywords: Photometric stereo, image irradiance equation, ambiguity
in shape reconstruction, computer vision.

1 Problem formulation

The task of surface reconstruction from its image (or images) poses one of the
major challenges in computer vision. There are two common approaches adopted
to tackle this problem. The first one (termed a stereo-like method) involves pro-
jective geometry tools applied to multiple camera images [1–3]. Solving the so-
-called matching problem constitutes here the gist of the entire reconstruction
process based on incorporating the triangulation-like technique [1, 2, 4]. The sec-
ond approach, coined shape from shading [3–5], relies on a priori knowledge
of the physical properties of light reflectance inherent to the specific material
coating the unknown surface S. In this model the surface S is assumed to
be formed as a graph S = graph(u) of the unknown Ck (k = 0, 1) function
u : Ω → IR defined over an image domain Ω ⊂ IR2. Recall that the normal
n(s) = (n1(s), n2(s), n3(s)) to S at the point s = (x, y, u(x, y)) ∈ S (with



n3(s) < 0) reads as n(s) = (ux(x, y), uy(x, y),−1). Assuming a distant light-
-source (yielding a parallel light-beam along the direction p = (p1, p2, p3)) the
so-called image irradiance equation

R(ux(x, y), uy(x, y)) = E(x, y) (1)

encapsulates the relation between reflected light from surface S and absorbed
light in the image Ω - see [4]. Here E(x, y) denotes the intensity of the absorbed
light at the image point (x, y) ∈ Ω. On the other hand, R called reflectance map
refers to the intensity of the reflected light from s ∈ S with normal n(s). In the
special case of a Lambertian surface SL, RL is proportional to cos(α), where α
represents the angle between the normal n(s) and a given light-source direction
p = (p1, p2, p3) - see [4]. Consequently, for SL the corresponding image irradiance
equation (1) (over Ω = {(x, y) ∈ IR2 : 0 ≤ E(x, y) ≤ 1}) reads as:

〈p|n(s)〉
‖p‖‖n(s)‖

=
p1ux(x, y) + p2uy(x, y)− p3√

p21 + p22 + p22

√
u2x(x, y) + u2y(x, y) + 1

= E(x, y). (2)

By Cauchy-Schwartz inequality |E(x, y)| ≤ 1 holds. The extra condition required
E(x, y) ≥ 0 excludes shadowed (x, y)-points. The equation (2) yields the first
order non-linear PDE (in two variables) modelling a single image shape from
shading for SL. Commonly, in solving (2) one usually searches for u ∈ Ck (k =
1, 2), modulo a vertical shift v = u+ c (here c is an arbitrary constant). A single
image irradiance equation (2) renders generically an ill-posed problem (see [6–
10]). Though various mathematical extra assumptions can disambiguate (2) or
limit its number of solutions [4, 11–15], they often turn unrealistic or difficult to
be met from real camera images.

A feasible remedy is to employ a photometric stereo technique for which the
unknown surface SL (or S) is consecutively illuminated by distant multiple light-
-sources positioned along linearly independent directions [4, 16]. In this set-up,
contrary to the classical stereo method relying on images taken from multiple
cameras, only a single camera is deployed.

As demonstrated in [4, 16, 17], three-light source photometric stereo suffices
to guarantee a unique surface SL = graph(u) (up to a vertical shift) with u ∈
C1 satisfying the corresponding system of three image irradiance equations (2)
(formulated for p, q and r) over an image Ω = Ω1 ∩ Ω2 ∩ Ω3. The respective
right-hand sides of (2) (i.e. the intensities Ei ≥ 0 over Ωi, for i = 1, 2, 3) are
obtained by consecutive illuminations of SL along three linearly independent
directions p, q r ∈ IR3. The entire reconstruction process is decomposed here
into two following steps:

a) a gradient computation (an algebraic step):

ux(x, y) = f1(x, y, E1, E2, E3), uy(x, y) = f2(x, y, E1, E2, E3). (3)

In case of three light-sources the resulting vector field ∇u = (ux, uy) satisfying
three equations of type (2) is uniquely determined in (3) in terms of image
intensities Ei (i = 1, 2, 3) and light-source directions p, q and r - see [4, 17].



b) a gradient integration (an analytic step):

u(x, y) = u(x0, y0) +

∫
γ

ux(x, y)dx+ uy(x, y)dy, (4)

where (x0, y0), (x, y) ∈ Ω and γ : [t0, t1]→ Ω is an arbitrary piecewise-C1 curve
such that γ(t0) = (x0, y0) and γ(t1) = (x, y). Note that (x0, y0) is fixed here and
u(x0, y0) represents any constant c. The choice of γ joining (x0, y0) with varying
(x, y) is arbitrary (at least in continuous model of (1)), provided Ω is simply
connected and the vector field (3) fulfills the so-called integrability condition.
The latter reads for u ∈ C2 as

uxy(x, y) = uyx(x, y), (5)

and for u ∈ C1 as ∫
γc

ux(x, y)dx+ uy(x, y)dy = 0, (6)

holding for any piecewise-C1 loop γc ⊂ Ω (with γc(t0) = γc(t1)). Assuming
Ei (i = 1, 2, 3) are formed by a genuine Lambertian surface SL = graph(u), a
unique vector field ∇u obtained from (3) is automatically integrable and hence
the formula (4) determines an unambiguous u ∈ C1 (up to a constant).

The case of two-light source photometric stereo requires more intricate anal-
ysis (see [17–19]). The respective system of two image irradiance equations:

p1ux(x, y) + p2uy(x, y)− p3√
p21 + p22 + p23

√
u2x(x, y) + uy(x, y)2 + 1

= E1(x, y),

q1ux(x, y) + q2uy(x, y)− q3√
q21 + q22 + q23

√
u2x(x, y) + uy(x, y)2 + 1

= E2(x, y) (7)

is solved by the following vector field (see [17, 18]):

ux =
‖p‖(q1〈p|q〉 − p1‖q‖2)E1 + ‖q‖(p1〈p|q〉 − q1‖p‖2)E2 + (p3q2 − p2q3)ε

√
Λ

‖p‖(p3‖q‖2 − q3〈p|q〉)E1 + ‖q‖(q3‖p‖2 − p3〈p|q〉)E2 + (p1q2 − p2q1)ε
√
Λ
,

uy =
‖p‖(q2〈p|q〉 − p2‖q‖2)E1 + ‖q‖(p2〈p|q〉 − q2‖p‖2)E2 + (p1q3 − p3q1)ε

√
Λ

‖p‖(p3‖q‖2 − q3〈p|q〉)E1 + ‖q‖(q3‖p‖2 − p3〈p|q〉)E2 + (p1q2 − p2q1)ε
√
Λ
,

(8)

where

Λ = ‖p‖2‖q‖2
(
1− E2

1(x, y)− E2
2(x, y)

)
− 〈p|q〉 (〈p|q〉 − 2‖p‖‖q‖E1(x, y)E2(x, y))

(9)

with the function ε(x, y) taking values ±1 so that f(x, y) = ε(x, y)
√
Λ(x, y) is

continuous (for u ∈ C1) or smooth (for u ∈ C2).



As discussed in [17, 18] an image domain Ω is often decomposed into Ω =
Ω(1) ∪ Ω(2) ∪ Γ with Λ > 0 over disjoint sub-domains Ω(j) ⊂ Ω (here j = 1, 2)
and with Λ = 0 satisfied along some smooth curve Γ . Consequently, over each
component Ω(j) either ε(x, y) ≡ 1 or ε(x, y) ≡ −1 hold, yielding the respective
two vector fields (u±x , u

±
y ) in (8) satisfying (7). Assuming E1 and E2 are generated

by a genuine Lambertian surface SL, at least one of these two pairs of vector
fields (over each Ω(j)) is integrable.

The ambiguous case of more than one integrable vector field from (8) is
well-understood merely for the special configuration of light-source directions,
namely when p = (0, 0,−1) and q = (q1, q2, q3) (here q21 + q22 > 0) - see [17, 18].
In fact, generically there is only one integrable vector field over each Ω(j) (and
thus over Ω). The latter is governed by the fulfillment of the tight condition (10).
Indeed, given two simply connected sub-images Ω(j), a necessary and sufficient
condition enforcing both vector fields (u+x , u

+
y ) and (u−x , u

−
y ) to be integrable

(and thus yielding the existence of u+, u− ∈ C2(Ω(i)) solving (7)) reads as:

q1q2 (uyy(x, y)− uxx(x, y)) + (q21 − q22)uxy(x, y) = 0, (10)

which is to be satisfied by either u+ or u−. In addition (see [17, 18]), if one of
u+ (or of u−) satisfies (10) then so does the complementary one i.e. u− (or u+).
In a rare situation of (10) holding, both pairs (u+, u−), determined by (4) over
Ω(j) (j = 1, 2), can bifurcate (i.e. can be glued together) along the curve Γ to
yield either zero or two or four global solutions u ∈ C2 over the whole image Ω
(see [17, 18]). As it turns out, there are extra geometrical relations between both
graphs of u+ and u−. Indeed, let Ku(x, y) denote the Gaussian curvature of the
surface SL = graph(u) taken at the point (x, y, u(x, y)) ∈ SL and determined
by the formula (see [20]):

Ku(x, y) =
uxx(x, y)uyy(x, y)− u2xy(x, y)

(1 + u2x(x, y) + u2y(x, y))2
. (11)

Interestingly, it is proved in [17, 18] that if both (7) and (10) hold then:

Ku+(x, y) = −Ku−(x, y). (12)

Consequently, if s1 = (x, y, u±(x, y)) ∈ S±L yields a hyperbolic point (having
negative Gaussian curvature) then s2 = (x, y, u∓(x, y)) ∈ S∓L renders an el-
liptic point (having positive Gaussian curvature). Thus for p = (0, 0,−1) and
q = (q1, q2, q3) the convexity/concavity ambiguity is automatically excluded. No-
ticeably, such ambiguity eventuates for single image shape from shading with
p = (0, 0,−1) (see e.g. [4, 8]). Finally, if s1 is a parabolic point (with vanishing
Gaussian curvature) then so is s2.

This paper extends the above results with the following (see Section 2):

1. The necessary and sufficient condition (10) for testing the ambiguity in (7)
is extended to arbitrary pairs of linearly independent light-source directions
p = (p1, p2, p3) and q = (q1, q2, q3) Ultimately, such general case leads to
the non-linear second-order PDE (see (18)), which inherently constitutes a
challenging problem.



2. To alleviate the above difficulty, special configurations of two light-source di-
rections (different from p = (0, 0,−1) and q = (q1, q2, q3)) are here admitted.
Namely, the family of orthogonal unit vectors (parallel to OXZ-plane):

pα = (−
√

1− α2, 0,−α), qα = (α, 0,−
√

1− α2) (13)

(with 0 < α < 1) is considered. The corresponding analysis for solving (7)
(with p = pα and q = qα) addresses the uniqueness issue and establishes, in
rare ambiguity cases, intrinsic geometrical inter-relations between multiple
solutions in two light-source photometric stereo (see also Th. 1).

The theoretical Section 2 is also supplemented (see Section 3) by illustrative
examples supported by Mathematica numerical and symbolic computation ap-
plied to the continuous Lambertian model with pixels represented as ideal points
(x, y) ∈ Ω and image intensities (E1, E2) simulated here from u as left-hand sides
in (7). Finally, the closing Section 4 summarizes the main thrust of this paper
together with indicating its extensions and hints their possible solutions.

2 Orthogonal Illumination Directions in Vertical Plane

In the first part of this section (i.e in (i)) we consider an arbitrary configuration
of linearly independent light-source directions p and q with ‖p‖ = ‖q‖ = 1. Under
such general assumption, condition (10) (testing whether the second vector field
from (8) over each Ω(j) is also integrable) is subsequently extended to the non-
linear PDE expressed by (18). Noticeably, the latter constitutes a difficult task
for further theoretical analysis. In order to deal with the latter somehow, a special
case of orthogonal vectors p and q contained in the OXZ-plane is here admitted
(see (ii)). The analysis to follow complements already established results in [17],
covering a different special choice of p = (0, 0,−1) and q = (q1, q2, q3) with
q21 + q22 > 0.

(i) Assume now that E1 and E2 introduced in (7) are generated by a genuine
Lambertian surface SL = graph(u), where u ∈ C2. Evidently, still by (7) both
image intensities are also expressible in terms of ux and uy. Using symbolic
computation in Mathematica [21–23] (or alternatively see complicated proof in
[17]) one arrives at:

Λ(x, y) =
(ux(p2q3 − p3q2)− uy(p1q3 − p3q1) + p2q1 − p1q2)

2

u2x + u2y + 1
=

(〈p× q|n〉)2

u2x + u2y + 1
.

(14)
Combining the latter with (8) (over each Ω(j) determined by Λ > 0) leads to:

ux =

{
ux, if sgn(ε)sgn(θ) > 0;
(a2−b2−c2)ux+2acuy+2ab
2abux+2bcuy+b2−a2−c2 , if sgn(ε)sgn(θ) < 0

(15)

and

uy =

{
uy, if sgn(ε)sgn(θ) > 0;
2acux+(c2−a2−b2)uy+2bc
2abux+2bcuy+b2−a2−c2 , if sgn(ε)sgn(θ) < 0,

(16)



where

a = p3q2 − p2q3, b = p1q2 − p2q1, and c = p1q3 − p3q1, (17)

and θ = ux(p2q3 − p3q2) − uy(p1q3 − p3q1) + p2q1 − p1q2. Here the function
ε = ε(x, y) is everywhere constant taking values ±1. The first pair (ux, uy) from
(15) and (16) satisfies integrability condition (5) over each Ω(j) as u ∈ C2. On
the other hand, the integrability of the second vector field from (15) and (16)
eventuates, if and only if:(

(a2 − b2 − c2)ux + 2acuy + 2ab

2abux + 2bcuy + b2 − a2 − c2

)
y

=

(
2acux + (c2 − a2 − b2)uy + 2bc

2abux + 2bcuy + b2 − a2 − c2

)
x

.

Upon resorting to the symbolic computation in Mathematica, the last equation
is transformable into the following non-linear PDE:

c (a− bux(x, y))uyy(x, y) +
(
a2 − c2 + bcuy(x, y)− abux(x, y)

)
uxy(x, y)

+a (buy(x, y)− c)uxx(x, y) = 0, (18)

which is to be satisfied by u. Evidently, the latter does not hold generically and
therefore the resulting integrability condition (18) disambiguates almost always
two-source photometric stereo modelled by (7) - see also Ex. 1. Still, in a pursue
of solving a rare ambiguity in (7), one ought to deal with (18) which inevitably
leads to a non-trivial task. Thus in the next step (ii) of this section, a tighter
constraint imposed on illumination directions p and q is considered.

(ii) Suppose now that two light-source directions pα and qα are introduced
according to (13). The resulting two image irradiance equations coincide with:

α−
√

1− α2ux(x, y)√
u2x(x, y) + uy(x, y)2 + 1

= E1(x, y),
αux(x, y) +

√
1− α2√

u2x(x, y) + uy(x, y)2 + 1
= E2(x, y).

(19)

Since pα ⊥ qα (i.e. are orthogonal), the function Λ defined in (9) simplifies into:

Λ(x, y) = 1− E2
1(x, y)− E2

2(x, y) =
u2y(x, y)

1 + u2x(x, y) + u2y(x, y)
. (20)

Thus ΩΛ>0 = {(x, y) ∈ Ω : uy(x, y) 6= 0} and ΩΛ≡0 = {(x, y) ∈ Ω : uy(x, y) =
0}. Similarly to the special case of p = (0, 0,−1) and q = (q1, q2, q3) discussed
in [17, 18], often the triples u, pα and qα (see Ex. 1) yield ΩΛ>0 = Ω(1) ∪ Ω(2),
with Ω(j) (j = 1, 2) standing for two disjoint sub-domains of Ω and ΩΛ≡0 = Γ
representing a smooth curve inΩ. Here a bifurcation curve (along which solutions
over Ω(1) and Ω(2) are glued) coincides with the curve (overlapping with ΩΛ≡0):

Γ = {(x, y) ∈ Ω : uy(x, y) = 0}. (21)

Furthermore in (17) , since p2 = q2 = 0 then a = b = 0 and since q1 = −p3 = α
and p1 = q3 = −

√
1− α2 then c = 1. Consequently, both formulae (15) and (16)



are reducible into:

ux =


ux, if sgn(ε)sgn(θ) > 0;

ux, if sgn(ε)sgn(θ) < 0;

uy =


uy, if sgn(ε)sgn(θ) > 0;

−uy, if sgn(ε)sgn(θ) < 0.

(22)
Thus for the non-generic case of the second vector field (ux,−uy) also integrable
(over each Ω(i)), the function u should satisfy the following linear PDE:

uxy(x, y) = 0. (23)

Note that the last equation can be independently reached by substituting a =
b = 0 and c = 1 into (18). The generic case of (23) not fulfilled is illustrated
also in Ex. 1. Upon double integration (first over x and then over y) of (23), the
following representation for u (if two vector fields from (22) are to be integrable
over Ω(i)) holds:

u(x, y) = φ1(x) + ψ1(y), (24)

for some twice continuously differentiable functions φ1 and ψ1 in a single vari-
able. It is not difficult to show that φ1(x) = u(x, 0) − c, where ψ1(0) = c.
Similarly, ψ(y) = u(0, y)− φ1(0) = u(0, y)− u(0, 0) + c. Naturally, an analogous
argument applies to the second solution v ∈ C2 to (19) resulting in v satisfying
(23) and hence v(x, y) = φ2(x) + ψ2(y), where φ2 and ψ2 are defined similarly
to the introduction of φ1 and ψ1. Furthermore, by (22), the second function
v ∈ C2 (over each Ω(j)) fulfills (vx, vy) = (ux,−uy). Combining the latter with
ux(x, y) = φ′1(x), uy(x, y) = ψ′1(y), vx(x, y) = φ′2(x) and vy(x, y) = ψ′2(y) yields
“a conjugate-like” relation between u and v:

u(x, y) = φ1(x) + ψ1(y), v(x, y) = φ1(x)− ψ1(y) + c1, (25)

with c1 being a constant. Formula (25) determines specific analytic representa-
tions of the solutions to (19) over each Ω(j) in a rare situation of the ambigu-
ous two light-source photometric stereo. A straightforward verification shows
that the geometrical constraint from (12) is also preserved for pα and qα. In-
deed, combining (11) with (25) leads to Ku(x, y) = (φ′′1(x)ψ′′1 (y))(1 + (φ′1(x))2 +
(ψ′1(y))2)−2 = −Kv(x, y). Note that the condition (21) coupled with (25) implies
that Γ (or more general ΩΛ≡0) represents a line L = {(x, y∗) ∈ Ω : ψ′1(y∗) = 0}
(or a collection of lines) parallel to the OX-axis. In addition, as ∇u = (ux, uy)
and ∇v = (ux,−uy) visibly any critical point of u is also a critical point of v.
Moreover, if such point represents a local minimum (maximum, saddle) for u
then it is also a local maximum (minimum, saddle) for v. Note also that by (21)
any critical point of u (and thus of v) belongs to the set ΩΛ≡0 and thus to the
potential bifurcation curve Γ . The non-generic ambiguity case discussed above
for pα and qα is illustrated in Ex. 2.

Evidently, as (18) or (23) are generically not fulfilled, there exists only one
solution u ∈ C2 to (7) (or (19)) over each Ω(j). Upon gluing u together, only one
global solution u ∈ C2 prevails over entire image Ω. On the other hand, the rare



scenario of the existence of two solutions u, v ∈ C2 over each Ω(j) (i.e. satisfying
(23)) leads to the possible bifurcations along Γ rendering 0, 2 or 4 global solutions
of class C2 over entire image Ω. Recall that we assume here Ω = Ω(1)∪Ω(2)∪Γ .
The other decomposition topologies of Ω = ΩΛ>0 ∪ ΩΛ=0 are discussed in [17].
The detailed analysis justifying necessary and sufficient conditions to guarantee
successful Ck bifurcations (k = 0, 1, 2) (in case of Ω = Ω(1) ∪Ω(2) ∪ Γ ) holding
along Γ exceeds the scope of this paper and therefore is here omitted.

Taking into account the above argument, the main theoretical contribution
of this paper can be summarized into the following:

Theorem 1. Assume that u ∈ C2 (which graph SL = graph(u) represents an
illuminated genuine Lambertian surface) satisfies (19) (or (7)) with pα and qα
determined by (13) (or with arbitrary linearly independent p and q). Suppose,
moreover that Λ in (9) satisfies Λ > 0 over simply-connected Ω(j) (j = 1, 2).
In order that there exists only one more solution v ∈ C2 to (19) over Ω(j) it is
necessary and sufficient for u to satisfy (23) (or (18)). In addition, the ambiguous
case for pα and qα yields u(x, y) = φ(x) + ψ(y) and v(x, y) = φ(x)− ψ(y), with
φ and ψ determined as in (24). Finally, the Gaussian curvatures of graphs of
u and v at respective points (x, y, u(x, y)) and (x, y, v(x, y)) (see (11)) satisfy
Ku(x, y) = −Kv(x, y).

As already pointed out, a local ambiguity to (19) or (7) (over ΩΛ>0) can
even be more proliferated to a global one (over entire image Ω) due to possible
bifurcations of u and v along ΩΛ≡0. The matter gets more complicated if ΩΛ≡0
forms an open subset of Ω (see [17, 18]). The latter occurs once 〈p× q|n〉 = 0 as
implied by (14). Due to these intricacies, the respective discussion on bifurcation
issue in two light-source photometric stereo is here left out.

3 Experiments

This section includes two examples illustrating the main results established in
Section 2 (see also Th. 1). The experiments presented here are carried out with
the aid of Mathematica symbolic computation. The corresponding pictures of im-
ages (with the respective intensities E1 and E1) are simulated synthetically upon
admitting arbitrary or specific illumination directions and assuming a genuine u
as temporarily initially given.

Example 1. (a) Consider a Lambertian hemi-sphere S1
L = graph(u1) with u1 ∈

C2(Ω̂) defined as u1(x, y) =
√
R2 − x2 − y2, where Ω̂ = {(x, y) ∈ IR2 : x2+y2 ≤

R2}. For two linearly independent normalized light-source directions p and q the
respective image irradiance equations read as:

p1ux + p2uy − p3√
u2x + u2y + 1

= E11(x, y) =
−p1x− p2y − p3

√
R2 − x2 − y2

R
,

q1ux + q2uy − q3√
u2x + u2y + 1

= E21(x, y) =
−q1x− q2y − q3

√
R2 − x2 − y2

R
, (26)



over Ω = Ω1 ∩ Ω2 ∩ Ω̂, where Ωi = {(x, y) ∈ IR2 : E1
i1(x, y) ≥ 0} (for i = 1, 2).

The negative values of Ei1 represent shadowed subareas of Ω̂. The bifurcation
curve Γ (see (14)) reduces into a planar quadratic determined by:

(p3q2 − p2q3)x− (p3q1 − p1q3)y + (p2q1 − p1q2)
√
R2 − x2 − y2 = 0. (27)

Furthermore, the condition (18) ascertaining the existence of exactly one solution
u1 ∈ C2(Ω) (modulo its vertical shift) to (26) enforces u1 to satisfy:

(cx− ay)
(
ax+ cy − b

√
R2 − x2 − y2

)
= 0, (28)

over Ω(j), with a, b and c defined as in (17). Clearly, the equation (28) is not
satisfied by u1 for all (x, y) ∈ Ω(j). This yields uniqueness in solving (26) (i.e.
u = u1) within u ∈ C2(Ω). In particular, for pα and qα (see (13)), (17) combined
with a = b = 0 and c = 1 reduce (27) into y = 0 rendering Γ = {(x, y) ∈ Ω̂ : y =
0}, Ω(1) = {(x, y) ∈ Ω : y < 0} and Ω(2) = {(x, y) ∈ Ω : y > 0}. The ambiguity
condition (28) is transformed into xy = 0 merely fulfilled along both X- and
Y -axes. Hence, again for arbitrary pα and qα, uniqueness of u1 prevails. This is
expected since pα and qα represents a special case of general positions of p and
q analyzed above.

(b) Let a Lambertian hill-like surface S2
L = graph(u2) with u2 ∈ C2(Ω̂) be

defined according to u2(x, y) = (2(1 + x2 + y2))−1, over e.g. Ω̂ = {(x, y) ∈ IR2 :
|x| ≤ 1 and |y| ≤ 1}. The respective two image irradiance equations read as:

p1ux + p2uy − p3√
u2x + u2y + 1

= E12(x, y) =
−p1x− p2y − p3(x2 + y2 + 1)2√

x2 + y2 + (x2 + y2 + 1)4
,

q1ux + q2uy − q3√
u2x + u2y + 1

= E22(x, y) =
−q1x− q2y − q3(x2 + y2 + 1)2√

x2 + y2 + (x2 + y2 + 1)4
, (29)

over unshadowed Ω = Ω1∩Ω2∩Ω̂, where Ωi = {(x, y) ∈ IR2 : E1
i2(x, y) ≥ 0} (for

i = 1, 2). The bifurcation curve Γ from (14) is defined by the following equation:

(p2q1 − p1q2) +
(p3q2 − p2q3)x

2(1 + x2 + y2)3/2
+

(p3q1 − p1q3)y

2(1 + x2 + y2)3/2
= 0. (30)

On the other hand, the integrability condition (18) stipulates u2 to satisfy

(cx− ay)
(
b+ 6(ax+ cy)

√
1 + x2 + y2

)
= 0, (31)

over Ω(j), with a, b and c introduced as in (17). Again, (31) is not fulfilled by
u2 for all (x, y) ∈ Ω(j). Hence there exists a unique solution of class C2 to (29)
(i.e. u = u2) over Ω. In the special case of pα and qα (see (13)), (17) coupled
with a = b = 0 and c = 1 transform (30) into y = 0. Hence again Γ = {(x, y) ∈
Ω̂ : y = 0}, Ω(1) = {(x, y) ∈ Ω : y < 0} and Ω(2) = {(x, y) ∈ Ω : y > 0}.
Furthermore the ambiguity constraint (31) is reduced into xy = 0 which holds
again only along both X- and Y -axes. Thus for pα and qα the uniqueness of u2 to
(29) eventuates (as also follows from the above general (p, q)-position analysis).



Example 2. Consider now a Lambertian paraboloid S3
L = graph(u3) with u3 ∈

C2(Ω̂) defined as u3(x, y) = (x2+y2)/2 over Ω̂ = {(x, y) ∈ IR2 : |x| ≤ 1 and |y| ≤
1}. For a general position of p and q, the integrability condition (18) reads here
as b(ay − cx) = 0. Provided b 6= 0, such constraint never holds over any open
subset of Ω and thus uniqueness of u3 follows. Noticeably the bifurcation curve
Γ (a line) is determined here by p2q1−p1q2+(p2q3−p3q2)x+(p3q1−p1q3)y = 0.

For pα and qα from (13) the resulting two image irradiance equations are:

α−
√

1− α2ux(x, y)√
u2x(x, y) + uy(x, y)2 + 1

= E13(x, y) =
α−
√

1− α2x√
x2 + y2 + 1

,

αux(x, y) +
√

1− α2√
u2x(x, y) + uy(x, y)2 + 1

= E23(x, y) =
αx+

√
1− α2√

x2 + y2 + 1
, (32)

over Ωα = Ω̂ (for α = 1/
√

2) and over Ωα = {(x, y) ∈ Ω̂α : −1 ≤ x ≤ 0.204}
(for α = 1/5). Fig. 1 shows images of S3

L with α = 1/
√

2 over Ω1/
√
2 = Ω̂ =

[−1, 1] × [−1, 1]. The bifurcation curve Γα in (21) coincides here with the X-
-axis (i.e. here y = 0) trimmed either to −1 ≤ x ≤ 1 or to −1 ≤ x ≤ 0.204, for
α = 1/

√
2 or α = 1/5, respectively. The remaining decomposition components

of Ωα (along which Λ > 0) read as Ω
(1)
α = {(x, y) ∈ Ωα : y > 0} and Ω

(2)
α =

{(x, y) ∈ Ωα : y < 0} - see Fig. 2. Furthermore, since by (17) the constant
b = 0, the ambiguity condition b(ay − cx) = 0 is now satisfied. Hence, upon
combining (25) with φ(x) = x2/2 and ψ(y) = y2/2, the only one another C2

solution to (32) equals to u4(x, y) = (x2 − y2)/2 (modulo a vertical shift), over

each Ω
(j)
α (here j = 1, 2). Once uk are glued with itself (k = 3, 4) along X-axis,

two C2 class global solutions to (32) over entire image Ωα are defined (i.e. u3
and u4) - see Fig. 3 for α = 1/

√
2 (with gluing curve). On the other hand the

local solutions u3 (or u4) over Ω
(1)
α cross-bifurcate along Γ1/

√
2 with u4 (or with

u3) over Ω
(2)
α to yield next two only C1 class solutions u34 and u43 to (32) over

Ωα. Indeed, a C2 differentiability is excluded as lim(x,y)→(x,0) u3yy(x, y) = 2 6=
−2 = lim(x,y)→(x,0) u4yy(x, y). The remaining two C1 global solutions to (32)
over Ω1/

√
2 (i.e. u34 and u43) are plotted in Fig. 4. The case for α = 1/5 differs

merely by different Ω1/5. Note that by (11) the respective Gaussian curvatures
yield Ku3

(x, y) = 4(1 +x2 + y2)−2 = −Ku4
(x, y) which is consistent with Th. 1.

A unique critical point (0, 0) of u3, u4, u34 and u43 belongs, as expected to Γ .

4 Conclusion
This paper extends the claims of [17, 18], where a special configuration of two
light-source directions p = (0, 0,−1) and q = (q1, q2, q3) (for q21 + q22 > 0) in
photometric stereo is studied. In particular, a respective integrability condition
expressed by the non-linear PDE (18) is derived here for a general configuration
of linearly independent p and q. Not unexpectedly, such PDE forms a difficult
theoretical problem and consequently a new family of orthogonal illumination di-
rections pα and qα is introduced in (13). The corresponding system of two image
irradiance equation (19) is subsequently analyzed and the resulting ambiguity



a) b)

Fig. 1. Two images of S3
L = graph(u3) illuminated along p1/

√
2 and q1/

√
2 directions.
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Fig. 2. Decomposition of Ωα = Ω
(1)
α ∪Ω(2)

α ∪Γα for (32) with a) α = 1/
√

2, b) α = 1/5.

versus uniqueness question is addressed in Th. 1. As proved in this paper, similar
ambiguity results are obtainable for pα and qα defined in (13) (see Th. 1 and
Section 1) as compared to those already established in [17, 18] for p = (0, 0,−1)
and q = (q1, q2, q3). The experiments reported in Section 3 illustrate the main
results from Section 2. A possible extension of this paper includes a relevant am-
biguity analysis performed for the general positions of two linearly independent
light-source directions. Inevitably, any pending argument would rely on charac-
terizing the multiple solutions to the non-linear PDE defined in (18). Another
worth investigation venue is to complete a global uniqueness-ambiguity analysis
for two image photometric stereo over entire image Ω (see also [17, 18]). The lat-
ter should first cover the case of pα and qα defined in (13) and then should refer
to an arbitrary selection of two linearly independent illumination directions. In
particular, an extra attention should be paid here in derivation of analytical and
numerical methods designed to localize possible bifurcation curve(s) Γ . Some
relevant clues concerning this task can be found in [24–28, 30]. Finally, a similar
analysis based on real Lambertian images, where pixelization and noise occur,
forms another vital extension topic of this paper. Usually, handling noisy and
digitized image data requires a more robust integration techniques dealing com-
putationally with u recovery phase determined by theoretical formula (4). Such
analytic step is often substituted by the pertinent optimization task designed to
compute numerically the closest discrete integrable vector field - for more see e.g.
[4, 5, 29].



a) b)

Fig. 3. Two C2 class global solutions u3 and u4 to (32), over Ω1/
√
2 = [−1, 1]× [−1, 1].

a) b)

Fig. 4. Two C1 class global solutions u34 and u43 to (32), over Ω1/
√
2 = [−1, 1]×[−1, 1].

References

1. Hartley, R., Zisserman R.: Multiple View Geometry in Computer Vision. Cambridge
University Press, Cambridge, UK, (2003).

2. Faugeras, O.: Three-Dimensional Computer Vision - A Geometric View Point. MIT
Press, Cambridge, Massachusetts, London, England, (2001).

3. Trucco, E.: Introductory Techniques for 3-D Computer Vision. Prentice Hall, En-
glewood Cliffs, New York, (1998).

4. Horn, B.K.P.: Robot Vision. MIT Press, Cambridge, Massachusetts, London, Eng-
land, (2001).

5. Horn, B.K.P., Brooks M.J.: Shape from Shading. MIT Press, Cambridge, Mas-
sachusetts, London, England, (1989).

6. Brooks, M.J., Chojnacki, W., Kozera, R.: Shading without shape. Quarterly of Ap-
plied Mathematics. 50(1), 27–38 (1992).

7. Brooks, M.J., Chojnacki, W., Kozera, R.: Circularly symmetrical eikonal equations
and non-uniqueness in computer vision. Journal of Mathematical Analysis and Ap-
plications. 165 (1), 192–215 (1992).

8. Brooks, M.J., Chojnacki, W., Kozera, R.: Impossible and ambiguous shading pat-
terns. International Journal of Computer Vision. 7(1), 119–126 (1992).

9. Bruss, A.R.: The eikonal equation: some results applicable to computer vision. Jour-
nal of Mathematical Physics. 5(23), 890–896 (1982).

10. Kozera, R.: On complete integrals and uniqueness in shape from shading. Applied
Mathematics and Computation. 73(1), 1–37 (1995).



11. Deift, P., Sylvester, J.: Some remarks on shape-from-shading in computer vision.
Journal of Mathematical Analysis and Applications. 1(84), 235–248 (1991).

12. Oliensis, J. Uniqueness in shape from shading. International Journal of Computer
Vision. 6(2), 75–104 (1991).

13. Chojnacki, W., Brooks, M.J.: A direct computation of shape from shading. Pro-
ceedings of 12-th International Conference on Artificial Intelligence and Pattern
Recognition. Haifa, Israel, 114–119 (1994).

14. Kimmel, R., Bruckstein, A.: Tracking level sets by level sets: a method of solving the
shape from shading problem. Computer Vision, Graphics and Image Understanding.
62, 47–58 (1995).

15. Kozera, R.: Uniqueness in shape from shading revisited. International Journal of
Mathematical Imaging and Vision. 7, 123–138 (1997).

16. Woodham, R.J.: Photometric stereo: a reflectance map technique for determin-
ing surface orientation from multiple images. Optical Engineering. 19(1), 139-144
(1980).

17. Kozera, R.: Existence and uniqueness in photometric stereo. Applied Mathematics
and Computation. 44(1), 1–104 (1991).

18. Kozera, R.: On shape recovery from two shading patterns. International Journal
of Pattern Recognition and Artificial Intelligence. 6(4), 673–698 (1992).

19. Onn, R., Bruckstein, A.M.: Integrability disambiguates surface recovery in two-
image photometric stereo. International Journal of Computer Vision. 5(1), 105–113
(1990).

20. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, New Your, (1986).

21. Wolfram Mathematica 9, Documentation Center, URL link: refer-
ence.wolfram.com/mathematica/guide/Mathematica.html.

22. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical methods for searching equi-
librium states in a restricted four-body problem. Programming and Computer Soft-
ware 39(2), 74–80 (2013).

23. Budzko, D.A., Prokopenya, A.N.: Symbolic-numeric analysis of the equilibrium
solutions in the restricted four-body problem. Programming and Computer Software
36(2), 68–74 (2010).

24. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced
data. Studia Informatica 25(4B-61), 1–140 (2004).

25. de Boor, C.: A Practical Guide to Spline. Springer-Verlag, New York Heidelberg,
Berlin, (1985).

26. Kozera, R., Noakes, L., Klette, R.: External versus internal parameterization
for length of curves with nonuniform samplings. Lecture Notes in Computer Sci-
ence 2615, Springer, Geometry, Morphology and Computational Imaging, 403–418
(2003).

27. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific,
Singapore, (2000).

28. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterization for
reduced data. Applied Mathematics and Computation 221, 620–638 (2013).

29. Noakes, L., Kozera, R.: Non-linearities and noise reduction in 3-source photometric
stereo. Journal of Mathematical Imaging and Vision, 18(2), 119–127 (2003).

30. Atamanyuk, I.P, Kondratenko, V.Y., Kozlov, O.V., Kondratenko, Y.P.: The algo-
rithm for optimal polynomial extrapolation of random processes. Lecture Notes in
Business Information Processing 115, Springer, Berlin-Heidelberg, 78–87 (2012).


