Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

On the Hilbert function of general fat points in $\mathbb{P}^1 \times \mathbb{P}^1$

Abstract : We study the bi-graded Hilbert function of ideals of general fat points with same multiplicity in $\mathbb{P}^1\times\mathbb{P}^1$. Our first tool is the multiprojective-affine-projective method introduced by the second author in previous works with A.V. Geramita and A. Gimigliano where they solved the case of double points. In this way, we compute the Hilbert function when the smallest entry of the bi-degree is at most the multiplicity of the points. Our second tool is the differential Horace method introduced by J. Alexander and A. Hirschowitz to study the Hilbert function of sets of fat points in standard projective spaces. In this way, we compute the entire bi-graded Hilbert function in the case of triple points.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [9 references]  Display  Hide  Download
Contributor : Oneto Alessandro <>
Submitted on : Saturday, November 18, 2017 - 5:55:21 PM
Last modification on : Thursday, November 26, 2020 - 3:50:03 PM
Long-term archiving on: : Monday, February 19, 2018 - 12:48:18 PM


Files produced by the author(s)


  • HAL Id : hal-01637942, version 1



Enrico Carlini, Maria Catalisano, Alessandro Oneto. On the Hilbert function of general fat points in $\mathbb{P}^1 \times \mathbb{P}^1$. 2017. ⟨hal-01637942⟩



Record views


Files downloads