On the Hilbert function of general fat points in $\mathbb{P}^1 \times \mathbb{P}^1$ - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

On the Hilbert function of general fat points in $\mathbb{P}^1 \times \mathbb{P}^1$

(1) , (2) , (3)
1
2
3

Abstract

We study the bi-graded Hilbert function of ideals of general fat points with same multiplicity in $\mathbb{P}^1\times\mathbb{P}^1$. Our first tool is the multiprojective-affine-projective method introduced by the second author in previous works with A.V. Geramita and A. Gimigliano where they solved the case of double points. In this way, we compute the Hilbert function when the smallest entry of the bi-degree is at most the multiplicity of the points. Our second tool is the differential Horace method introduced by J. Alexander and A. Hirschowitz to study the Hilbert function of sets of fat points in standard projective spaces. In this way, we compute the entire bi-graded Hilbert function in the case of triple points.
Fichier principal
Vignette du fichier
FatPoints_P1xP1_arX.pdf (271.94 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01637942 , version 1 (18-11-2017)

Identifiers

  • HAL Id : hal-01637942 , version 1

Cite

Enrico Carlini, Maria Virginia Catalisano, Alessandro Oneto. On the Hilbert function of general fat points in $\mathbb{P}^1 \times \mathbb{P}^1$. 2017. ⟨hal-01637942⟩
250 View
88 Download

Share

Gmail Facebook Twitter LinkedIn More