A stabilized Powell-Sabin finite-element method for the 2D Euler equations in supersonic regime

Abstract : In this paper is presented a Powell-Sabin finite-elements scheme (PS-FEM) for the solution of the 2D Euler equations in supersonic regime. The spatial dis-cretization is based on PS splines, that are piecewise quadratic polynomials with a global C 1 continuity, defined on conforming triangulations. Some geometrical issues related the practical construction of the PS elements are discussed, in particular, the generation of the control triangles and the imposition of the boundary conditions. A stabilized formulation is considered, and a novel shock-capturing technique in the context of continuous finite-elements is proposed to reduce oscillations around the discontinuity, and compared with the classic technique proposed by Tedzuyar [1]. The code is verified using manufactured solutions and validated using two challenging numerical examples, which allows to evaluate the performance of the PS discretization in capturing the shocks.
Type de document :
Rapport
[Research Report] INRIA Sophia Antipolis - Méditerranée. 2017, pp.1-31
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01638140
Contributeur : Boniface Nkonga <>
Soumis le : dimanche 19 novembre 2017 - 18:03:53
Dernière modification le : jeudi 3 mai 2018 - 13:32:58
Document(s) archivé(s) le : mardi 20 février 2018 - 12:58:59

Fichier

Paper_PS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01638140, version 1

Citation

Giorgio Giorgiani, Hervé Guillard, Boniface Nkonga, Eric Serre. A stabilized Powell-Sabin finite-element method for the 2D Euler equations in supersonic regime. [Research Report] INRIA Sophia Antipolis - Méditerranée. 2017, pp.1-31. 〈hal-01638140〉

Partager

Métriques

Consultations de la notice

176

Téléchargements de fichiers

62