J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., Imagenet: A large-scale hierarchical image database, Computer Vision and Pattern Recognition CVPR 2009. IEEE Conference on, pp.248-255, 2009.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research, vol.17, issue.59, pp.1-35, 2016.
DOI : 10.1007/978-3-319-58347-1_10

URL : https://hal.archives-ouvertes.fr/hal-01624607

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 1502.

L. M. Page, B. J. Macfadden, J. A. Fortes, P. S. Soltis, and G. Riccardi, Digitization of Biodiversity Collections Reveals Biggest Data on Biodiversity, BioScience, vol.65, issue.9, p.104, 2015.
DOI : 10.1093/biosci/biv104

S. Ravi and H. Larochelle, Optimization as a model for few-shot learning, 2016.

J. Silvertown, M. Harvey, R. Greenwood, M. Dodd, J. Rosewell et al., Figure 9 from: Silvertown J, Harvey M, Greenwood R, Dodd M, Rosewell J, Rebelo T, Ansine J, McConway K (2015) Crowdsourcing the identification of organisms: A case-study of iSpot. ZooKeys 480: 125-146. https://doi.org/10.3897/zookeys.480.8803, ZooKeys, vol.17, issue.2, p.125, 2015.
DOI : 10.3897/zookeys.480.8803.figure9

B. L. Sullivan, J. L. Aycrigg, J. H. Barry, R. E. Bonney, N. Bruns et al., The eBird enterprise: An integrated approach to development and application of citizen science, Biological Conservation, vol.169, pp.31-40, 2014.
DOI : 10.1016/j.biocon.2013.11.003

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-9, 2015.
DOI : 10.1109/CVPR.2015.7298594