Reinforcement Learning Techniques for Decentralized Self-adaptive Service Assembly

Abstract : This paper proposes a self-organizing fully decentralized solution for the service assembly problem, whose goal is to guarantee a good overall quality for the delivered services, ensuring at the same time fairness among the participating peers. The main features of our solution are: (i) the use of a gossip protocol to support decentralized information dissemination and decision making, and (ii) the use of a reinforcement learning approach to make each peer able to learn from its experience the service selection rule to be followed, thus overcoming the lack of global knowledge. Besides, we explicitly take into account load-dependent quality attributes, which lead to the definition of a service selection rule that drives the system away from overloading conditions that could adversely affect quality and fairness. Simulation experiments show that our solution self-adapts to occurring variations by quickly converging to viable assemblies maintaining the specified quality and fairness objectives.
Type de document :
Communication dans un congrès
Marco Aiello; Einar Broch Johnsen; Schahram Dustdar; Ilche Georgievski. 5th European Conference on Service-Oriented and Cloud Computing (ESOCC), Sep 2016, Vienna, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9846, pp.53-68, 2016, Service-Oriented and Cloud Computing. 〈10.1007/978-3-319-44482-6_4〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01638593
Contributeur : Hal Ifip <>
Soumis le : lundi 20 novembre 2017 - 11:01:24
Dernière modification le : lundi 20 novembre 2017 - 11:03:21
Document(s) archivé(s) le : mercredi 21 février 2018 - 12:46:11

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

M. Caporuscio, M. D’angelo, V. Grassi, R. Mirandola. Reinforcement Learning Techniques for Decentralized Self-adaptive Service Assembly. Marco Aiello; Einar Broch Johnsen; Schahram Dustdar; Ilche Georgievski. 5th European Conference on Service-Oriented and Cloud Computing (ESOCC), Sep 2016, Vienna, Austria. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9846, pp.53-68, 2016, Service-Oriented and Cloud Computing. 〈10.1007/978-3-319-44482-6_4〉. 〈hal-01638593〉

Partager

Métriques

Consultations de la notice

58