H. P. Barendregt, The Lambda Calculus ? Its Syntax and Semantics, of Studies in Logic and the Foundations of Mathematics, 1984.

H. P. Barendregt, W. Dekkers, and R. Statman, Lambda Calculus with Types. Perspectives in logic, 2013.
DOI : 10.1017/cbo9781139032636

A. Bizjak and L. Birkedal, Step-Indexed Logical Relations for Probability, Proc. of FoSSaCS, pp.279-294, 2015.
DOI : 10.1007/978-3-662-46678-0_18

A. Cappai and U. Dal-lago, On Equivalences, Metrics, and Polynomial Time, Proc. of FCT, pp.311-323, 2015.
DOI : 10.1007/978-3-319-22177-9_24

URL : https://hal.archives-ouvertes.fr/hal-01231790

R. Crubillé and U. Dal-lago, On probabilistic applicative bisimulation and callby-value ?-calculi, Proc. of ESOP, pp.209-228, 2014.

R. Crubillé and U. Dal-lago, Metric reasoning about ?-terms: The affine case, Proc. of LICS, pp.633-644, 2015.

R. Crubillé and U. Dal-lago, Metric reasoning about ?-terms: The general case (long version) Available at http://arxiv.org/abs, 1701.

R. Crubillé, U. Dal-lago, D. Sangiorgi, and V. Vignudelli, On Applicative Similarity, Sequentiality, and Full Abstraction, Proc. of Correct System Design -Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, pp.65-82, 2015.
DOI : 10.1016/j.tcs.2004.10.021

U. Dal-lago, D. Sangiorgi, and M. Alberti, On coinductive equivalences for higherorder probabilistic functional programs, Proc. of POPL, pp.297-308, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091573

U. , D. Lago, and M. Zorzi, Probabilistic operational semantics for the lambda calculus. RAIRO -Theor, Inf. and Applic, vol.46, issue.3, pp.413-450, 2012.
DOI : 10.1051/ita/2012012

URL : https://hal.archives-ouvertes.fr/hal-00909373

J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, Metrics for Labeled Markov Systems, Proc. of CONCUR, 1999.
DOI : 10.1007/3-540-48320-9_19

URL : http://www-acaps.cs.mcgill.ca/~prakash/fullmetric.ps

J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden, The metric analogue of weak bisimulation for probabilistic processes, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.413-422, 2002.
DOI : 10.1109/LICS.2002.1029849

J. Desharnais, F. Laviolette, and M. Tracol, Approximate Analysis of Probabilistic Processes: Logic, Simulation and Games, 2008 Fifth International Conference on Quantitative Evaluation of Systems, pp.264-273, 2008.
DOI : 10.1109/QEST.2008.42

T. Ehrhard, C. Tasson, and M. Pagani, Probabilistic coherence spaces are fully abstract for probabilistic PCF, Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '14, pp.309-320, 2014.
DOI : 10.1145/2535838.2535865

M. Escardo, A metric model of PCF, Proceedings of the Workshop on Realizability Semantics and Applications, 1999.

D. Gebler, K. G. Larsen, and S. Tini, Compositional metric reasoning with probabilistic process calculi, Proc. of FoSSaCS, pp.230-245, 2015.
DOI : 10.1007/978-3-662-46678-0_15

URL : http://www.cassting-project.eu/wp-content/uploads/GLT-fossacs15.pdf

D. Gebler and S. Tini, SOS specifications of probabilistic systems by uniformly continuous operators, Proc. of CONCUR, pp.155-168, 2015.
DOI : 10.1016/j.jcss.2017.09.011

A. Giacalone, C. Chang-jou, and S. A. Smolka, Algebraic reasoning for probabilistic concurrent systems, Proc. IFIP TC2, pp.443-458, 1990.

J. Girard, Linear logic, Theoretical Computer Science, vol.50, issue.1, pp.1-102, 1987.
DOI : 10.1016/0304-3975(87)90045-4

URL : https://hal.archives-ouvertes.fr/inria-00075966

S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences, vol.28, issue.2, pp.270-299, 1984.
DOI : 10.1016/0022-0000(84)90070-9

URL : https://doi.org/10.1016/0022-0000(84)90070-9

N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum, Church: a language for generative models, UAI 2008, pp.220-229, 2008.

C. Jones and G. D. Plotkin, A probabilistic powerdomain of evaluations, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science, pp.186-195, 1989.
DOI : 10.1109/LICS.1989.39173

A. Jung and R. Tix, The Troublesome Probabilistic Powerdomain, Electronic Notes in Theoretical Computer Science, vol.13, pp.70-91, 1998.
DOI : 10.1016/S1571-0661(05)80216-6

URL : https://doi.org/10.1016/s1571-0661(05)80216-6

C. D. Manning and H. Schütze, Foundations of statistical natural language processing, 1999.

R. Mardare, Logical foundations of metric behavioural theory for markov processes. Doctoral Thesis, Preparation, 2016.

S. Park, F. Pfenning, and S. Thrun, A probabilistic language based on sampling functions, ACM Transactions on Programming Languages and Systems, vol.31, issue.1, 2008.
DOI : 10.1145/1452044.1452048

URL : http://www.postech.ac.kr/~gla/paper/a4-park.pdf

J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, 1988.

G. D. Plotkin, LCF considered as a programming language, Theoretical Computer Science, vol.5, issue.3, pp.223-255, 1977.
DOI : 10.1016/0304-3975(77)90044-5

URL : https://doi.org/10.1016/0304-3975(77)90044-5

N. Ramsey and A. Pfeffer, Stochastic lambda calculus and monads of probability distributions, Prof. of POPL, pp.154-165, 2002.
DOI : 10.1145/503272.503288

URL : http://www.eecs.harvard.edu/~nr/pubs/pmonad.ps

D. Sangiorgi, On the bisimulation proof method, Mathematical Structures in Computer Science, vol.8, issue.5, pp.447-479, 1998.
DOI : 10.1017/S0960129598002527

D. Sangiorgi and V. Vignudelli, Environmental bisimulations for probabilistic higher-order languages, Proceedings of the 43rd Annual ACM SIGPLAN- SIGACT Symposium on Principles of Programming Languages, POPL 2016, pp.595-607, 2016.
DOI : 10.1145/2914770.2837651

URL : https://hal.archives-ouvertes.fr/hal-01337665

A. K. Simpson, Reduction in a Linear Lambda-Calculus with Applications to Operational Semantics, Proc. of RTA, pp.219-234, 2005.
DOI : 10.1007/978-3-540-32033-3_17

S. Thrun, Robotic mapping: A survey Exploring artificial intelligence in the new millennium, pp.1-35, 2002.

F. Van-breugel, An introduction to metric semantics: operational and denotational models for programming and specification languages, Theoretical Computer Science, vol.258, issue.1-2, pp.1-98, 2001.
DOI : 10.1016/S0304-3975(00)00403-5

F. Van-breugel and J. Worrell, A behavioural pseudometric for probabilistic transition systems, Theoretical Computer Science, vol.331, issue.1, pp.115-142, 2005.
DOI : 10.1016/j.tcs.2004.09.035