S. Abramsky, K. Honda, and G. Mccusker, A fully abstract game semantics for general references, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226), pp.334-344, 1998.
DOI : 10.1109/LICS.1998.705669

S. Abramsky and R. Jagadeesan, A game semantics for generic polymorphism, Proc. of FOSSACS 2003, pp.1-22, 2003.
DOI : 10.1007/3-540-36576-1_1

S. Abramsky, R. Jagadeesan, and P. Malacaria, Full Abstraction for PCF, Information and Computation, vol.163, issue.2, pp.409-470, 2000.
DOI : 10.1006/inco.2000.2930

URL : https://doi.org/10.1006/inco.2000.2930

S. Abramsky and P. Es, Concurrent games and full completeness, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), pp.431-442, 1999.
DOI : 10.1109/LICS.1999.782638

V. Alexiev, Non-deterministic interaction nets, 1999.

G. Berry and G. Boudol, The chemical abstract machine, Theoretical Computer Science, vol.96, issue.1, pp.217-248, 1992.
DOI : 10.1016/0304-3975(92)90185-I

URL : https://hal.archives-ouvertes.fr/inria-00075426

N. Busi and R. Gorrieri, Distributed semantics for the <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mi>??</mml:mi></mml:mrow></mml:math>-calculus based on Petri nets with inhibitor arcs, The Journal of Logic and Algebraic Programming, vol.78, issue.3, pp.138-162, 2009.
DOI : 10.1016/j.jlap.2008.08.002

P. Clairambault, J. Gutierrez, and G. Winskel, The Winning Ways of Concurrent Games, 2012 27th Annual IEEE Symposium on Logic in Computer Science, pp.235-244, 2012.
DOI : 10.1109/LICS.2012.34

U. Dal-lago, C. Faggian, I. Hasuo, and A. Yoshimizu, The geometry of synchronization, Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, pp.1-3510, 2014.
DOI : 10.1145/2603088.2603154

URL : https://hal.archives-ouvertes.fr/hal-01091560

U. Dal-lago, C. Faggian, B. Valiron, and A. Yoshimizu, Parallelism and synchronization in an infinitary context, Prof. of LICS 2015, pp.559-572, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231813

U. Dal-lago, C. Faggian, B. Valiron, and A. Yoshimizu, The geometry of parallelism. classical, probabilistic, and quantum effects, Proc. of POPL 2017, pp.833-845, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01474620

U. Dal-lago, R. Tanaka, and A. Yoshimizu, The geometry of concurrent interaction (extended version) Available at http, 2016.

V. Danos and L. Regnier, Reversible, irreversible and optimal ??-machines, Theoretical Computer Science, vol.227, issue.1-2, pp.79-97, 1999.
DOI : 10.1016/S0304-3975(99)00049-3

URL : https://doi.org/10.1016/s0304-3975(99)00049-3

F. Marc-de, The geometry of interaction of differential interaction nets, Proc. of LICS 2008, pp.465-475, 2008.

A. Dorman and D. Mazza, A Hierarchy of Expressiveness in Concurrent Interaction Nets, Proc. of CONCUR 2013, pp.197-211, 2013.
DOI : 10.1007/978-3-642-40184-8_15

T. Ehrhard, Finiteness spaces, Mathematical Structures in Computer Science, vol.15, issue.4, pp.615-646, 2005.
DOI : 10.1017/S0960129504004645

URL : https://hal.archives-ouvertes.fr/hal-00150276

T. Ehrhard and O. Laurent, Interpreting a finitary pi-calculus in differential interaction nets, Information and Computation, vol.208, issue.6, pp.606-633, 2010.
DOI : 10.1016/j.ic.2009.06.005

URL : https://hal.archives-ouvertes.fr/hal-00148816

T. Ehrhard and L. Regnier, Differential Interaction Nets, Electronic Notes in Theoretical Computer Science, vol.123, pp.35-74, 2005.
DOI : 10.1016/j.entcs.2004.06.060

URL : https://hal.archives-ouvertes.fr/hal-00150274

O. Fredriksson and D. R. Ghica, Abstract Machines for Game Semantics, Revisited, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp.560-569, 2013.
DOI : 10.1109/LICS.2013.63

D. R. Ghica, Geometry of synthesis: a structured approach to VLSI design, Proc. of POPL 2007, pp.363-375, 2007.

R. Dan, A. S. Ghica, and . Murawski, Angelic semantics of fine-grained concurrency, Prof. of FOSSACS 2004, pp.211-225, 2004.

R. Dan, A. I. Ghica, and . Smith, Geometry of synthesis II: from games to delay-insensitive circuits, Electr. Notes Theor. Comput. Sci, vol.265, pp.301-324, 2010.

J. Girard, Geometry of Interaction 1: Interpretation of System F, Proc. of Logic Colloquium of Studies in Logic and the Foundations of Mathematics, pp.221-260, 1988.
DOI : 10.1016/S0049-237X(08)70271-4

G. Gonthier, M. Abadi, and J. Lévy, Linear logic without boxes, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, pp.223-234, 1992.
DOI : 10.1109/LICS.1992.185535

URL : http://pa.bell-labs.com/~abadi/Papers/lproofs.ps

N. Hoshino, K. Muroya, and I. Hasuo, Memoryful geometry of interaction, Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, pp.1-5210, 2014.
DOI : 10.1145/2603088.2603124

J. M. Hyland and C. Ong, On Full Abstraction for PCF: I, II, and III, Information and Computation, vol.163, issue.2, pp.285-408, 2000.
DOI : 10.1006/inco.2000.2917

URL : https://doi.org/10.1006/inco.2000.2917

Y. Lafont, Interaction Combinators, Information and Computation, vol.137, issue.1, pp.69-101, 1997.
DOI : 10.1006/inco.1997.2643

URL : https://doi.org/10.1006/inco.1997.2643

J. Laird, A Game Semantics of Idealized CSP, Electronic Notes in Theoretical Computer Science, vol.45, pp.232-257, 2001.
DOI : 10.1016/S1571-0661(04)80965-4

URL : https://doi.org/10.1016/s1571-0661(04)80965-4

J. Lamping, An algorithm for optimal lambda calculus reduction, Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages , POPL '90, pp.16-30, 1990.
DOI : 10.1145/96709.96711

I. Mackie, The geometry of interaction machine, Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages , POPL '95, pp.198-208, 1995.
DOI : 10.1145/199448.199483

D. Mazza, The true concurrency of differential interaction nets, Mathematical Structures in Computer Science, vol.6
DOI : 10.1017/S0960129503004055

D. Mazza, Multiport Interaction Nets and Concurrency, Proc. of CONCUR 2005, pp.21-35, 2005.
DOI : 10.1007/11539452_6

URL : http://www.dm.unipi.it/~aila2005/abstracts/mazza.pdf

D. Mazza, Interaction Nets: Semantics and Concurrent Extensions, 2006.

P. Es, Asynchronous games 2: The true concurrency of innocence, Proc. of CON- CUR 2004, pp.448-465, 2004.

K. Muroya, N. Hoshino, and I. Hasuo, Memoryful geometry of interaction II: recursion and adequacy, Proc. of POPL 2016, pp.748-760, 2016.
DOI : 10.1145/2914770.2837672

C. Adam and P. , Communication with automata, 1962.

S. Rideau and G. Winskel, Concurrent Strategies, 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pp.409-418, 2011.
DOI : 10.1109/LICS.2011.13

D. Sangiorgi, From pi-calculus to higher-order pi-calculus -and back, Proceedings of TAP- SOFT 1993, pp.151-166, 1993.
DOI : 10.1007/3-540-56610-4_62

URL : ftp://ftp.dcs.ed.ac.uk/pub/sad/hoppi.ps.Z