M. Q. Ali and E. Al-shaer, Randomization-Based Intrusion Detection System for Advanced Metering Infrastructure*, ACM Transactions on Information and System Security, vol.18, issue.2, pp.1-730, 2015.
DOI : 10.1109/TSG.2011.2159818

A. Almalawi, X. Yu, Z. Tari, A. Fahad, and I. Khalil, An unsupervised anomaly-based detection approach for integrity attacks on SCADA systems, Computers & Security, vol.46, pp.94-110, 2014.
DOI : 10.1016/j.cose.2014.07.005

D. Ariu, R. Tronci, and G. Giacinto, HMMPayl: An intrusion detection system based on Hidden Markov Models, Computers & Security, vol.30, issue.4, pp.221-241, 2011.
DOI : 10.1016/j.cose.2010.12.004

URL : http://pralab.diee.unica.it/sites/default/files/Ariu_COSE2011.pdf

R. R. Barbosa, Anomaly detection in SCADA systems: a network based approach, 2014.
DOI : 10.3990/1.9789036536455

J. M. Beaver, R. C. Borges-hink, and M. Buckner, An Evaluation of Machine Learning Methods to Detect Malicious SCADA Communications, 2013 12th International Conference on Machine Learning and Applications, pp.54-59, 2013.
DOI : 10.1109/ICMLA.2013.105

M. Caselli and F. Kargl, Sequence-aware Intrusion Detection in Industrial Control Systems, Proceedings of the 1st ACM Workshop on Cyber-Physical System Security, CPSS '15, pp.13-24, 2015.
DOI : 10.1109/SECPRI.1999.766910

N. Erez and A. Wool, Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA systems, International Journal of Critical Infrastructure Protection, vol.10, 2015.
DOI : 10.1016/j.ijcip.2015.05.001

D. Had?iosmanovi´had?iosmanovi´c, R. Sommer, E. Zambon, and P. H. Hartel, Through the eye of the PLC: Semantic Security Monitoring for Industrial Processes, Proceedings of the 30th Annual Computer Security Applications Conference on -ACSAC '14, pp.126-135, 2014.

J. Hsu, D. Mudd, and Z. Thornton, Mississippi state university project report -SCADA anomaly detection project summary, 2014.

L. Martí, N. Sanchez-pi, J. Molina, and A. Garcia, Anomaly Detection Based on Sensor Data in Petroleum Industry Applications, Sensors, vol.12, issue.2, pp.2774-2797, 2015.
DOI : 10.1007/BF02295996

T. Morris, A. Srivastava, B. Reaves, W. Gao, K. Pavurapu et al., A control system testbed to validate critical infrastructure protection concepts, International Journal of Critical Infrastructure Protection, vol.4, issue.2, pp.88-103, 2011.
DOI : 10.1016/j.ijcip.2011.06.005

S. Ntalampiras, Y. Soupionis, and G. Giannopoulos, A fault diagnosis system for interdependent critical infrastructures based on HMMs, Reliability Engineering & System Safety, vol.138, pp.73-81, 2015.
DOI : 10.1016/j.ress.2015.01.024

URL : https://doi.org/10.1016/j.ress.2015.01.024

R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, McPAD: A multiple classifier system for accurate payload-based anomaly detection, Computer Networks, vol.53, issue.6, pp.864-881, 2009.
DOI : 10.1016/j.comnet.2008.11.011

URL : http://roberto.perdisci.com/publications/publication-files/McPAD-revision1.pdf?attredirects=0

M. Raciti and S. Nadjm-tehrani, Embedded Cyber-Physical Anomaly Detection in Smart Meters, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol.7722, pp.34-45, 2013.
DOI : 10.1007/978-3-642-41485-5_4

URL : http://www.ida.liu.se/labs/rtslab/publications/2012/RacitiNadjmTehrani-critis12.pdf

F. Schuster and A. Paul, Potentials of Using One-class SVM for Detecting Protocolspecific Anomalies in Industrial Networks, IEEE Symposium Series on, pp.83-90, 2015.

A. Voyiatzis, K. Katsigiannis, and S. Koubias, A Modbus/TCP Fuzzer for testing internetworked industrial systems, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 2015.
DOI : 10.1109/ETFA.2015.7301400

S. Yasakethu and J. Jiang, Intrusion Detection via Machine Learning for SCADA System Protection, The 1st International Symposium for ICS & SCADA Cyber Security Research, pp.101-105, 2013.

M. K. Yoon and G. F. Ciocarlie, Communication Pattern Monitoring: Improving the Utility of Anomaly Detection for Industrial Control Systems, Proceedings 2014 Workshop on Security of Emerging Networking Technologies, 2014.
DOI : 10.14722/sent.2014.23012

B. X. Zhu, Intrusion Detection and Resilient Control for SCADA Systems, 2014.
DOI : 10.4018/978-1-4666-2659-1.ch015