Soundness and Completeness Proofs by Coinductive Methods

Abstract : We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isa-belle/HOL's recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL's new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion.
Type de document :
Article dans une revue
Journal of Automated Reasoning, Springer Verlag, 2017, 58 (1), pp.149 - 179. 〈10.1007/s10817-016-9391-3〉
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01643157
Contributeur : Jasmin Christian Blanchette <>
Soumis le : mardi 21 novembre 2017 - 10:38:11
Dernière modification le : jeudi 11 janvier 2018 - 06:23:13

Fichier

compl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jasmin Christian Blanchette, Andrei Popescu, Dmitriy Traytel. Soundness and Completeness Proofs by Coinductive Methods. Journal of Automated Reasoning, Springer Verlag, 2017, 58 (1), pp.149 - 179. 〈10.1007/s10817-016-9391-3〉. 〈hal-01643157〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

27