
HAL Id: hal-01643216
https://inria.hal.science/hal-01643216

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JaDA – the Java Deadlock Analyzer
Abel Garcia, Cosimo Laneve

To cite this version:
Abel Garcia, Cosimo Laneve. JaDA – the Java Deadlock Analyzer. Simon Gay; Antonio Ravara.
Behavioural Types: from Theory to Tools, River Publishers, pp.169-192, 2017. �hal-01643216�

https://inria.hal.science/hal-01643216
https://hal.archives-ouvertes.fr

JaDA – the Java Deadlock Analyzer

Abel Garcia and Cosimo Laneve

Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus
tabel.garcia2,cosimo.laneveu@unibo.it

Abstract. JaDA is a static deadlock analyzer that targets Java byte-
code. The core of JaDA is a behavioral type system especially designed to
record dependencies between concurrent code. These behavioural types
are thereafter analyzed by means of a fixpoint algorithm that reports
potential deadlocks in the original Java code. We give a practical pre-
sentation of JaDA, highlighting the main connections between the tool
and the theory behind it. We also present some of the features for cus-
tomising the analysis: while the main strength of JaDA is to run in a fully
automatic way, user interaction is however possible and may enhance
the accuracy of the results. We finally assess JaDA against the current
state-of-the-art tools, including a commercial grade one. As one of the
main achievements so far, we present the successful analysis of a recursive
method that creates a potentially infinite number of threads.

1 Introduction

The present paper describes the prototype implementation of the theory de-
scribed at [5]

2 Addressing Java bytecode

2.1 Why bytecode?

An important decision we took was not to address the Java language directly
because of two reasons: it is quite a complex language and it has no well-defined
formal semantics. Therefore we focus instead on the Java bytecode, namely 198
instructions that are the compilation target of every Java application. The byte-
code language is quite simple and it has reference semantics that are defined
by the Java Virtual Machine behaviour (JVM). Handling the bytecode has also
other rather important advantages, for example: the possibility to address other
programming languages that are compiled to JVML, like Scala[1], and the pos-
sibility to analyze private code in which the source is not available. We have,
therefore, defined an inference system that extracts abstract models out of Java
bytecodes. This inference system consists of a number of rules which are identical
for most of the instructions, these rules mainly differ in the operations that have
some effect in the synchronization process, namely invocations, locks acquisition
and release, object manipulation and control flow operations.

1

2.2 Parsing the bytecode

The parsing of the Java bytecode is a cumbersome process because of the length
of the language syntax. There are several third party tools that aid in this process
(e.g. Soot, BCEL, Javassist, etc)1, some of these libraries provide out-of-the-
box handy mechanisms for static analysis: alias analysis, points-to analysis, etc.
However, the implementation of JaDA we use ASM2 which provides a framework
for the bytecode ast extraction and manipulation. This framework also provides
abstract representations of each one of the bytecode instructions and an abstract
implementation of a per-method data-flow analysis. This tool is open source and
well documented, which makes easier its adaptation to a particular scenario. We
provide more details on the JaDA architecture and in Section 6.

2.3 Prerequisites

Although JaDA does assumes the existence of a well-formed bytecode generated
by the Javacompiler, JaDA requires the bytecode of all dependencies of the code,
otherwise there could be parts of the application that remains unanalyzed. More-
over, although the bytecode is not executed, JaDA needs to load every existing
type to gather some key information in the analysis, like the inheritance infor-
mation. The loading of the existing types is done dynamically in a sand-boxed
class loader to avoid security risks. The full set of dependencies can be specified
in JaDA through a classpath-like configuration.

JaDA also assumes that the code targeted by the analysis is free of some of
the current limitations of the tool. Currently the tool has two main limitations:
(i) the wait/notify/notify-all operations are currently not supported, (ii)
currently the tool does not consider the concurrent operations constructed using
the elements in the java.util.concurrent package. There are also other less
critical limitations like the analysis of native code and reflection operations,
however these ones can be tackled by manually specifying the behavior of the
methods involving this limitations.

2.4 Methods resolution

Theoretically our algorithm foresees the analysis of every method in the target
code, including those native ones which are considered empty methods if not
specified otherwise in the tool settings. However because of efficiency the tool
offers the possibility to select a target method, by default the tool chooses the
first main entry point in the code.

From this point on, the analysis is performed in lazy mode. Starting from
the main, every method reached by at least one execution path is added to the
analysis. Each method is analyzed compositionally, the methods callers are then

1 See the following link for a full list of existing libraries with this purpose https://java-
source.net/open-source/bytecode-libraries

2 http://asm.ow2.org

2

queued in to the analysis process whenever the analyzer finds new information
about the methods behavior. This is an iterative process, the existence of a
fix-point has been proved in [5].

Due to the inheritance, a method could have different implementations de-
pending on the carrier type at runtime. Since our tool works at static time, all
possible implementations should be considered in a non-deterministic way. The
tool evaluates every possibility, this is a cumbersome process that can affect the
performance of the tool in considerable way. However, one of the advantages of
the static analysis is that it is relatively not time critical.

In JVML there are two main thread operations, the spawning of a thread and
the synchronization, this operations are accomplished by the special methods
defined by the type Thread: start and join. Such methods are treated in a
special way and JaDA assumes that these remain unaltered in every children
class.

3 Example
A: Do we want to have

this section?

A: copy-pasted text from

[5]

Figure 1 reports a Java class called Network and some of its JVMLd representa-
tion. The corresponding main method creates a network of n threads by invoking
buildNetwork – say t1, ¨ ¨ ¨ , tn – that are all potentially running in parallel with
the caller – say t0. Every two adjacent threads share an object, which are also
created by buildNetwork.

Assuming that all the threads have a symmetric locking strategy, The buildNetwork
method will produce a deadlock depending on how it is invoked: when it is called
with two different objects it is deadlock-free, otherwise it may deadlock (if also
n ą 0). Therefore, in the case of Figure 1, the program is deadlock free, while
it is deadlocked if we comment the instruction buildNetwork(n,x,y) and un-
comment buildNetwork(n,x,x).

The problematic issue of Network is that the number of threads is not known
statically – n is an argument of main. This is displayed in the bytecode of
buildNetwork in Figure 1 by the instruction at address 30 where a new thread is
created and by the instruction at address 37 where the thread is started. The re-
cursive invocation that causes the (static) unboundedness is found at instruction
47.

3

-.5in-.5in
class Network{

public void main(int n){
Object x = new Object();
Object y = new Object();
// deadlock
// buildNetwork(n, x, x);
//no deadlock
buildNetwork(n, x, y);

}

public void buildNetwork(int n,
Object x, Object y){

if (n==0) {
takeLocks(x,y) ;

} else {
final Object z = new Object() ;
Thread thr = new Thread(){

public void run(){
takeLocks(x,z) ;

}} ;
thr.start();
this.buildNetwork(n-1,z,y) ;

}
}

public void takeLocks(Object x,
Object y){

synchronized (x) {
synchronized (y) { }

}
}

}

public void buildNetwork(int n, Object x, Object y)
0 iload_1 //n
1 ifne 13
4 aload_0 //this
5 aload_2 //x
6 aload_3 //y
7 invokevirtual 24 //takeLocks(x, y):void

10 goto 50
13 new 3
16 dup
17 invokespecial 8 //Object()
20 astore 4 //z
22 new 26
25 dup
26 aload_0 //this
27 aload_2 //x
28 aload 4 //z
30 invokespecial 28 //Network$1(this, x, z)
33 astore 5 //thr
35 aload 5 //thr
37 invokevirtual 31 //start():void
40 aload_0 //this
41 iload_1 //n
42 iconst_1
43 isub
44 aload 4 //z
46 aload_3 //y
47 invokevirtual 36 //buildNetwork(n-1, z, y):void
50 return

Fig. 1. Java Network program and corresponding bytecode (only the buildNetwork

method). Comments in the bytecode give information of the objects used and/or meth-
ods invoked in each instruction

The output of JaDA for this example is shown on Figure 2.

4 The theory behind

The technique behind JaDA is based in the theory of behavioral types, in this case,
for every well-typed program we get to known its behavior. Such behavior is an
abstraction of the program that grabs the relevant operations regarding the con-
currency features of the program, since the typing process is non-deterministic
due to the evaluation of all possible execution paths, these behaviors are, in
practice, an over-approximation of the program. The soundness of the type sys-
tem allows to ensure that if the behavioral type of the program is deadlock free
so it is the original program.

The typing process is done compositionally in a bottom-up direction, this
means that a type has been assigned to every instruction and the type of each
method is the composition of the types of the instructions it contains, in the
same way, the type of a program is the type of all its methods.

4

Fig. 2. JaDA analysis output for the Network program

In the following section we highlight some of the details of the JaDA behavioral
type system in order to later show its relation with the JaDA implementation.
The behavioral type system is fully described in [5].

4.1 Overview of JaDA behavioral type system

Lams. Behavioral types are described in the syntax of lams [7] noted `, which
express object dependencies and method invocations:

ϑ ::“ J | int | parfh : ϑs, Cq

` ::“ 0 | pa, bqt | C.mparf : ϑs, ϑq Ñ τ | pν aq` | `N ` | `` `

where t ranges over thread identifiers, and a, b range over object identifier. A
record type ϑ associates to objects a structural type arf : ϑs, where a is the
identifier of the object and f : ϑ are the fields and corresponding record types.

The type 0 is the empty type; pa, bqt specifies a dependency between the
object a and the object b that has been created by the thread t; C.mparf : τ s,
τ 1q Ñ τ2 defines the invocation of C.m with carrier arf : τ s, with arguments
τ 1 and with returned record type τ2. (The last two elements of the tuple τ 1

record the thread t that performed the invocation and the last object name
b whose lock has been acquired by t. These two informations will be used by
our analyzer to build the right dependencies between callers and callees.) The

5

operation pν aq` creates a new name a whose scope is the type `; the operations
`N `1 and `` `1 define the conjunction and disjunction of the dependencies in `
and `1, respectively.

Typing judgments. Let P be a JVMLd bytecode. P will be typed by the judgment3:

bct, Γ, F, S, Z, T , i $t P : yTi N ŇZi
t

where:

– bct: is the a behavioural class table that maps every method of the program
to its lam;

– Γ, F, S, Z, T ,K are vectors indexed by the addresses of P ;
– the environment Γi maps object names to record types at address i;
– the map Fi takes local variables and returns type values at address i;
– the stack Si returns a sequence of value types at address i;
– Zi is the sequence of object names locked at at address i;
– Ti is the set of thread record types that are alive at instruction i and that

have been created locally either by P or by a method invoked by P
– t is the thread name where P is executed;

The terms yTi and ŇZi
t are a shortened representation of the resulting lam `

at instruction i. These terms are expanded in the following way:

yTi “ NϑPTi
typeof pϑq.runpϑ, Cq, t, locktq

ŇZi
t
“ NjP2..npaj , aj´1qt

Intuitively the first one represents the parallel composition of the run meth-
ods corresponding to the alive threads in Ti. The second one is expanded into
a parallel composition of dependency pairs corresponding to the sequence of
locked object names at instruction i. We remark that the sequence Zi may con-
tain twice the same object name; this means that the thread has acquired twice

the corresponding lock. For instance Zi “ a ¨ a. In this case ŇZi
t
“ pa, aqt, which

is not a circular dependency – this is the reason why we index dependencies with
thread names.

Typing ruless. JaDA defines typing rules for each one of the bytecode instruc-
tions. Figure 4.1 shows (a simplification of) the rules for the monitor-enter and
monitorexit instructions.

The monitorenter rule removes the element at the top of the stack and
adds it to the set of locked objects. The monitorexit rule does the opposite,
it removes the element at the top of the stack and removes it from the set of

locked objects. We notice that this update has an effect on the lam {Zi`1
t by

augmenting or reducing the dependencies, respectively.

3 This judgment is actually a simplification of the actual one

6

0.3in0in

P ris “ monitorenter i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ a ¨ Si`1

Zi`1 “ a ¨ Zi Ti “ Ti`1

bct, Γ, F, S, Z, T , i $t P : yTi N ŇZi
t

P ris “ monitorexit i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ a ¨ Si`1

Zi`1 “ Ziza Ti “ Ti`1

bct, Γ, F, S, Z, T , i $t P : yTi N ŇZi
t

Fig. 3. JaDA typing rules for locking instructions

4.2 BuildNetwork behavior

Figure ?? show the behavior of the BuildNetwork program as produced by
JaDA , the final lams have been simplified for easing the readability. Notice that
lam couples pa, bqt appears as t:(a,b). The commented out part of the method
main behavior corresponds to the commented code in the example.

-.3in-.3in [fontsize=,commandchars=

{}] main(this — t,u) = Object.init(x — t,u):x[] + Object.init(y — t,u):y[] +

//buildNetwork(this,,x, x|t, uq{{deadlockbuildNetworkpthis,, x, y|t, uq{{no´ deadlock

takeLocks(this,x,y | t,u) = t:(u,x) & t:(x,y)

buildNetwork(this,_,x,y | t,u) = takeLocks(this,x,y | t,u) +

Object.init(z | t,u):z[] +

Network$1.init(thr, this, x, z | t, z):t1[this$0:this[], val$x:x[], val$z: z[]] +

Network$1.run(thr | thr,u1) +

Network$1.run(thr | thr,u1) & buildNetwork(this,_,z,y | t,u)

Object.init(this | t, u):this[] = 0

Network$1.init(this, x1, x2, x3 | t, u):this[this$0:x1, val$x:x2, val$z:x3] = 0

Network$1.run(this[this$0:x1, val$x:x2, val$z:x3] | t, u) = takeLocks(x1, x2, x3 | t, u)

Fig. 4. BuildNetwork’s lams

The behavior of the main method is straightforward, it contains the in-
vocation to the constructor of the class Object, and the invocation to the
buildNetwork method.

In the case of the takeLocks method the behavior is abstracted in the two
couples corresponding to the acquisition of the locks of x and y, every couple is
formed by the last held lock and the current element. Notice that every method
receives an extra argument corresponding to the last acquired lock at the moment
of the invocation, in this case that argument is u.

7

The behavior of the buildNetwork method has four states, the initialization
to the object z, the initialization of the thread thr, the launch of the thread
thr and the recursive invocation. Notice that this last state contains also the
running thread thr.

The constructor of the class Object has an empty behavior.
On the other hand the constructor of the class Network$14 is more complex.

The body of this class accesses to some variables that come from an outer scope
(see variables this, x and z in the code), the JVM solves this by passing these
values to the constructor of the class and assigning them to internal fields. Notice
that the behavior of the constructor keeps track of the changes in the carrier
object which goes from this to this[this$0:x1, val$x:x2, val$z:x3] where
xi are the formal arguments.

Finally, the behavior of the run method from the class Network$1 contains
only the invocation to the takeLocks method. Notice that run method assumes
a certain structure from the carrier object.

5 Behavioral types inference and analysis
A: Do we want to have

this section? As stated previously JaDA is able to run in a fully automatic fashion, thus not
requiring any annotation and being able to infer the behavioral types out of
the code. The implementation of the type inference mechanism and the further
analysis of the resulting behavioral uses two iterative processes.

5.1 Lam and method types inference

The inference of lams and method types from JVMLd programs is an iterative
process that, given a set of method types (which include method effects, such as
the structure and the updates of the arguments and the returned object, when
applicable, the new threads spawned and the synchronized threads). At each
step, it computes the types of method instructions and the method types. The
overall process reiterates again if method types are modified, till an invariant is
reached. We briefly outline theoretical basis of this solution.

Record types ϑ are equipped with a binary relation <: that is the reflexive
and transitive closure of the following pairs:

– ϑ <: J, and
– par¨ ¨ ¨ , fh : ϑ, ¨ ¨ ¨ s, Cq <: par¨ ¨ ¨ , fh

1

: ϑ1, ¨ ¨ ¨ s, C1q, if C Ď C1 and, for all fields,
h ď h1 and ϑ <: ϑ1.

The relation <: defines an upper-semilattice on record types, which allows
the computation of least upper-bounds in our algorithm. The relation <: is
extended accordingly to functions Γi, Fi and Si Therefore, in the typing rules,
like those from Figures 4.1, the equality constraints between Γi, Fi, and Si and

4 The name Network$1 is automatically created by the JVMfor the anonymous type
instantiated inside the method buildNetwork of the class Network

8

Γi`1, Fi`1, and Si`1 are relaxed in favour of <: . For instance Γi “ Γi`1 becomes
Γi <: Γi`1. We also relax identities Ti “ Ti`1 into Ti Ď Ti`1.

The process typing the instructions uses a data-flow algorithm whose fixpoint
is reached when all constraints are satisfied. The pseudo-code of the algorithm
is the following:

TypeInference(Bct, P, Env_0) -> <Env, L>
1 Env = array[P.size]
2 L = array[P.size]
3 Env[0] = Env_0
4 pending = {0}
5 while(!pending.isEmpty())
6 index = pending.pop()
7 current = P[index]
8 L[index] = current.type.lam(Bct,Env[index])
9 next_env = current.type.env(Bct,Env[index])
10 if(!current.isReturn())
11 if(Merge(next_env, current.next, Env))
12 pending.push(current.next)
13 if(current.isIf())
14 if(Merge(next_env, current.jump, Env))
15 pending.push(current.jump)

Fig. 5. Pseudo-code of the type inference process for a single method

TypeInference starts with the typing environment of the first instruction (see
the rules for method definitions) and initialize the set pending to t0u (only
instruction 0 must be typed (see line 4). The typing environment includes Γ , F ,
S, Z, T and K of Section 4. The type of every instruction is saved in L (line 8).
After typing the current instruction we get the typing environment for the next
instruction; this environment has to match the current typing environment for
the next instruction (line 11). If the two typing environments do not match, they
are merged using the <: relation and the corresponding instruction has to be
typed again (line 12). Notice that in a first pass all instructions will be typed and
their typing environment computed, this is because the initial environment for
every instruction (except the first one) is null. If the current instruction is an
if jump then the same process is repeated now comparing with the environment
at instruction jump. The Merge function checks if the existing environment is
null, if so the environment for the current instruction is updated and the method
returns true because the instruction needs to be typed again. If an environment
for the next instruction already exists then the existing environment is merged
with the one just computed, the function Merge returns false if the existing
typing environment remains unchanged, true otherwise.

The process TypeInference terminates because, at every iteration, the envi-
ronment is augmented or remains unchanged (because of the merge operation).

We remark that our prototype does not uses recursive records, instead those
are represented by finite structure. Additionally the upper-semilattice of <: has
a finite hight. These premises give necessary conditions for the termination of
the above process.

9

The TypeInference process assumes the existence of a bct. Actually, the
computation of the bct is performed by another iterative process that uses
TypeInference. The following pseudo code highlights the algorithm:

BCT(ClassList) -> <Bct>
1 foreach class in ClassList
2 foreach m in class.Methods
3 Bct[m] = Empty(m)
4
5 changes = true
6 while(changes)
7 changes = false
8 foreach class in ClassList
9 foreach m in class.Methods
10 <Env, L> = TypeInference(Bct, m.P, m.Env_0)
11 changes = changes OR Update(Bct, m, Effects(L))

Fig. 6. Inference of the bct

BCT starts by initializing the effects of every method to be empty (line 3). Then
every method body is typed with the current Bct (line 10) and the typing envi-
ronments, lams and the method’s effects are re-computed from its type (11). This
process is repeated until the Bct reaches a stable state (line 6). The arguments
for the termination of BCT are similar to those of TypeInference.

5.2 Detection of circularities in lams

Once behavioral types have been computed for the whole JVMLd program, we can
analyze the type of the main method. The analysis uses the algorithm defined
in [7, ?] that we briefly overview in this section.

First of all, the semantics of lams is very simple: it amounts to unfolding
method invocations. The critical points are that (i) every invocation may create
new fresh names and (ii) the method definitions may be recursive. These two
points imply that a lam model may be infinite state, which makes any analysis
nontrivial. Next, we notice that the state of lams are conjunctions (N) of depen-
dencies and method invocation (because types with disjunctions ` are modelled
by sets of states with conjunctive dependencies).

The results of [7, ?] allows us to reduce to models of lams that are finite,
i.e. finite disjunctions of finite conjunctions of dependencies. In turn, this finite-
ness makes possible to decide the presence of a so-called circular dependency,
namely terms such as pa, bqt N pb, aqt1 . The reader is referred to [7, ?] for the
details and correctness of the algorithm.

However, the dependencies in JaDA are more informative with respect to
those from in [7, ?], here we index each dependency with thread names. There
are two reasons for this: (a) in order to cope with Java reentrant locks, therefore
pa, bqt N pb, aqt is not a circular dependency (it all happened in the same thread),
and (b) in order to avoid to considering circular terms like pa, bqt N pb, cqt N pa, cqt1 N pc, bqt1 ,

10

in fact the mutual exclusion on the initial object a makes the concurrent presence
of pb, cqt and pc, bqt1 not possible.

The are two differences between the algorithm used in our tool and the
one in [7, ?]. The first one is the definition of transitive closure that is the
base of the notion of circular dependency. In our case, the transitive closure of
pa, bqt1 N pb, cqt2 is pa, bqt1 N pb, cqt2 N pa, cqt1¨t2 , where t1 ¨t2 is a sequence of (pair-
wise) different names that represents a set. For example, the transitive closure of
pa, bqt1 N pb, cqt1 N pc, aqt2 is pa, bqt1 N pb, cqt1 N pc, aqt2 N pa, cqt1 N pa, aqt1¨t2 N pb, aqt1¨t2
This type contains a circular dependency, namely pa, aqt1¨t2 , which is any depen-
dency pa, aqt1¨¨¨tn with sets t1 ¨ ¨ ¨ tn having at least two elements. The second
difference is about the removal of names that are different from the arguments
of functions. The algorithm in [7, ?] uses a symbolic computation of lams func-
tions and saturates the models by means of a standard fixpoint technique. In
particular, names created by the unfolding process are removed by computing
transitive closures of dependencies and projecting them on the arguments of the
unfolded function (if there is no circular dependency, otherwise, after the pro-
jection, we add a special circularity). We do the same for object names (that
are not thread names). On the contrary, fresh thread names are replaced by
using two special names – say τ and τ 1 by means of the following simplification
function H¨I. Let a be the argument names in a method invocation and c be the
new names created by one unfolding step. Let also pb, b1qT , where T is a set of
thread names. Then (7p¨q gives the cardinality of a set):

Hpb, b1qT I def
“

$

’

’

&

’

’

%

pb, b1qTXa if 7pT X aq ą 1
pb, b1qτ if 7pT q “ 1 and T Ď cY tτ, τ 1u
pb, b1qt¨τ if 7pT q ą 1 and ttu “ T Ď cY tτ, τ 1u
pb, b1qτ ¨τ 1 if 7pT q ą 1 and T Ď cY tτ, τ 1u

As a consequence, abstract models of lam functions are (finite sets of) sets of
dependencies using names in the arguments plus τ and τ 1 (plus a further special
name κ – see [7, ?]). Henceforth the finiteness of the models and the decidability
of the algorithm.

The pseudo code of the algorithm for computing these abstract models is
highlighted here:

ExpandAndCleanCCT computes the set of states of every method in the bct. For
each method, the function computes its state (line 5) by instantiating the method
invocations in its lam with the models computed in the previous iteration (line
6; at the beginning the model is empty, see line 2). Then the state is simplified
as a disjunction of conjunctions (the Normalize invocation at line 7). That is
the model is a set of elements that are sets of dependency pairs. Every set
is then transitively closed (line 9) and then simplified by means of the Clean

operation in line 10 (which uses the function H¨I). After all method states have
been recomputed, we check if the new model is different than the old one (line
11). This process goes on until every method has reach an stable set of final
states.

11

ExpandAndCleanCCT(Bct)
1 foreach (method in Bct)
2 State[method] = {{}}
3 do
4 changed = false
5 foreach(method in Bct)
6 newState = Replace(State, method.type.lam)
7 newState = Normalize(newState)
8 foreach(set in newState)
9 set = Transitive_Closure(set)
10 set = Clean(set)
11 changed = changed OR IsEqual(State[method],newState)
12 State[method] = newState
13 while(changed)

Fig. 7. Calculation of the abstract models in the bct

JaDA returns a deadlock if it finds a circularity in the lam of the main method.
Since the method invocations are stored in the structure implementing the de-
pendency pairs, it is also able to return a trace corresponding to the deadlock.

6 ASM Extension

Fig. 8. JaDA architecture

The ASM framework provides a wide set of tools for manipulating the byte-
code. One of the main features of this framework is its support for the imple-
mentation of custom bytecode analysis.

There are four main classes oriented to the analysis feature in ASM:

– Value – this class represents the abstraction of a variable value.
– Frame – a frame represents the state the program at the moment of executing

a bytecode instruction, namely it contains the state of the stack and the value
of the local variables.

12

– Interpreter – the interpreter abstracts the program counter, it operates
according to the current instruction updating the values in the current frame.

– Analyzer – the analyzer orchestrates the interaction among the elements of
the other three classes. For every method the analyzer starts with the empty
frame and executes instruction by instruction according to the interpreter.
Due to the presence of jump instructions, this is not a linear process, for this
reason the analysis follows the execution in a data-flow fashion, this process
stops when each frame in the method has reach a stable state.

The JaDAtool has been build on top of the ASM framework. The solution is
quite rather complex, it contains more than 50 classes and more than 5000 LOC.

The Figure 4 shows part of the class scheme of JaDA , in the center of the
image the original classes from the ASM framework, the arrows denote an inheri-
tance relationship. The added classes are oriented to the instrumentation of the
technique so far described.

Values representation. In the ASM framework values are conceived as mere names
associated with a corresponding type. In JaDA just the object identifier and its
type is not enough, in our case it is necessary to keep track also of the objects
structure (see definition of ϑ). More over in order to abstract the behavior of the
JVM, JaDA presents two type of values: RecordTree and RecordPtr, these will be
used depending on the element storing the values (e.g. the environments Γi and
methods signature in the bct will use RecorTrees while the local variables Fi
and Si will store RecordPointers). The class RecordTree is divided in sub-classes
matching the different record types categories defined by ϑ. The rest of the main
actors in the analysis (the classes for representing frames, the interpreter and the
analyzer) have to be changed in order to cope with this variation in the values
representation.

Frames. The JDAFrame class extends the ASM Frame by adding support for
all the elements that conform the typing environment, namely structures for
Γi, Fi, Si, Zi and Ti. The JDAFrame exposes a method called execute which
contains the implementation of all of the JaDA typing rules, this method relies on
the interpreter for symbolically execute the current instruction with the given
stack and local variables state. The behavior at every instruction (its lam) is

finally calculated by means of the implementation of the expressions yTi N ŇZi
t

within the context of the corresponding JDAFrame object. Another very impor-
tant method exposed by the JDAFrame class is the merge method, it is invoked
when the analysis process reiterates over an already typed frame. This method
implements the logic defined by the operator <: , see Section??. The decision on
whether the subsequent frames should be typed again is taken upon the result
of this method.

The interpreter. The Java bytecode is a stack language, each operation con-
sumes a certain number of elements from the stack and pushes back its re-
sult. The JDAInterpreter class extends its ASM counterpart by adapting to the

13

JaDA values representation. An important result of JaDA is the possibility to re-
produce the traces causing deadlock providing the variable names of the objects
involved, the stack trace chain and, when possible5, the related line numbers in
the original code; the process of keeping track of this information is achieved by
JDAInterpreter class.

The analyzer. The ASM default analyzer allows to perform a very basic data-flow
analysis limited to the scope of a single method. In the same way, JaDA proposes
a compositional analysis: the analysis of a method does not go beyond its scope,
JDAAnalyzer extends the default ASM implementation by implementing the algo-
rithm described in Figure ??, this is the building block of the class. In addition
JDAAnalyzer generalizes the analysis to the whole program by calculating the
final state of the bct as described by the algorithm in Figure ??.

Finally the JDAAnalyzer, launches the process to calculate the abstract mod-
els of each one of the method declarations in the bct as described in the algo-
rithm in Figure ??; and reports the presence of circularities in the main method
(or in the method chosen by the user as target of the analysis) .

7 JaDA

7.1 Tool configuration

The main goal of JaDA is to provide a fully automatic tool for the analysis
of deadlocks. We note that even though the user interaction (e.g. through code
annotations) may allow to gain in precision, this is a cumbersome task and having
a tool completely dependent in this sense may lead to a tool only applicable in
non-realistic scenarios. However in order to provide some flexibility to the user
our tool provides a set of settings that can be used to customize the analysis.

– <target>: this is the only required setting and it is used to specify the
target file or folder to analyze. The type of files allowed are: Java class files
(“.class”), Java jar files (“.jar”) and compressed zip files (“.zip”). In the case
of folders, the content of the folder is analyzed recursively.

– verbose[=<value >]: the value ranges from 1 to 5, the default and more
expressive value is 5.

– class-path <classpath >: Standard Java classpath description. If the tar-
get contains dependencies other than the ones in the standard library, those
should be specified through this property.

– target-method <methodName >: fully qualified target method (should be a
parameterless void method). Performs the analysis starting from the spec-
ified method, if this option is not set, the analysis chooses the first main
method found.

5 This is possible only when the bytecode has been compiled including debugging
information

14

– additional-targets <classes >: if analysis-extent is set to custom this
property must contain a comma separated list of the fully qualified names
of a subset of classes in the classpath to include in the analysis.

– analysis-extent[=<value >]:Indicates the extent of the analysis. Possible
values are (default value is classpath): full –analyzes every dependency
including system and classpath libraries–, classpath –analyzes every library
in the classpath–, custom –analyzes the classes specified through the prop-
erty additional-targets– and self –does not analyze any dependency–.

– additional-targets <classes >: if analysis-extent is set to custom this
property must contain a comma separated list of the fully qualified names
of a subset of classes in the classpath to include in the analysis.

– custom-types <file >: a setting file to specify predefined behavioral types.
– static-constructors[=<value >]: indicates when the static constructors

should be processed, the possibilities are before-all and non-deterministically.
The default option is before-all.

7.2 Deliverables

JaDAis available in three forms: a demo website [6], a command line tool (see
Figure 2) and an Eclipse plug-in. All three shared the same core, a prototype
implementation of the technique discussed in [5]. At the moment of writing
this text, the demo website allows only the analysis of single-file programs and
a subset of the options previously described. The command line tool and the
Eclipse plug-in are available through direct requests. The Eclipse plug-in output
includes the display of the execution graph causing the deadlock with links to
the source code that originates it (see Figure 5).

Fig. 9. JaDa Eclipse plug-in screenshot

15

8 Related tools and assessment
A: copy-pasted text from

[5] JaDA has been compared with respect to the tools that, to the bests of our
knowledge, deliver better results for every technique discussed in [5] (see Section
“Related Work”). In particular, we have chosen Chord for static analysis [8],
Sherlock for dynamic analysis [4], and GoodLock for hybrid analysis [3]. We
have also considered a commercial tool, ThreadSafe 6 [2], of which we got the
trial version and we don’t know much technical details.

Table 1. Comparison with different deadlock detection tools. (Inner cells show the
number of deadlocks detected by each tool)

Static Hybrid Dynamic Commercial

benchmarks JaDA Chord GoodLock Sherlock ThreadSafe

Sor 1 1 7 1 4
Hedc 0 24 23 20 11
Vector 0 3 14 4 0
RayTracer 0 1 8 2 0
MolDyn 0 3 6 1 0
MonteCarlo 0 2 23 2 0
Xalan 0 42 210 9 11

BuildNetwork 3 0 0
Philosophers2 1 0 1
PhilosophersN 3 0 0
StaticFields 1 1 1

ScalaSimpleDeadlock 1
ScalaPhilosophersN 3

We report our analysis in Table 1. The source of all benchmarks is available
either at [4, 8] or in the JaDA-deadlocks repository7. Out of the four chosen
tools, we were able to install and effectively test only two of them: Chord and
ThreadSafe; the results corresponding to GoodLock and Sherlock come from
[4]. We also had problems in testing Chord with some of the examples in the
benchmarks, perhaps due to some miss-configurations, that we were not able to
solve because Chord has been discontinued.

It is worth to notice that JaDA detects only one deadlock in the benchmarks
of the first block, thus returning less false positives than the other ones. The
second block corresponds to examples designed to test our tool against complex
deadlock scenarios like the Network program. We notice that even commercial
grade tools like ThreadSafe fail to detect those kinds of deadlocks. While the
results in Table 1 are encouraging, we will deliver more convincing ones as soon
as JaDA will be integrated with the wait-notify-notifyAll synchronization
mechanisms – see below. In addition we report two examples of Scala programs,

6 http://www.contemplateltd.com/threadsafe
7 https://github.com/abelunibo/Java-Deadlocks

16

these programs have been compiled with the version 2.11 of the Scala compiler.
We remark that, to the best of our knowledge at the moment of writing this,
there were no static deadlock analysis tools for such language.

9 Limitations and ongoing extensions

A current limitation of JaDAis the lack of support for the synchronizations op-
erations wait, notify and notifyAll. These methods enable programmers to
access the JVM’s support for expressing thread coordination. They are public
and final methods of the class Object, so they are inherited by all classes and
cannot be modified. The invocations to wait, notify and notifyAll succeed
for threads that already hold the lock of the object a on the stack. In this case,
the wait instruction moves its own thread to the wait set of the object a and the
object is relinquished by performing as many unlock operations as the integer
stored in the lock field of a. The instructions notify and notifyAll respectively
wake up one thread and all the threads in the wait set of o. These threads are
re-enabled for thread scheduling, which means competing for acquiring the lock
of a. The winner will lock the object a as many unmatched monitorenter it did
on a before the wait-operation.

The wait-notify relation between threads can easily lead to deadlocks. There
are two possible scenarios:

1. the o.wait() operation in t does not happens-before a matching o.notify()

in t1;
2. a lock on an object (different than o) held by t is blocking the execution of
t1, thus preventing the invocation of o.notify() to happen.

The solution we are investigating uses lams with special couples pa, awqt and
pa, anqt for representing the wait-notify dependencies. For example, for the wait
operation, pa, awqt can be read as “thread t has the lock of a and has invoked
method wait on it”. Similarly pa, anqt means “thread t has the lock of a and has
invoked method notify on it”. However, these dependencies are not sufficient
for deadlock analysis. In fact, the mere presence of a wait couple indicates a
potential deadlock. For example a lam like

` “ pa, awqt N pa, anqt1

has to be considered as a deadlock, since nothing ensures that the notification will
happen after the wait invocation (in this case it will depend on the scheduler).
In any case, this would be a huge over-approximation. The precision can be
enhanced if it is guaranteed that the wait operation happens-before the matching
notification. For this purpose we keep track of one more type of lam couples:
pa, t1qt to be read as “thread t1 was spawned by thread t while it was holding the
lock on a”. Next, consider the following states:

`1 “ pa, a
wqt N pa, t1qt N pa, anqt1 `2 “ pb, aqt N pa, awqt N pb, aqt1 N pa, anqt1

17

We can draw the following conclusions. First, `1 is not deadlocked, when t1

started, t is holding the lock of a, so the notification will not occur until t
releases the lock of a, which happens exactly when the wait is invoked. Second,
`2 is deadlocked, the situation is similar to the previous one, but after releasing
a the thread t still holds the lock on b. The thread t1, on the other hand, cannot
grab the lock on a until it can grab the lock on b. This implies that the notification
is never performed.

Following this analysis, we can define a strategy for deciding whether a wait
couple is matched by a notify couple:

a lam that contains pa, awqt N pa, anqt1 is safe whenever (i) t1 is spawned
by t while holding the lock on a and (ii) whenever a is the only object in
common in the lock chains acquired by t and t1 before the wait and the
notify operations, respectively.

We are currently studying the soundness of this solution and we will report
our results in a future work.

10 Conclusions

JaDA is a static deadlock analysis tool that targets the the JVM bytecode,
allowing the analysis of any well-compiled Java program, as well as, programs
written in other languages that are also executed within the JVM like Scala.
The technique underlying JaDA is based on a custom behavioral type system
that abstracts the main features of the programs with respect to the concurrent
operations.

The tool is designed to run in a totally automatic fashion, meaning that the
inference of the program behavioral type and the subsequent analysis could be
done unassisted. User intervention is, however, possible and may enhance the
precision of the program, for example, in presence of native methods.

Even though the tool is still under development, we have been able to asses it
by analyzing a set of Java and Scala programs. We have presented a comparison
between the results of JaDA and some of the existing deadlock analysis tools,
among which is a commercial grade one. The results obtained so far are very
promising and we expect to gain more precision as the development continues.

The next steps for JaDAinclude adding support for the synchronization oper-
ations expressible by means of the wait, notify and notifyAll methods. This
chapter concludes with a notion on how to tackle these.

References

1. The scala language. 2016.
2. Robert Atkey and Donald Sannella. Threadsafe: Static analysis for java concurrency.

ECEASST, 72, 2015.
3. Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of multi-

threaded programs. In in Hardware and Software Verification and Testing, volume
3875 of Lecture Notes in Computer Science, pages 208–223. Springer, 2005.

18

4. Mahdi Eslamimehr and Jens Palsberg. Sherlock: scalable deadlock detection for
concurrent programs. In Proceedings of the 22nd International Symposium on Foun-
dations of Software Engineering (FSE-22), pages 353–365. ACM, 2014.

5. Abel Garcia and Cosimo Laneve. Deadlock detection of java bytecode. submitted,
2016.

6. Abel Garcia and Cosimo Laneve. JaDA – the Java Deadlock Analyzer. Available at
JaDA.cs.unibo.it from October 28, 2016.

7. Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of un-
bounded process networks. In Proceedings of 25th International Conference on
Concurrency Theory CONCUR 2014, volume 8704 of Lecture Notes in Computer
Science, pages 63–77. Springer, 2014.

8. Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static dead-
lock detection. In 31st International Conference on Software Engineering (ICSE
2009), pages 386–396. ACM, 2009.

19

