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Abstract: This paper deals with the testing of distributed systems. An im-
plementation under test is checked for conformance with the properties defined 
by a reference specification. Since distributed systems usually have multiple in-
terfaces, the reference specification will not define the order of all pairs of in-
teractions taking place at different interfaces. Therefore a specification formal-
ism supporting the definition of partial orders is required. Different such for-
malisms are compared in this paper, including MSC-Charts (or Interaction 
Overview Diagrams). A variation of this formalism, called Partial-Order-Charts 
(PO-Charts) is proposed which makes abstraction from the exchange of mes-
sages. It concentrates on the specification of partial orders between local actions 
in different system components. It is shown that the partial-order testing ap-
proach introduced for a single partial order specification can be adapted to test-
ing PO-Charts which define various combinations of different partial orders 
which are sequenced by strict or week sequencing, including loops. Various ex-
amples are given to compare this testing approach with state machine testing 
methods which can be applied for bounded PO-Charts for which one can de-
rive an equivalent state machine. The testing complexities and fault model as-
sumptions of these two approaches are compared. 

1 Introduction 

Conformance testing is an activity where an implementation under test (IUT) is 
checked for conformance to a specification. For this purpose, input interactions are 
applied by testers at the different interfaces of the IUT and the outputs provided by 
the IUT are observed by the testers and are compared with what is expected according 
to the requirements defined by the specification. For distributed systems, the order of 
interactions taking place at different interfaces are often irrelevant for the defined 
behavior, furthermore, it is sometimes difficult to control the order of inputs at differ-
ent interfaces, and to observe the order of outputs at different interfaces. For this rea-
son, state machine models for the specification are not appropriate, since they precise-
ly define a total order for all interactions. As a consequence, partial-order specifica-
tions have been proposed for describing the required behavior of distributed systems. 
A well-known example of a partial-order notation is Message Sequence Charts (MSC, 
or UML Interaction diagrams).  



In order to test partial-order specifications, [Haar] proposed the concept of Partial-
Order Input-Output Automata (POIOA) and discussed how to derive conformance 
test suites from such specifications. A POIOA is a state machine where each transi-
tion involves in general a set of input and output interactions for which a partial order 
is defined for their execution. However, each state of the POIOA represents a global 
synchronization point involving all the distributed interfaces. This enforces strict se-
quencing between the execution of subsequent transitions, that is, an interaction of the 
next transition can only occur after all interactions of the preceding transition have 
been completed. In real distributed systems, one often rather wants to impose weak 
sequencing which means that sequencing is enforced locally at each interface (or each 
component of the distributed system), but not globally. 

Concepts for specifying control flow in distributed systems with partial orders in-
cluding strict AND weak sequencing was proposed in [Castejon]. These concepts are 
quite similar to the more formal definition of MSC-Charts given by Alur and Yanna-
kakis [Alur]. In a few words, an MSC-Chart is a state machine in which each state is 
associated with an MSC to be executed and the transitions between states are sponta-
neous. We modify this concept as follows and call it Partial-Order Chart (PO-Chart) 
by specifying for each transition whether it represents strict or weak sequencing, and 
by associating with each state a partial order of actions (including inputs, outputs and 
local actions) where each action is placed on a vertical  “swim-lane” (“process” in 
MSC, or “role” in [Castejon]). Such a partial order is very similar to an MSC, but the 
arrows represent a partial-order dependency, and not necessarily exchanges of mes-
sages (as in MSCs and MSC-Charts).   

We discuss in this paper how a test suite can be derived from a given PO-Chart 
specification. The main point is the fact that the partial-order test derivation from 
[Haar] can be applied to execution paths involving several PO-Chart states (corre-
sponding to several transitions in the POIOA model). For limiting the length of the 
test suite in the case of loops in the PO-Chart, we adopt the approach that is common 
in software testing: assuming regularity of the IUT (as explained in [Bouge]), which 
means that one assumes that there exists an integer k such that, if a loop has been 
executed k times, then no further fault would be found if one executed the loop more 
than k times. 

The paper contains many examples to illustrate the discussion. For the testing of an 
IUT in respect to a PO-Chart the partial-order testing of [Haar] is compared with state 
machine testing methods based on an equivalent state machine model. However, often 
the PO-Chart specifications are not bounded [Alur], which means that no equivalent 
finite state model exists. 

The paper is structured as follows: In Section 2, an introduction to POIOA testing 
is given, as well as a formal definition of partial orders. In Section 3, we discuss the 
different notations for defining the reference specification for testing. In Section 4 we 
show how the partial-order testing of [Haar] and state machine testing can be applied 
to PO-Charts. In Section 5, we provide some comments comparing the specification 
formalisms of POIOA, collaboration ordering, MSC-Charts and PO-Charts. We also 
compare the complexity measures for partial-order and state machine testing, as well 
as the underlying fault models. Section 6 contains the conclusions. 



2 Preliminaries 

2.1 Testing POIOA 

The testing of POIOA was introduced in [Haar]. A POIOA is a state machine 
where each state transition involves possibly several input and output interactions for 
which a partial order is specified for execution. When all interactions of a transition 
have been performed, the machine enters the next state and is ready to execute anoth-
er transition. One normally assumes that each transition starts with a single or several 
(concurrent) input interaction(s). An example of such a transition is shown in Figure 
1(a). This transition starts with the single input i1 which is followed by two concur-
rent outputs o1a and o1b, each followed by a sequence of input and output, i2 fol-
lowed by o2 and i3 followed by o3, respectively. 

                                                                               

Fig. 1: (a) A partial order with two roles. (b) An equivalent state machine 

When testing an implementation for conformance with a POIOA specification, one 
has to verify the following two aspects: 

1. The partial order of interactions specified for each transition is implemented 
as specified. 

2. Each transition leads to the correct next state. 
For the second aspect, traditional state machine testing approaches can be used, 

such as Distinguishing Sequences [Bochmann a] or the HIS method [Bochmann c]. 
For this purpose one needs state identification sequences for each state which are 
applied after the execution of a transition, and which should be checked for validity 
on the implementation. We do not discuss these issues further in this paper. 

For the testing of the partial order of input and output interactions defined for a 
given transition t, the following partial-order test has been proposed (see for in-
stance [Bochmann a]).  For each input i of t, perform the following test (where it is 
assumed that the implementation is already in the starting state of the transition): 

1. Apply all inputs (different from i) that are not after i in the partial order of 
t (in an order satisfying the partial order), and observe the set of output in-
teractions, called O1. 

2. Apply i, and observe the set of subsequent output interactions, called O2. 
3. Apply all other inputs of t (in an order satisfying the partial order), and 

observe the set of output interactions, called O3. 
If one of the output sets is different than what is expected from the specified partial 

order, we have detected a fault in the implementation. We have a guarantee of fault 
detection under the assumption that the transition t is realized in the implementation 



as a single transition and in the form of a partial order.  For the example transition 
shown in Figure 1(a), we obtain the following test suite (where the tested input is 
written in bold, and the expected output sets are given in {}):  

• For testing i1: <{}, i1 {o1a, o1b}, i2 {o2}, i3 {o3}> 
• For testing i2: <{}, i1 {o1a, o1b}, i3 {o3}, i2 {o2}> 
• For testing i3: same test case as for i1. 

In [Bochmann a], it was also explained that the tests for several inputs can be com-
bined into a single test case if one of the input comes after another one. For the exam-
ple transition, we are left with the two test cases given above. 

In this paper, we limit our attention to quiescent states of the IUT, that is, states in 
which no further outputs are produced by the IUT unless further input is applied. The 
above partial-order test goes only through quiescent states, since the next input is only 
applied after some time-out period to ensure that no additional output is expected. An 
interaction sequence is called a quiescent trace [Simao] if each input is applied when 
the IUT is in a quiescent state. For example, the sequence < i1, o1a, i3, etc. > is al-
lowed by the partial order of Figure 1(a), but it is not quiescent. The testing of non-
quiescent traces is discussed in [Bochmann a]. 

It was noted that the length of the resulting test suite for testing a single transition 
using this method is much shorter in the presence of many concurrent inputs as com-
pared with traditional state machine testing. For the example transition shown in Fig-
ure 1(a), the corresponding state machine (showing only quiescent states) is shown in 
Figure 1(b). State machine testing (without state identification) yields for this state 
machine the same two test cases above. However, if there are more concurrent inputs, 
the number of states of the corresponding state machine will blow up exponentially 
(see also Section 5). 

The notion of POIOA has been criticized because it assumes that there is global 
synchronization (involving all interaction points) in each state of the automaton. It 
was argued that this is not realistic if the behavior of the POIOA is supposed to repre-
sent the behavior of a distributed system where interactions take place at different 
interaction points distributed over several system components. To avoid this criticism, 
we consider in this paper the concepts explained Section 3, which allow for strict 
sequencing of transitions (as in the case of POIOA), as well as for weak sequencing 
(which is more natural in distributed environments).   

2.2 Formal definition “partial order” 

Given a set E of events, a partial order on E is a binary relation < of events which 
is transitive, antisymmetric and irreflective. If <e1, e2> is in <,  we say that e1 is be-
fore e2. Often we characterize an order by the event pairs that generate all pairs in the 
order by transitivity closure. We call these the generating event pairs of the order. For 
instance, the arrows in Figure 1(a) correspond to the generating event pairs, for in-
stance the pair <i1, o1a>. However, the partial order defined by this figure also in-
cludes pairs such as <o1a, o2> which are obtained by transitivity.  

In order to deal with a situation where the same type of event occurs several times, 
one usually considers a Partially Ordered Multi-Set (Pomset). Given a partial order 



(E, >) where some events in E may be of the same type, a Pomset on (E, >) is ob-
tained by adding a labeling function L: E -> V, where V is a set of labels. For a given 
event e ϵ E, L(e) represents the type of event e.  In fact, the names given to events in 
our figures represent the type of the event shown. For instance, the first event in Fig-
ure 1(a) is of type i1.  

We call initiating event any minimum event of the order, that is, event e ϵ E is 
minimum if there is no event e’ ϵ E such that e’ < e. Similarly, we call terminating 
event any maximum event of the order.  In the remainder of this paper, when we talk 
about a partial order, we always mean a Pomset where the set of labels V is often 
partitioned into two subsets: the set I of inputs and the set O of outputs. 

3 The concept of PO-Charts  

3.1 Collaborations 

Concepts for describing the behavior of distributed systems in a global view have 
been proposed in [Castejon]. First, the UML concept of collaborations is used.  A 
collaboration identifies the different roles that the components of the distributed sys-
tem may play in a given application. However, this UML concept does not talk about 
the dynamic aspect of the behavior. For describing the dynamic aspect of the behav-
ior, it is proposed to decompose a given collaboration into several sub-collaborations 
(each involving possibly a subset of roles) and indicating in which order these sub-
collaborations are performed. Using the sequencing primitives of UML Activity dia-
grams (sequence, alternative and concurrency) an Activity-like notation is proposed, 
however, with the following modifications to the semantics: (a) a single Activity – 
called a “collaboration” – would normally involve several parties (roles – or swim-
lanes); and (b) sequencing between successive collaborations may be in strict se-
quence (as in UML Activity diagrams, where any sub-activity of the second collabo-
ration can only start when all sub-activities of the first have been completed), or in 
weak sequence (where a role may start with its activities of the second collaboration 
when it has completed its own sub-activities for the first). 

 A simple example is shown in Figure 2 (this is Figure 3 from [Castejon]). This is a 
simplified model of the execution of a medical test at the patient’s premises in the 
context of tele-medicine. There are three roles in the system, as shown by the UML 
collaboration diagram of Figure 2(a): dt (doctor terminal), tu (test unit), and dl (data 
logger). Figure 2(b) shows the dynamic behavior of the Test collaboration: A Test 
starts with the DoTest sub-collaboration which is followed by the LogValues sub-
collaboration. This may be repeated several times until the GetValues sub-
collaboration is performed. The whole may be repeated several times. 

The Test collaboration shown in the figure can, in turn, be used as a sub-
collaboration in a larger context of tele-medicine, as discussed in [Castejon].  This 
notation, therefore, allows for writing hierarchically structured behavior specifica-
tions. At the most detailed level, the behavior of a collaboration can be defined in the 
form of a Message Sequence Chart (MSC, also called UML Interaction diagram). A 



very simple example is shown in Figure 3(a) for the behavior of the GetValues col-
laboration included in Figure 2(b). 

 

         

Fig.2: The Test collaboration: (a) UML Collaboration diagram, (b) behavior definition contain-
ing three sub-collaborations 

                        

Fig. 3: (a) MSC defining the GetValues collaboration. (b) Partial order with roles defining 
DoTest and LogValues combined 

However, in the context of this paper, we prefer to define the behavior of a basic, 
unstructured collaborations in the form of what we call a partial order with roles. 
This is a notion very similar to an MSC. Like in MSCs, the roles involved in the be-
havior are explicitly shown as vertical line. Actions performed by a role are indicated 
by dots (events) with their names (event labels) and the partial order between these 
events is indicated by arrows. However, these arrows do not necessarily represent 
messages, as in MSCs. An example is given in Figure 3(b) for the behavior of the two 
collaborations DoTest and LogValues combined (see Figure 2(b)).   

The semantics of the sequencing primitives that define the order in which sub-
collaborations are executed are defined in [Castejon] informally, based on the seman-
tics of Activity diagrams (with modifications). A formal definition, using partial or-
ders of events, is given by Israr [Israr] where, in addition, performance aspects are 
considered.   



3.2 MSC-Graphs 

In their article of 1999 [Alur], Alur and Yannakakis consider model checking of 
MSCs. This paper contains several discussions that are useful for our purpose: 
1. The paper formally defines the semantics of an MSC (basic features only) based on 

partial orders. 
2. The paper formally defines the notation of MSC-Graphs which correspond to the 

UML notation of Interaction Overview Diagram (see for instance figure 17.27 in 
[UML]). An MSC-Graph is an oriented graph where each node represents an MSC 
and each edge represents the sequential execution of the pointed MSC after the ini-
tial MSC. It is assumed in [Alur] that all edges either represent strict sequencing 
(called synchronous concatenation) or weak sequencing (called asynchronous con-
catenation). However, in this paper we assume that for each edge the type of se-
quencing can be specified separately (similar as in the collaboration notation dis-
cussed in Section 3.1).  

3. The paper formally defines Hierarchical MSCs which is an extension of MSC-
Graphs were a node may also represent another MSC-Graph or Hierarchical MSC. 
However, it is assume that there is no recursion in this dependency. It is shown 
how a Hierarchical MSC can be flattened in order to obtain an equivalent (more 
complex) MSC-Graph. As this notation does not introduce any additional power of 
description, we do not further discuss this notation in this paper. 

4. The paper defines a subset of MSC-Graphs, called bounded MSC-Graphs which 
have the important property that the defined behavior is regular, that is, it can be 
represented by a finite state machine. Therefore, such MSC-Graphs can be model-
checked (which is further discussed in [Alur]), and also, for such MSC-Graphs 
state machines testing methods can be applied. – An algorithm for determining 
whether a given MSC-Graph is bounded is also given. Essentially, it proceeds as 
follows: (a) The communication graph of an MSC has nodes corresponding to the 
roles (processes) of the MSC and an arc from p1 to p2 if role p1 sends a message to 
p2 in the MSC. (b) Given a subset S of nodes of an MSC-Graph, the communica-
tion graph of S is the union of the communication graphs of all the MSCs in the 
nodes of S. In such a graph, the roles that receive or send a message in some MSC 
of the graph are called the active processes of the graph. (c) An MSC-Graph is 
bounded if for each cycle c in the graph, the communication graph of the nodes on 
this cycle (after eliminating all non-active roles) is strongly connected. 

3.3 PO-Charts 

Inspired by the definition of MSC-Charts, we use in this paper the notion of PO-
Charts. These charts are defined like MSC-Charts, except that each node, instead of 
containing an MSC, contains a partial order with roles, as defined in Section 3.1. 
Hierarchical PO-Charts and bounded PO-Charts can be defined as described for 
MSC-Charts in [Alur].   

The main difference with MSC-Charts is the fact that for each edge representing 
the sequential execution between two partial orders with roles, it is indicated whether 



sequencing is weak or strict. Weak sequencing (abbreviated “ws”) means that se-
quencing is enforced for each role separately. Strong sequencing (abbreviated “ss”) 
means that the initiating events of the second partial order may only occur after all 
terminating events of the first partial order have occurred. This means that a strong 
synchronization point is introduced at this point during the execution. 

We note that Hierarchical PO-Charts are an alternative notation for defining the 
behavior of collaborations as discussed in Section 3.1. We prefer this notation be-
cause it has a formally defined semantics, however, it does not support directly con-
currency. An example of a PO-Chart is shown in Figure 4(left): This chart defines the 
Test collaboration already shown in Figure 2(b) – with a small change of control flow.   

                          

Fig. 4: (left) PO-Chart representing the Test collaboration. (right) The same behavior with 
additional input-output interactions for testing. 

4 Conformance testing with respect to PO-Charts 

4.1 General testing assumptions 

Test architecture 
For distributed systems, the test architecture has a big impact on testing. For testing 

a system that has several interfaces, one often uses the distributed test architecture 
where a local tester is associated with each interface of the system. If the local testers 
cannot communicate with one another, there are usually synchronization problems for 
controlling the order of inputs to be applied to the system and difficulties to observe 
the order of outputs at different interfaces. Therefore an architecture with local testers 
without mutual communication provides usually incomplete testing power. – In the 
following we assume a test architecture with local testers that can communicate with 
one another by message passing. 

Architectures for testing distributed systems in respect to specifications in the form 
of MSC were described in a recent paper [Dan]. In this context, it was assumed that 
the processes identified in the MSC can be classified as system or user processes. 



Then the user processes are replaced by local testers (that may, or may not communi-
cate with one another).  These testers exchange messages as specified by the given 
MSC.  

We take a slightly different approach for testing distributed implementations in re-
spect to PO-Chart specifications. We assume that each role of the PO-Chart may have 
a local interface to which a local tester can be attached. We assume in this paper that 
these local testers can communicate with one another by message passing. We assume 
that, at each local interface, the local tester communicates with the implementation of 
the role behavior through input and output interactions. These are synchronous inter-
actions between the tester and the role implementation, without queuing. This is simi-
lar to the interactions of POIOA, although the interactions of PO-Charts are associat-
ed with a particular role. 

Let us consider the example PO-Chart of Figure 4 (left).  In order to define a suita-
ble test architecture, we have to determine which of the given actions are input or 
output, or whether they are local actions that cannot be observed by the local tester. It 
may also be necessary to introduce additional input or output interactions in order to 
increase the power of testing. For this example system, we propose the enhanced PO-
Chart of Figure 4 (right) which contains a few additional interactions with the local 
testers. Non-observable local actions are represented by dark dots, inputs by white 
dots, and outputs by white rectangles. 

Test suites 
Since usually no finite test suite provides the guarantee that all possible implemen-

tation faults would be detected, Bougé et al. [Bouge] suggest to consider a sequence 
of test suites TSi (i= 1, 2, …) with increasing complexity, such that all faults detected 
by TSi would also be detected by TSi+1 . Then one can talk about validity of such a set 
of test suites, which means that for any possible implementation fault, there is a test 
suite TSi (for some i) that would detect this fault. 

Fault models 
[Bouge] also stresses the point that there are always some assumptions that are 

made about the tested implementations. These assumptions are often called fault 
model. The fault model defines the range of faults that should be detected by the giv-
en test suite. And at the same time these assumptions also state what properties of the 
implementation are assumed to be correctly implemented (and therefore need not be 
tested). 

In this context, [Bouge] mentions the following types of assumptions that are im-
portant for justifying the selection of particular test suites: 

• Regularity hypothesis: This is an assumption about the structure of the im-
plementation. Assuming that we have some measure of the complexity of 
each test case, the regularity hypothesis states that there is a value of com-
plexity k such that, if the implementation behaves correctly for all test cases 
with complexity less than k then it behaves correctly for all test cases. – In 
program testing, for example, one typically executes loops only once or 
twice and assumes that if no fault was detected then further executions of 
the loop will not lead to undetected faults. 



• Uniformity hypothesis: This assumption justifies the practice in program 
testing where the domain of input parameters is partitioned into sub-
domains and some random values are selected in each sub-domain for test-
ing. It is assumed that, if the implementation behaves correctly for some 
value in a sub-domain, then it will behave correctly for all values in that 
domain. 

How do these considerations apply to the testing of PO specifications? – The uni-
formity hypothesis applies to the variation of parameters of inputs to the implementa-
tion. In this paper we assume a finite set of distinct inputs where parameters can be 
ignored. – The regularity hypothesis takes on a particular form in the context of FSM 
testing methodology. The typical fault model of state machine testing assumes that 
the number of states of the implementation is not much larger (if not smaller or 
equal) to the number of states of the reference specification. Under this assumption, 
the test suites with test cases of bounded length can provide the guarantee of fault 
coverage.  

For testing PO-Charts, we propose to use a regularity hypothesis similar to what is 
used for program testing. A PO-Chart defines possible control flows from the initial 
MSC-node to the final MSC-node. This is like the control flow in a program. As in 
program testing, we propose to test a PO-Chart by executing the different control 
paths through the chart, possibly using the well-known All-Branches or All-Paths 
criteria and executing loops typically once or twice. 

4.2 Testing PO-Charts 

For a bounded PO-Chart, there are essentially two approaches to test suite selec-
tion:  

• The partial-order testing method proposed in this paper: The test designer 
should select a number of control flow paths through the PO-Chart, concate-
nate the partial orders of the nodes in the order of the path, using weak or 
strong sequencing as defined by the PO-Chart. The resulting partial order of 
inputs and outputs is then tested using the partial-order test described in 
Section 2.1. 

• The state machine testing approach (with all its different test selection meth-
ods): Derive the state machine that has the same behavior as the PO-Chart, 
and then use one of the state machine testing methods. 

If the PO-Chart is unbounded, the second approach is not applicable. As an exam-
ple, we first discuss in the following the testing of a very simple bounded PO-Chart, 
and then consider an examples of unbounded PO-Charts.  

4.3 Example of a bounded PO-Chart 

We consider the PO-Chart shown in Figure 5(a) which contains a loop with node A 
containing the partial order of Figure 1(a) with an additional ordering constraint indi-
cated by the dotted arrow. All sequencing between nodes are week sequences, alt-



hough for this example this is equivalent to strong sequencing. Figure 5(b) shows the 
corresponding state machine.  

 
 

                     

Fig. 5: (a) Example of a PO-Chart. (b) An equivalent state machine 

State machine testing 
The state machine of Figure 5(b) is a partially defined machine. We recall that 

many state machine testing methods assume that the machine is fully defined (that is, 
in all states for all inputs). Let us assume that input messages received by the system 
are stored in a message pool until the system gets into a state where the input can be 
consumed (this is called “full reordering of messages”  in [Castejon], Section 3.1). 
This is advantageous in distributed systems for avoiding race conditions [Bochmann 
b]. If we assume this for the state machine of Figure 5(b), then in all states all inputs 
can be accepted – inputs for which no transition is defined in the current state will 
provide no output, however, the state of the system changes since the content of the 
pool changes.  

                                                   

Fig. 6: (a) Partial order of path p(2) based on the PO-Chart of Fig. 5(a). (b) Part of the infinite 
state machine equivalent to the PO-Chart of Fig. 5(a) without the dashed dependency.  



Under this assumption, the state machine of Figure 5(b) has unique input-output 
(UIO) sequences of length one for all states, except for state 5. Let us assume that we 
ignore the possible implementation fault that the i4-transition leads to one of the states 
1, 2, 3 or 4. A test suite with fault detection guarantee for implementations built as 
state machines with not more than 5 states would first include the test cases for vali-
dating the UIO sequences. These tests would already include the test cases <i1, i2, i3, 
i4> and <i1, i3, i2, i4>  which cover all transitions of the state machine. 

Partial-order testing  
This PO-Chart allows for an infinite number of execution paths p(n) – for n = 0, 1, 

2, … where p(n) consists of n repetitions of the partial order of node A followed by 
one execution of node B. If we only test the path p(1), using the partial order test 
described in Section 2.1, we obtain the two test cases <i1, i2, i3, i4> and <i1, i3, i2, 
i4>.  For the path p(2) – shown in Figure 6(a) - we obtain the following test cases 
(where the dependencies of the bold inputs are determined): <i1, i3, i2, i1, i3, i2,  
i4> and  <i1, i2, i3, i1, i2, i3,  i4>. 

4.4 Examples of unbounded PO-Charts 

Let us consider the PO-Chart of Figure 5(a) again, but now without the dashed de-
pendency. This chart is not bounded because there is no dependency where the right 
process has to wait for the left process. In this case, the right process may execute a 
second i1 input before an i3 input is applied to the left process, and this may repeat 
after a second i2 input is applied to the right process.  

With partial-order testing, we obtain for testing the path p(2) the following test 
cases: <i1, i3, i2, i1, i3, i2,  i4> and <i1, i2, i1, i2, i4, i3, i3>. For state machine test-
ing one may want to test an initial part of the corresponding infinite state machine. 
Such an initial part is shown in Figure 6(b).  

Another example of an unbounded PO-Chart is shown in Figure 4(right). The 
shortest execution path goes through the partial orders of the two nodes only once. In 
this case, the partial-order test gives rise to the following test cases (again, the in-
puts for which the dependencies are tested are written in bold): <request, get-req, 
i2, i3, i5>  and <request, i2, i3, get-req, i5>. The realization of a correct implemen-
tation for the behavior defined by this PO-Chart is not straightforward, as discussed in 
[Faleh]. An implementation using messages for the order dependencies shown in the 
PO-Chart does not work because in the case that the doctor terminal (dt) sends a get-
req message immediately after the request message to the test unit (tu), the former 
message may arrive at the data-logger (dl) before the o2 message arrives, which 
means that the data value returned does not include the last test measurement. Such a 
fault would be detected by the first test case. A well-known solution for a correct 
implementation is to count the number of times that the first node of the chart is exe-
cuted, and include this information in the messages sent to the data-logger [Faleh].   

We note that this implementation fault would possibly not be detectable if there 
was no testing interface at the test unit system component. On the other hand, the 
observation of the confirm output at the test unit is not useful for fault detection. We 



note that the first test case requires some coordination between the local testers at the 
doctor terminal and the test unit in order to make sure that the i2 input is not applied 
before the get-req input at the doctor terminal and all resulting outputs (in this case 
none – a timeout is assumed after each input in the test case) are observed. 

5 Discussion 

Specification formalism 
The POIOA specification formalism has been criticized for assuming strong syn-

chronization points in each state of the machine. This corresponds to PO-Charts in 
which all sequential edges between different nodes (partial orders) have strict se-
quencing. In contrast to the partial orders associated with POIOA transitions, the par-
tial orders associated with a node of a PO-Chart indicates for each interaction the role 
(process or interface) where the interaction takes place. This additional information 
allows us to define weak sequencing between different nodes of a PO-Chart.  

One could possibly introduce an extension to POIOA where the sequencing of in-
coming and outgoing transitions at each state could be explicitly specified by indicat-
ing for each initiating event of an outgoing transition what are the terminating events 
of an incoming transition for which this initial event must wait before proceeding (if 
the state was reached by that incoming transition). If it has to wait for all terminating 
events, then we have the situation of normal POIOA where the incoming transition 
must be completely terminated before an outgoing transition may start. Weak se-
quencing could also be specified if the roles of the events are known. However, we 
are not convinced that such a generality of defining the sequence of transitions is 
useful – we prefer the addition of the role information (as defined for PO-Charts) 
which automatically defines the semantics of weak sequencing (if this is the desired 
form of sequencing). 

                   

Fig. 7: (a) A partial order with roles. (b) An equivalent state machine. 

Testing complexity 
It was argued in [Bochmann a] that the partial order test, as discussed in Section 

2.1, is of much lower complexity than state machine testing when applied to systems 



with concurrency. This does not show up in the simple examples discussed above. But 
it is clear that the number of states of a state machine that is equivalent to a partial 
order grows exponentially if the degree of concurrency in the partial order increases. 
With the number of states of the reference specification, also the length of the test 
suite will grow accordingly. 

As an example, we consider here a variation of the partial order of Figure 1(a) 
where we assume that three inputs i2, i3 and i4 are enabled after the input i1 (see 
Figure 7(a)). The corresponding state machine is shown in Figure 7(b). The state ma-
chine testing approach requires at least 6 test cases to cover all the branches of the 
state machine. With the partial order approach, we obtain the three test cases <i1, i2, 
i3, i4>, <i1, i3, i4, i2>, and <i1, i2, i4, i3>. 

 
Different fault models 
One may suspect that the lower complexity of the partial-order tests implicitly im-

plies that their fault coverage is lower. This is in fact true. The fault model for which 
the partial-order tests provide fault coverage makes stronger assumptions about the 
tested implementation than the fault model used with state machine testing. 

It was shown in [Bochman a] that the partial-order test method provides complete 
fault coverage under the assumption that the tested implementation has the behavior 
that can be defined by a single partial order (without alternatives). That is, a transition 
of the POIOA model is implemented as a single transition in the implementation 
POIOA.  An example of an implementation that does not satisfy this assumption 
would be an implementation that has the behavior of Figure 7(b) with a single output 
fault in the dashed transition. Such a fault is not detected by the test suite given above, 
and this faulty implementation cannot be described by a single partial order.  

6 Conclusions 

For describing the behavior of distributed systems with multiple interfaces, one 
needs the notion of partial order for the interactions at the different interfaces, since 
there is no total order defined for all the interactions of the system. We have com-
pared different notions of partial-order specifications, including POIOA, ordering of 
collaborations, and MSC-Charts (also called Interaction Overview Diagrams). We 
propose the use of a variant of the latter, called Partial-Order-Charts (PO-Charts). We 
have shown that for the testing of distributed systems in respect to such behavior 
specifications, the partial-order tests of [Haar] can be used.  

In the case that the PO-Chart is bounded, one can also derive an equivalent state 
machine and use FSM testing methods. We provided in this paper a preliminary com-
parison of testing complexities and fault models for these two testing approaches 
(partial-order tests and FSM testing methods). For systems with much concurrency, 
the partial-order tests are advantageous if one can assume that the fault model of par-
tial-order testing is satisfied. This is presumably the case when the implementation 
uses message passing between the different system components to implement the 
order dependencies defined in the specification. 
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