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Abstract

Online kernel learning (OKL) is a flexible framework for prediction problems,
since the large approximation space provided by reproducing kernel Hilbert spaces
often contains an accurate function for the problem. Nonetheless, optimizing over
this space is computationally expensive. Not only first order methods accumulate
O(
√
T ) more loss than the optimal function, but the curse of kernelization results

in a O(t) per-step complexity. Second-order methods get closer to the optimum
much faster, suffering only O(log T ) regret, but second-order updates are even
more expensive with theirO(t2) per-step cost. Existing approximate OKL methods
reduce this complexity either by limiting the support vectors (SV) used by the
predictor, or by avoiding the kernelization process altogether using embedding.
Nonetheless, as long as the size of the approximation space or the number of
SV does not grow over time, an adversarial environment can always exploit the
approximation process. In this paper, we propose PROS-N-KONS, a method that
combines Nyström sketching to project the input point to a small and accurate
embedded space; and to perform efficient second-order updates in this space. The
embedded space is continuously updated to guarantee that the embedding remains
accurate. We show that the per-step cost only grows with the effective dimension
of the problem and not with T . Moreover, the second-order updated allows us to
achieve the logarithmic regret. We empirically compare our algorithm on recent
large-scales benchmarks and show it performs favorably.

1 Introduction
Online learning (OL) represents a family of efficient and scalable learning algorithms for building a
predictive model incrementally from a sequence of T data points. A popular online learning approach
[24] is to learn a linear predictor using gradient descent (GD) in the input space Rd. Since we can
explicitly store and update the d weights of the linear predictor, the total runtime of this algorithm is
O(Td), allowing it to scale to large problems. Unfortunately, it is sometimes the case that no good
predictor can be constructed starting from only the linear combination of the input features. For this
reason, online kernel learning (OKL) [8] first maps the points into a high-dimensional reproducing
kernel Hilbert space (RKHS) using a non-linear feature map ϕ, and then runs GD on the projected
points, which is often referred to as functional GD (FGD) [8]. With the kernel approach, each gradient
step does not update a fixed set of weights, but instead introduces the feature-mapped point in the
predictor as a support vector (SV). The resulting kernel-based predictor is flexible and data adaptive,
but the number of parameters, and therefore the per-step space and time cost, now scales with O(t),
the number of SVs included after t steps of GD. This curse of kernelization results in an O(T 2) total
runtime, and prevents standard OKL methods from scaling to large problems.

Given an RKHS H containing functions with very small prediction loss, the objective of an OL
algorithm is to approach over time the performance of the best predictor inH and thus minimize the
regret, that is the difference in cumulative loss between the OL algorithm and the best predictor in
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hindsight. First-order GD achieve a O(
√
T ) regret for any arbitrary sequence of convex losses [8].

However, if we know that the losses are strongly convex, setting a more aggressive step-size in
first-order GD achieves a smaller O(log T ) regret [23]. Unfortunately, most common losses, such as
the squared loss, are not strongly convex when evaluated for a single point xt. Nonetheless, they
posses a certain directional curvature [6] that can be exploited by second-order GD methods, such as
kernelized online Newton step (KONS) [1] and kernel-recursive least squares (KRLS) [22], to achieve
the O(log T ) regret without strong convexity along all directions. The drawback of second-order
methods is that they have to store and invert the t × t covariance matrix between all SV included
in the predictor. This requires O(t2) space and time per-step, dwarfing the O(t) cost of first-order
methods and resulting in an even more infeasible O(T 3) runtime.

Contributions In this paper, we introduce PROS-N-KONS, a new OKL method that (1) achieves
logarithmic regret for losses with directional curvature using second-order updates, and (2) avoids
the curse of kernelization, taking only a fixed per-step time and space cost. To achieve this, we start
from KONS, a low-regret exact second-order OKL method proposed in [1], but replace the exact
feature map ϕ with an approximate ϕ̃ constructed using a Nyström dictionary approximation. For
a dictionary of size j, this non-linearly embeds the points in Rj , where we can efficiently perform
exact second-order updates in constant O(j2) per-step time, and achieve the desired O(log T ) regret.
Combined with an online dictionary learning (KORS [1]) and an adaptive restart strategy, we show
that we never get stuck performing GD in an embedded space that is too distant from the true H,
but at the same time the size of the embedding j never grows larger than the effective dimension
of the problem. While previous methods [11, 9] used fixed embeddings, we adaptively construct
a small dictionary that scales only with the effective dimension of the data. We then construct an
accurate approximation of the covariance matrix, to avoid the variance due to dictionary changes
using carefully designed projections.

Related work Although first-order OKL methods cannot achieve logarithmic regret, many approxi-
mation methods have been proposed to make them scale to large datasets. Approximate methods
usually take one of two approaches, either performing approximate gradient updates in the true RKHS
(budgeted perceptron [2], projectron [13], forgetron [4]) preventing SV from entering the predictor,
or exact gradient updates in an approximate RKHS (Nyström [11], random feature expansion [9]),
where the points are embedded in a finite-dimensional space and the curse of kernelization does not
apply. Overall, the goal is to never exceed a budget of SVs in order to maintain a fixed per-step
update cost. Among budgeted methods, weight degradation [15] can be done in many different ways,
such as removal [4] or more expensive projection [13] and merging. Nonetheless, as long as the
size of the budget is fixed, the adversary can exploit this to increase the regret of the algorithm, and
oblivious inclusion strategies such as uniform sampling [7] fail. Another approach is to replace the
exact feature-map ϕ with an approximate feature map ϕ̃ which allows to explicitly represent the
mapped points, and run linear OL on this embedding [11, 19]. When the embedding is oblivious to
data, the method is known as random-feature expansion, while a common data-dependent embedding
mapping is known as Nyström method [17]. Again, if the embedding is fixed or with a limit in size,
the adversary can exploit it. In addition, analyzing a change in embedding during the gradient descent
is an open problem, since the underlying RKHS changes with it.

The only approximate second-order method known to achieve logarithmic regret is SKETCHED-
KONS. Both SKETCHED-KONS and PROS-N-KONS are based on the exact second-order OL
method ONS [6] or its kernelized version KONS [1]. However, SKETCHED-KONS only applies
budgeting techniques to the Hessian of the second-order updates and not to the predictor itself,
resulting in a O(t) per-step evaluation time cost. Moreover, the Hessian sketching is performed
only through SV removal, resulting in high instability. In this paper, we solve these two issues with
PROS-N-KONS by directly approximating KONS using Nyström functional approximation. This
results in updates that are closer to SV projection than removal, and that budget both the representation
of the Hessian and the predictor.

2 Background
Notation We borrow the notation from [12] and [1]. We use upper-case bold letters A for matrices,
lower-case bold letters a for vectors, lower-case letters a for scalars. We denote by [A]ij and [a]i the
(i, j) element of a matrix and i-th element of a vector respectively. We denote by IT ∈ RT×T the
identity matrix of dimension T and by Diag(a) ∈ RT×T the diagonal matrix with the vector a ∈ RT
on the diagonal. We use eT,i ∈ RT to denote the indicator vector of dimension T for element i.
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When the dimension of I and ei is clear from the context, we omit the T , and we also indicate the
identity operator by I. We use A � B to indicate that A−B is a positive semi-definite (PSD) matrix.
Finally, the set of integers between 1 and T is denoted by [T ] := {1, . . . , T}.
Kernels Given an input space X and a kernel function K(·, ·) : X × X → R, we denote the
reproducing kernel Hilbert space (RKHS) induced by K by H , and with ϕ(·) : X → H the
associated feature map. Using the feature map, the kernel function can be represented as K(x,x′) =
〈ϕ(x), ϕ(x′)〉H, but with a slight abuse of notation we use the simplified notation K(x,x′) =
ϕ(x)Tϕ(x′) in the following. Any function f ∈ H can be represented as a (potentially infinite) set of
weights w such that fw(x) = ϕ(x)Tw. Given a set of t points, Dt = {xs}ts=1 we denote the feature
matrix with φs as its s-th column by Φt ∈ R∞×t.
Online kernel learning (OKL) We consider online kernel learning, where an adversary chooses
an arbitrary sequence of points {xt}Tt=1 and convex differentiable losses {`t}Tt=1. The learning
protocol is the following. At each round t ∈ [T ] (1) the adversary reveals the new point xt, (2)
the learner chooses a function fwt and predicts fwt(xt) = ϕ(xt)

Twt, (3) the adversary reveals the
loss `t, and (4) the learner suffers `t(ϕ(xt)

Twt) and observes the associated gradient gt. We are
interested in bounding the cumulative regret between the learner and a fixed function w defined as
RT (w) =

∑T
t=1 `(φtwt)− `(φtw). SinceH is potentially a very large space, we need to restrict

the class of comparators w. As in [12], we consider all functions that guarantee bounded predictions,
i.e., S = {w : ∀t ∈ [T ], |φT

tw| ≤ C}. We make the following assumptions on the losses.
Assumption 1 (Scalar Lipschitz). The loss functions `t satisfy |`′t(z)| whenever |z| ≤ C.
Assumption 2 (Curvature). There exists σt ≥ σ > 0 such that for all u,w ∈ S and for all t ∈ [T ],

`t(φ
T

tw) := lt(w) ≥ lt(u) +∇lt(u)T(w − u) +
σt
2

(∇lt(u)T(w − u))
2
.

This assumption is weaker than strong convexity as it only requires the losses to be strongly convex
in the direction of the gradient. It is satisfied by squared loss, squared hinge loss, and in general, all
exp-concave losses [6]. Under this weaker requirement, second-order learning methods [6, 1], obtain
the O(log T ) regret at the cost of a higher computational complexity w.r.t. first-order methods.

Nyström approximation A common approach to alleviate the computational cost is to replace
the high-dimensional feature map ϕ with a finite-dimensional approximate feature map ϕ̃. Let
I = {xi}ji=1 be a dictionary of j points from the dataset and ΦI be the associated feature matrix with
ϕ(xi) as columns. We define the embedding ϕ̃(x) := Σ−1UTΦT

Iϕ(x) ∈ Rj , where ΦI = VΣUT

is the singular value decomposition of the feature matrix. While in general ΦI is infinite dimensional
and cannot be directly decomposed, we exploit the fact that UΣVTVΣUT = ΦT

IΦI = KI =
UΛUT and that KI is a (finite-dimensional) PSD matrix. Therefore it is sufficient to compute
the eigenvectors U and eigenvalues Λ of KI and take the square root Λ1/2 = Σ. Note that with
this definition we are effectively replacing the kernel K and H with an approximate KI and HI ,
such that KI(x,x′) = ϕ̃(x)Tϕ̃(x′) = ϕ(x)TΦIUΣ−1Σ−1UTΦT

Iϕ(x′) = ϕ(x)TPIϕ(x′) where
PI = ΦI(ΦT

IΦI)−1ΦT

I is the projection matrix on the column span of ΦI . Since ϕ̃ returns vectors
in Rj , this transformation effectively reduces the computation complexity of kernel operations from t
down to the size of the dictionary j. The accuracy of ϕ̃ is directly related to the accuracy of the
projection PI in approximating the projection Pt = Φt(Φ

T
tΦt)

−1ΦT
t , so that for all s, s′ ∈ [t],

ϕ̃(xs)
Tϕ̃(xs′) is close to ϕ(xs)

TPtϕ(xs′) = ϕ(xs)
Tϕ(xs′).

Ridge leverage scores All that is left is to find an efficient algorithm to choose a good dictionary I
to minimize the error PI − Pt. Among dictionary-selection methods, we focus on those that sample
points proportionally to their ridge leverage scores (RLSs) because they provide strong reconstruction
guarantees. We now define RLS and associated effective dimension.
Definition 1. Given a kernel function K, a set of points Dt = {xs}ts=1 and a parameter γ > 0, the
γ-ridge leverage score (RLS) of point i is defined as

τt,i = et,iKt(Kt + γIt)
−1et,i = φT

i (ΦtΦ
T

t + γI)−1φi, (1)

and the effective dimension of Dt as their sum for the each example of Dt,

dteff(γ) =

t∑
i=1

τt,i = Tr
(
Kt(Kt + γIt)

−1) . (2)
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The RLS of a point measures how orthogonal φi is w.r.t. to the other points in Φt, and therefore
how important it is to include it in I to obtain an accurate projection PI . The effective dimension
captures the capacity of the RKHSH over the support vectors in Dt. Let {λi}i be the eigenvalues of
Kt, since dteff(γ) =

∑t
s=1 λi/(λi + γ), the effective dimension can be seen as the soft rank of Kt

where only eigenvalues above γ are counted.

To estimate the RLS and construct an accurate I, we leverage KORS [1] (see Alg. 1 in App. A) that
extends the online row sampling of [3] to kernels. Starting from an empty dictionary, at each round,
KORS receives a new point xt, temporarily adds it to the current dictionary It and estimates its
associated RLS τ̃t. Then it draws a Bernoulli r.v. proportionally to τ̃t. If the outcome is one, the point
is deemed relevant and added to the dictionary, otherwise it is discarded and never added. Note that
since points get only evaluated once, and never dropped, the size of the dictionary grows over time
and the RKHSHIt is included in the RKHSHIt+1

. We restate the quality of the learned dictionaries
and the complexity of the algorithm that we use as a building block.

Proposition 1 ([1, Thm. 2]). Given parameters 0 < ε ≤ 1, 0 < γ, 0 < δ < 1, if β ≥ 3 log(T/δ)/ε2

then the dictionary learned by KORS is such that w.p. 1− δ,

(1) for all rounds t ∈ [T ], we have 0 � ΦT
t(Pt −PIt)Φt � + ε

1−εγI, and

(2) the maximum size of the dictionary J is bounded by 1+ε
1−ε3βdTeff(γ) log(2T/δ).

The algorithm runs in O(dTeff(α)2 log4(T )) space and Õ(dTeff(α)3) time per iteration.

3 The PROS-N-KONS algorithm
We first use a toy OKL example from [1] to illustrate the main challenges for FGD in getting both
computational efficiency and optimal regret guarantees. We then propose a different approach which
will naturally lead to the definition of PROS-N-KONS.

Consider the case of binary classification with the square loss, where the point presented by the
adversary in the sequence is always the same point xexp, but each round with an opposite {1,−1}
label. Note that the difficulty in this problem arises from the adversarial nature of the labels and it is
not due to the dataset itself. The cumulative loss of the comparator w becomes (ϕ(xexp)

Tw − 1)2 +
(ϕ(xexp)

Tw + 1)2 + . . . for T steps. Our goal is to achieve O(log T ) regret w.r.t. the best solution
in hindsight, which is easily done by always predicting 0. Intuitively an algorithm will do well when
the gradient-step magnitude shrinks as 1/t. Note that these losses are not strongly convex, thus exact
first-order FGD only achieves O(

√
T ) regret and does not guarantee our goal. Exact second-order

methods (e.g., KONS) achieve the O(log T ) regret, but also store T copies of the SV, and have T 4

runtime. If we try to improve the runtime using approximate updates and a fixed budget of SV, we
lose the O(log T ) regime, since skipping the insertion of a SV also slows down the reduction in the
step-size, both for first-order and second-order methods. If instead we try to compensate the scarcity
of SV additions due to the budget with larger updates to the step-size, the adversary can exploit such
an unstable algorithm, as is shown in [1] where in order to avoid an unstable solution forces the
algorithm to introduce SV with a constant probability. Finally, note that this example can be easily
generalized for any algorithm that stores a fixed budget of SV, replacing a single xexp with a set of
repeating vectors that exceed the budget. This also defeats oblivious embedding techniques such as
random feature expansion with a fixed amount of random features or a fixed dictionary, and simple
strategies that update the SV dictionary by insertion and removal.

If we relax the fixed-budget requirement, selection algorithms such as KORS can find an appropriate
budget size for the SV dictionary. Indeed, this single sample problem is intrinsically simple: its
effective dimension dTeff(α) ' 1 is small, and its induced RKHS H = ϕ(xexp) is a singleton.
Therefore, following an adaptive embedding approach, we can reduce it to a one-dimensional
parametric problem and solve it efficiently in this space using exact ONS updates. Alternatively,
we can see this approach as constructing an approximate feature map ϕ̃ that after one step will
exactly coincide with the exact feature map ϕ, but allows us to run exact KONS updates efficiently
replacing K with K̃. Building on this intuition, we propose PROS-N-KONS, a new second-order
FGD method that continuously searches for the best embedding space HIt and, at the same time,
exploits the small embedding spaceHIt to efficiently perform exact second-order updates.
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We start from an empty dictionary I0 and a null predictor w0 = 0. At each round, PROS-N-KONS
(Algorithm 1) receives a new point xt and invokes KORS to decide whether it should be included in
the current dictionary or not. Let tj with j ∈ [J ] be the random step when KORS introduces xtj in
the dictionary. We analyze PROS-N-KONS as an epoch-based algorithm using these milestones tj .
Note that the length hj = tj+1 − tj and total number of epochs J is random, and is decided in a
data-adaptive way by KORS based on the difficulty of the problem. During epoch j, we have a
fixed dictionary Ij that induces a feature matrix ΦIj containing samples φi ∈ Ij , an embedding
ϕ̃(x) : X → Rj = Σ−1j UT

jΦ
T
jϕ(x) based on the singular values Σj and singular vectors Uj of

Φj , with its associated approximate kernel function K̃ and induced RKHS Hj . At each round
tj < t < tj+1, we perform an exact KONS update using the approximate map ϕ̃. This can be
computed explicitly since φ̃t is in Rj and can be easily stored in memory. The update rules are

Ãt = Ãt−1 +
σt
2

g̃tg̃
T

t , υ̃t = ω̃t−1 − Ã−1t−1g̃t−1, ω̃t = Π
At−1

St (υt) = υ̃t −
h(φ̃T

t υ̃t)

φ̃T
tÃ
−1
t−1φ̃t

Ã−1t−1φ̃t,

Input: Feasible parameter C, step-sizes ηt, regularizer α
1: Initialize j = 0, w̃0 = 0, g̃0 = 0, P̃0 = 0, Ã0 = αI,
2: Start a KORS instance with an empty dictionary I0.
3: for t = {1, . . . , T} do { Dictionary changed, reset.}
4: Receive xt, feed it to KORS.

Receive zt (point added to dictionary or not)
5: if zt−1 = 1 then
6: j = j + 1
7: Build Kj from Ij and decompose it in UjΣjΣ

T
jU

T
j

8: Set Ãt−1 = αI ∈ Rj×j .
9: ω̃t = 0 ∈ Rj

10: else {Execute a gradient-descent step.}
11: Compute map φt and approximate map φ̃t =

Σ−1
j UT

jΦ
T
jφt ∈ Rj .

12: Compute υ̃t = ω̃t−1 − Ã−1
t−1g̃t−1.

13: Compute ω̃t = υ̃t − h(φ̃T
t υ̃t)

φ̃T
t Ã
−1
t−1φ̃t

Ã−1
t−1φ̃t

where h(z) = sign(z)max{|z| − C, 0}
14: end if
15: Predict ỹt = φ̃T

t ω̃t.
16: Observe g̃t = ∇ω̃t`t(φ̃

T
t ω̃t) = `′t(ỹt)φ̃t.

17: Update Ãt = Ãt−1 +
σt
2

g̃tg̃
T
t .

18: end for
Figure 1: PROS-N-KONS

where the oblique projection Π
At−1

St is
computed using the closed-form solution
from [12]. When t = tj and a new epoch
begins, we perform a reset step before
taking the first gradient step in the new
embedded space. We update the feature-
map ϕ̃, but we reset Ãtj and ω̃tj to zero.
While this may seem a poor choice, as
information learned over time is lost, it
leaves intact the dictionary. As long as
(a) the dictionary, and therefore the em-
bedded space where we perform our GD,
keeps improving and (b) we do not need-
lessly reset too often, we can count on
the fast second-order updates to quickly
catch up to the best function in the current
Hj . The motivating reason to reset the de-
scent procedure when we switch subspace
is to guarantee that our starting point in
the descent cannot be influenced by the ad-
versary, and therefore allow us to bound
the regret for the overall process (Sect. 4).

Computational complexity PROS-N-
KONS’s computation complexity is dom-
inated by Ã−1t inversion required to compute the projection and the gradient update and by the query
to KORS, that internally also inverts a j × j matrix. Therefore, a naïve implementation requires
O(j3) per-step time and has a space O(j2) space complexity necessary to store Ãt. Notice that
taking advantage of the fact that KORS only adds SV to the dictionary and never removes them, and
that similarly, the Ãt matrix is constructed using rank-one updates, a careful implementation reduces
the per-step cost to O(j2). Overall, the total runtime of PROS-N-KONS is then O(TJ2), which
using the bound on J provided by Prop. 1 and neglecting logarithmic terms reduces to Õ(TdTeff(γ)2).
Compared to other exact second-order FGD methods, such as KONS or RKLS, PROS-N-KONS
dramatically improves the time and space complexity from polynomial to linear. Unlike other
approximate second-order methods, PROS-N-KONS does not add a new SV at each step. This way
it removes T 2 from the O(T 2 + TdTeff(γ)3) time complexity of SKETCHED-KONS [1]. Moreover,
when mint τt,t is small, SKETCHED-KONS needs to compensate by adding a constant probability of
adding a SV to the dictionary, resulting in a larger runtime complexity, while PROS-N-KONS has
no dependency on the value of the RLS. Even compared to first-order methods, which incur a larger
regret, PROS-N-KONS performs favorably, improving on the O(T 2) runtime of exact first-order
FGD. Compared to other approximate methods, the variant using rank-one updates matches the
O(J2) per-step cost of the more accurate first-order methods such as the budgeted perceptron [2],
projectron [13], Nyström GD [11], while improving on their regret. PROS-N-KONS also closely
matches faster but less accurate O(J) methods such as the forgetron [4] and budgeted GD [21].
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4 Regret guarantees
In this section, we study the regret performance of PROS-N-KONS.
Theorem 1 (proof in App. B,). For any sequence of losses `t satisfying Asm. 2 with Lipschitz
constant L, let σ = mint σt. If ηt ≥ σ for all t, α ≤

√
T , γ ≤ α, and predictions are bounded by C,

then the regret of PROS-N-KONS over T steps is bounded w.p. 1− δ as

RT (w) ≤ J
(
α‖w‖2 +

4

σ
dTeff

( α

σL2

)
log
(
2σL2T/α

))
+
L2

α

(
Tγε

4(1− ε)
+ 1

)
+ 2JC, (3)

where J ≤ 3βdTeff (γ) log(2T ) is the number of epochs. If γ = α/T the previous bound reduces to

RT (w) = O
(
α‖w‖2dTeff (α/T ) log(T ) + dTeff (α/T ) dTeff (α) log2(T )

)
. (4)

Remark (bound) The bound in Eq. 3 is composed of three terms. At each epoch of PROS-N-KONS,
an instance of KONS is run on the embedded feature spaceHj obtained by using the dictionary Ij
constructed up to the previous epoch. As a result, we directly use the bound on the regret of KONS
(Thm. 1 in [1]) for each of the J epochs, thus leading to the first term in the regret. Since a new epoch
is started whenever a new SV is added to the dictionary, the number of epochs J is at most the size of
the dictionary returned by KORS up to step T , which w.h.p. is Õ(dTeff(γ)), making the first term scale
as Õ(dTeff(γ)dTeff(α)) overall. Nonetheless, the comparator used in the per-epoch regret of KONS is
constrained to the RKHSHj induced by the embedding used in epoch j. The second term accounts
for the difference in performance between the best solutions in the RKHS in epoch j and in the
original RKHSH. While this error is directly controlled by KORS through the RLS regularization γ
and the parameter ε (hence the factor γε/(1 − ε) from Property (1) in Prop. 1), its impact on the
regret is amplified by the length of each epoch, thus leading to an overall linear term that needs to be
regularized. Finally, the last term summarizes the regret suffered every time a new epoch is started
and the default prediction ŷ = 0 is returned. Since the values yt and ŷt are constrained in S, this
results in a regret of 2JC.

Remark (regret comparison) Tuning the RLS regularization as γ = α/T leads to the bound in
Eq. 4. While the bound displays an explicit logarithmic dependency on T , this comes at the cost
of increasing the effective dimension, which now depends on the regularization α/T . While in
general this could possibly compromise the overall regret, if the sequence of points φ1, . . . , φT
induces a kernel matrix with a rapidly decaying spectrum, the resulting regret is still competitive.
For instance, if the eigenvalues of KT decrease as λt = at−q with constants a > 0 and q > 1, then
dTeff (α/T ) ≤ aqT 1/q/(q − 1). This shows that for any q > 2 we obtain a regret1 o(

√
T log2 T )

showing that KONS still improves over first-order methods. Furthermore, if the kernel has a low
rank or the eigenvalues decrease exponentially, the final regret is poly-logarithmic, thus preserving
the full advantage of the second-order approach. Notice that this scenario is always verified when
H = Rd, and is also verified when the adversary draws samples from a stationary distribution
and, e.g., the Gaussian kernel [20] (see also [14, 16]). This result is particularly remarkable when
compared to SKETCHED-KONS, whose regret scales as O

(
α‖w‖2 + dTeff (α) (log T )/η

)
, where η

is the fraction of samples which is forced into the dictionary (when η = 1, we recover the bound
for KONS). Even when the effective dimension is small (e.g., exponentially decaying eigenvalues),
SKETCHED-KONS requires setting η to T−p for a constant p > 0 to get a subquadratic space
complexity, at the cost of increasing the regret to O(T p log T ). On the other hand, PROS-N-KONS
achieves a poly-logarithmic regret with linear space complexity up to poly-log factors (i.e., TdTeff(γ)2),
thus greatly improving both the learning and computational performance w.r.t. SKETCHED-KONS.
Finally, notice that while γ = α/T is the best choice agnostic to the kernel, better bounds can
be obtained optimizing Eq. 3 for γ depending on dTeff(γ). For instance, let γ = α/T s, then the
optimal value of s for q-polynomially decaying spectrum is s = q/(1 + q), leading to a regret bound
Õ(T q/(1+q)), which is always o(

√
T ) for any q > 1.

Remark (comparison in the Euclidean case) In the special caseH = Rd, we can make a compari-
son with existing approximate methods for OL. In particular, the closest algorithm is SKETCHED-
ONS by Luo et al. [12]. Unlike PROS-N-KONS, and similarly to SKETCHED-KONS, they take the

1Here we ignore the term dTeff(α) which is a constant w.r.t.T for any constant α.
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approach of directly approximating At in the exactH = Rd using frequent directions [5] to construct
a k-rank approximation of At for a fixed k. The resulting algorithm achieves a regret that is bounded
by k log T + k

∑T
i=k+1 σ

2
i , where the sum

∑T
i=k+1 σ

2
i is equal to the sum of all the smallest d− k

eigenvalues of the final (exact) matrix AT . This quantity can vary from 0, when the data lies in a
subspace of rank r ≤ k, to T d−k

d when the sample lie orthogonally and in equal number along all d
directions available in Rd. Computationally, the algorithm requires O(Tdk) time and O(dk) space.
Conversely, PROS-N-KONS automatically adapt its time and space complexity to the effective
dimension of the algorithm dTeff(α/T ) which is smaller than the rank for any α. As a consequence,
it requires only Õ(Tr2) time and Õ(r2) space, achieving a O(r2 log T ) regret independently from
the spectrum of the covariance matrix. Computationally, all of these complexities are smaller than
the ones of SKETCHED-ONS in the regime r < k, which is the only one where SKETCHED-ONS
can guarantee a sublinear regret, and where the regrets of the two algorithms are close. Overall,
while SKETCHED-ONS implicitly relies on the r < k assumption, but continues to operate in a d
dimensional space and suffers large regret if r > k, PROS-N-KONS will adaptively convert the d
dimensional problem into a simpler one with the appropriate rank, fully reaping the computational
and regret benefits.

The bound in Thm. 1 can be refined in the specific case of squared loss as follows.
Theorem 2. For any sequence of squared losses `t = (yt− ŷt)2, L=4C and σ=1/(8C2), if ηt ≥ σ
for all t, α ≤

√
T and γ ≤ α, the regret of PROS-N-KONS over T steps is bounded w.p. 1− δ as

RT (w)≤
J∑
j=1

(
4

σ
djeff

( α

σL2

)
log
(

2σ
L2

α
Tr(Kj)

)
+ε′L∗j

)
+J

(
L
(
C +

L

α

)
+ε′α‖w‖22

)
, (5)

where ε′ = α
(
α− γε

1−ε
)−1 − 1 and L∗j = minw∈H

(∑tj+1−1
t=tj

(
φT
tw − yt

)2
+ α‖w‖22

)
is the best

regularized cumulative loss inH within epoch j.

Let L∗T be the best regularized cumulative loss over all T steps, then L∗j ≤ L∗T . Furthermore, we
have that djeff ≤ dTeff and thus regret in Eq. 5 can be (loosely) bounded as

RT (w) = O
(
J
(
dTeff(α) log(T ) + +ε′L∗j + ε′α‖w‖22

))
.

The major difference w.r.t. the general bound in Eq. 3 is that we directly relate the regret of PROS-N-
KONS to the performance of the best predictor in H in hindsight, which replaces the linear term
γT/α. As a result, we can set γ = α (for which ε′ = ε/(1− 2ε)) and avoid increasing the effective
dimension of the problem. Furthermore, since L∗T is the regularized loss of the optimal batch solution,
we expect it to be small whenever theH is well designed for the prediction task at hand. For instance,
if L∗T scales as O(log T ) for a given regularization α (e.g., in the realizable case L∗T is actually just
α‖w‖), then the regret of PROS-N-KONS is directly comparable with KONS up to a multiplicative
factor depending on the number of epochs J and with a much smaller time and space complexity that
adapt to the effective dimension of the problem (see Prop. 1).

5 Experiments
We empirically validate PROS-N-KONS on several regression and binary classification problems,
showing that it is competitive with state-of-the-art methods. We focused on verifying 1) the advantage
of second-order vs. first-order updates, 2) the effectiveness of data-adaptive embedding w.r.t. the
oblivious one, and 3) the effective dimension in real datasets. Note that our guarantees hold for more
challenging (possibly adversarial) settings than what we test empirically.

Algorithms Beside PROS-N-KONS, we introduce two heuristic variants. CON-KONS follows
the same update rules as PROS-N-KONS during the descent steps, but at reset steps it does not
reset the solution and instead computes w̃t−1 = Φj−1Uj−1Σ

−1
j−1ω̃t−1 starting from ω̃t−1 and sets

ω̃t = Σ−1j UT
jΦ

T
jw̃t−1. A similar update rule is used to map Ãt−1 into the new embedded space

without resetting it. B-KONS is a budgeted version of PROS-N-KONS that stops updating the
dictionary at a maximum budget Jmax and then it continues learning on the last space for the rest of
the run. Finally, we also include the best BATCH solution in the final spaceHJ returned by KORS as
a best-in-hindsight comparator. We also compare to two state-of-the-art embedding-based first-order
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Algorithm
parkinson n = 5, 875, d = 20 cpusmall n = 8, 192, d = 12

avg. squared loss #SV time avg. squared loss #SV time
FOGD 0.04909 ± 0.00020 30 — 0.02577 ± 0.00050 30 —
NOGD 0.04896 ± 0.00068 30 — 0.02559 ± 0.00024 30 —
PROS-N-KONS 0.05798 ± 0.00136 18 5.16 0.02494 ± 0.00141 20 7.28
CON-KONS 0.05696 ± 0.00129 18 5.21 0.02269 ± 0.00164 20 7.40
B-KONS 0.05795 ± 0.00172 18 5.35 0.02496 ± 0.00177 20 7.37
BATCH 0.04535 ± 0.00002 — — 0.01090 ± 0.00082 —

Algorithm
cadata n = 20, 640, d = 8 casp n = 45, 730, d = 9

avg. squared loss #SV time avg. squared loss #SV time
FOGD 0.04097 ± 0.00015 30 — 0.08021 ± 0.00031 30 —
NOGD 0.03983 ± 0.00018 30 — 0.07844 ± 0.00008 30 —
PROS-N-KONS 0.03095 ± 0.00110 20 18.59 0.06773 ± 0.00105 21 40.73
CON-KONS 0.02850 ± 0.00174 19 18.45 0.06832 ± 0.00315 20 40.91
B-KONS 0.03095 ± 0.00118 19 18.65 0.06775 ± 0.00067 21 41.13
BATCH 0.02202 ± 0.00002 — — 0.06100 ± 0.00003 — —

Algorithm
slice n = 53, 500, d = 385 year n = 463, 715, d = 90

avg. squared loss #SV time avg. squared loss #SV time
FOGD 0.00726 ± 0.00019 30 — 0.01427 ± 0.00004 30 —
NOGD 0.02636 ± 0.00460 30 — 0.01427 ± 0.00004 30 —
DUAL-SGD — — — 0.01440 ± 0.00000 100 —
PROS-N-KONS did not complete — — 0.01450 ± 0.00014 149 884.82
CON-KONS did not complete — — 0.01444 ± 0.00017 147 889.42
B-KONS 0.00913 ± 0.00045 100 60 0.01302 ± 0.00006 100 505.36
BATCH 0.00212 ± 0.00001 — — 0.01147 ± 0.00001 — —

Table 1: Regression datasets

methods from [11]. NOGD selects the first J points and uses them to construct an embedding and
then perform exact GD in the embedded space. FOGD uses random feature expansion to construct
an embedding, and then runs first-order GD in the embedded space. While oblivious embedding
methods are cheaper than data-adaptive Nyström, they are usually less accurate. Finally, DUAL-SGD
also performs a random feature expansion embedding, but in the dual space. Given the number
#SV of SVs stored in the predictor, and the input dimension d of the dataset’s samples, the time
complexity of all first-order methods is O(Td#SV ), while that of PROS-N-KONS and variants is
O(T (d+ #SV )#SV ). When #SV ∼ d (as in our case) the two complexities coincide. The space
complexities are also close, with PROS-N-KONS O(#SV 2) not much larger than the first order
methods’ O(#SV ). We do not run SKETCHED-KONS because the T 2 runtime is prohibitive.

Experimental setup We replicate the experimental setting in [11] with 9 datasets for regression
and 3 datasets for binary classification. We use the same preprocessing as Lu et al. [11]: each
feature of the points xt is rescaled to fit in [0, 1], for regression the target variable yt is rescaled in
[0, 1], while in binary classification the labels are {−1, 1}. We also do not tune the Gaussian kernel
bandwidth, but take the value σ = 8 used by [11]. For all datasets, we set β = 1 and ε = 0.5 for all
PROS-N-KONS variants and Jmax = 100 for B-KONS. For each algorithm and dataset, we report
average and standard deviation of the losses. The scores for the competitor baselines are reported as
provided in the original papers [11, 10]. We only report scores for NOGD, FOGD, and DUAL-SGD,
since they have been shown to outperform other baselines such as budgeted perceptron [2], projectron
[13], forgetron [4], and budgeted GD [21]. For PROS-N-KONS variant we also report the runtime in
seconds, but do not compare with the runtimes reported by [11, 10], as that would imply comparing
different implementations. Note that since the complexitiesO(Td#SV ) andO(T (d+ #SV )#SV )
are close, we do not expect large differences. All experiments are run on a single machine with 2
Xeon E5-2630 CPUs for a total of 10 cores, and are averaged over 15 runs.

Effective dimension and runtime We use size of the dictionary returned by KORS as a proxy for
the effective dimension of the datasets. As expected, larger datasets and datasets with a larger input
dimension have a larger effective dimension. Furthermore, dTeff(γ) increases (sublinearly) when we
reduce γ from 1 to 0.01 in the ijcnn1 dataset. More importantly, dTeff(γ) remains empirically small
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α = 1, γ = 1

Algorithm
ijcnn1 n = 141, 691, d = 22 cod-rna n = 271, 617, d = 8

accuracy #SV time accuracy #SV time
FOGD 9.06 ± 0.05 400 — 10.30 ± 0.10 400 —
NOGD 9.55 ± 0.01 100 — 13.80 ± 2.10 100 —
DUAL-SGD 8.35 ± 0.20 100 — 4.83 ± 0.21 100 —
PROS-N-KONS 9.70 ± 0.01 100 211.91 13.95 ± 1.19 38 270.81
CON-KONS 9.64 ± 0.01 101 215.71 18.99 ± 9.47 38 271.85
B-KONS 9.70 ± 0.01 98 206.53 13.99 ± 1.16 38 274.94
BATCH 8.33 ± 0.03 — — 3.781 ± 0.01 — —

α = 0.01, γ = 0.01

Algorithm
ijcnn1 n = 141, 691, d = 22 cod-rna n = 271, 617, d = 8

accuracy #SV time accuracy #SV time
FOGD 9.06 ± 0.05 400 — 10.30 ± 0.10 400 —
NOGD 9.55 ± 0.01 100 — 13.80 ± 2.10 100 —
DUAL-SGD 8.35 ± 0.20 100 — 4.83 ± 0.21 100 —
PROS-N-KONS 10.73 ± 0.12 436 1003.82 4.91 ± 0.04 111 459.28
CON-KONS 6.23 ± 0.18 432 987.33 5.81 ± 1.96 111 458.90
B-KONS 4.85 ± 0.08 100 147.22 4.57 ± 0.05 100 333.57
BATCH 5.61 ± 0.01 — — 3.61 ± 0.01 — —

Table 2: Binary classification datasets

even for datasets with hundreds of thousands samples, such as year, ijcnn1 and cod-rna. On the
other hand, in the slice dataset, the effective dimension is too large for PROS-N-KONS to complete
and we only provide results for B-KONS. Overall, the proposed algorithm can process hundreds of
thousands of points in a matter of minutes and shows that it can practically scale to large datasets.

Regression All algorithms are trained and evaluated using the squared loss. Notice that whenever the
budget Jmax is not exceeded, B-KONS and PROS-N-KONS are the same algorithm and obtain the
same result. On regression datasets (Tab. 1) we set α = 1 and γ = 1, which satisfies the requirements
of Thm. 2. Note that we did not tune α and γ for optimal performance, as that would require
multiple runs, and violate the online setting. On smaller datasets such as parkinson and cpusmall,
where frequent restarts greatly interfere with the gradient descent, and even a small non-adaptive
embedding can capture the geometry of the data, PROS-N-KONS is outperformed by simpler
first-order methods. As soon as T reaches the order of tens of thousands (cadata, casp), second-order
updates and data adaptivity becomes relevant and PROS-N-KONS outperform its competitors, both
in the number of SVs and in the average loss. In this intermediate regime, CON-KONS outperforms
PROS-N-KONS and B-KONS since it is less affected by restarts. Finally, when the number of
samples raises to hundreds of thousands, the intrinsic effective dimension of the dataset starts playing
a larger role. On slice, where the effective dimension is too large to run, B-KONS still outperforms
NOGD with a comparable budget of SVs, showing the advantage of second-order updates.

Binary classification All algorithms are trained using the hinge loss and they are evaluated using
the average online error rate. Results are reported in Tab. 2. While for regression, an arbitrary value
of γ = α = 1 is sufficient to obtain good results, it fails for binary classification. Decreasing the
two parameters to 0.01 resulted in a 3-fold increase in the number of SVs included and runtime, but
almost a 2-fold decrease in error rate, placing PROS-N-KONS and B-KONS on par or ahead of
competitors without the need of any further parameter tuning.

6 Conclusions

We presented PROS-N-KONS a novel algorithm for sketched second-order OKL that achieves
O(dTeff log T ) regret for losses with directional curvature. Our sketching is data-adaptive and, when the
effective dimension of the dataset is constant, it achieves a constant per-step cost, unlike SKETCHED-
KONS [1], which was previously proposed for the same setting. We empirically showed that
PROS-N-KONS is practical, performing on par or better than state-of-the-art methods on standard
benchmarks using small dictionaries on realistic data.
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A KORS: Kernel online row sampling

For completeness, we report the KORS algorithm by Calandriello et al. [1] based on online row
sampling of Cohen et al. [3] and comment on it.

Algorithm 1 Kernel Online Row Sampling (KORS)
Input: Regularization γ, accuracy ε, budget β

1: Initialize I0 = ∅, j = 0
2: for t = {0, . . . , T − 1} do
3: receive xt, compute φt
4: construct temporary dictionary I := It−1 ∪ (t, 1)
5: compute p̃t = min{βτ̃t, 1} using I and Eq. 6
6: draw zt ∼ B(p̃t) and if zt = 1, add (t, 1/p̃t) to It and update j = j + 1
7: end for

At each time step KORS stores and updates a weighted dictionary of points, where we use the notation
I = {(is, p̃is)}

j
s=1 to indicate that I contains point φi in its s-th position. The scalar weight p̃i

associated with is used when constructing the diagonal reweighing matrix SI = Diag({1/
√
p̃is}),

such that ΦISI contains (1/
√
p̃is)φis as its s-th column. Starting from an empty dictionary, at each

time step KORS receives a new point xt, temporarily adds it to the current dictionary It and uses
Eq. 6,

τ̃t,i = (1+ε)
γ (φT

tφt − φT

tΦISI(SIΦ
T

IΦISI + γI)−1SIΦ
T

Iφt) (6)

= 1+ε
γ

(
kt,t − kT

I,tSI(ST

IKISI + γI)−1ST

IkI,t
)
,

to compute an estimate RLS τ̃t for φt. Afterwards, it draws a Bernoulli r.v. zt proportionally to ˜̃τt, if
it succeeds (zt = 1) the point is deemed relevant and added to the dictionary, otherwise it is discarded
and never added.

B Proof of Theorem 1: Regret analysis

PROS-N-KONS predicts ỹt in round t. We want to bound the cumulative regret of the loss of ỹt
with respect to an arbitrary fixed vector w ∈ H on the (mapped) points φt. From the definition of ỹt
in Algorithm 1, we have

T∑
t=1

`t (ỹt)− `t (φT

tw) =

T∑
t=1

`t

(
φ̃T

t ω̃t

)
− `t (φT

tw)

=

T∑
t=1

`t
(
φT

tΦjUjΣ
−1
j ω̃t

)
− `t (φT

tw)

=

T∑
t=1

`t (φT

tw̃t)− `t (φT

tw) ,

with w̃t = ΦjUjΣ
−1
j ω̃t. From Assumption 2 on the losses, we know that the losses `t(z) satisfy

`t (φTw) ≥ `t (φTu) +∇`t (φTu)
T

(w − u) +
σt
2

(
∇`t (φTu)

T
(w − u)

)2
and therefore

`t (φTu)− `t (φTw) ≤ ∇`t (φTu)
T

(u−w)− σt
2

(
∇`t (φTu)

T
(w − u)

)2
= `′t (φTu)φT

t (u−w)− σt
2

(`′t (φTu)φT

t (w − u))
2
.
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Definition of the epochs We define the epochs j ∈ [J ] that are separated by zt = 1, which indicate
the dictionary change. Formally ztj = 1, and zt′ = 0 for all tj < t′ < tj + hj where hj = tj+1 − tj
is the length of the epoch. We also use Ij for the dictionary in the j-th phase, ΦIj for the feature
matrix containing samples φi ∈ Ij , and P̃j = ΦIj (Φ

T

IjΦIj )
+ΦT

Ij for the projection matrix on the
column span of ΦIj . Similarly, given Ij , we define the embedding ϕ̃j(·) such that

ϕ̃j(xt) = φ̃t = Σ−1j UT

jΦ
T

Ijφt ∈ Rj

and φ̃T
t φ̃t′ = φtP̃jφ

′
t. Given the embedding ϕ̃j , we introduce the restricted RKHS Hj and the

approximate kernel function K̃j(·, ·). Note that although the mapping ϕ̃j changes across different
epochs, it is unique for a fixed round t, therefore we simply write φ̃t instead of the more explicit φ̃jt .

Regret decomposition We introduce two intermediate comparators: wt and ŵt. First, ŵj is the
best fixed solution within the epoch for the dictionary of the epoch and the relatedHj . Second, ŵj is
the best fixed solution within the epoch over the whole spaceH. Notice, neither ŵj nor ŵj change
during the same epoch. Formally, for all t′ such that tj < t′ ≤ tj + hj we have wt′ = wj and
ŵt′ = ŵj , defined as

wj = arg min
w∈Hj

tj+1−1∑
t=tj

`t(φ
T

tw) + α‖w‖2, and ŵj = arg min
w∈H

tj+1−1∑
t=tj

`t(φ
T

tw) + α‖w‖2.

Using the above intermediate comparators now split the regret into three parts, one per epoch,
T∑
t=1

`t(φ
T

tw̃t)− `t(φT

tw) =

T∑
t=1

`t(φ
T

tw̃t)− `t(φT

twt) + `t(φ
T

twt)− `t(φT

tŵt) + `t(φ
T

tŵt)− `t(φT

tw)

=

J∑
j=1

tj+1−1∑
t=tj

`t(φ
T

tw̃t)− `t(φT

twt) + `t(φ
T

twt)− `t(φT

tŵt) + `t(φ
T

tŵt)− `t(φT

tw)

=

J∑
j=1

tj+1−1∑
t=tj

`t(φ
T

tw̃t)− `t(φT

twj) + `t(φ
T

twj)− `t(φT

tŵj) + `t(φ
T

tŵj)− `t(φT

tw)

=

J∑
j=1

tj+1−1∑
t=tj

`t(φ
T

tw̃t)−`t(φT

twj)


︸ ︷︷ ︸

Aj

+

tj+1−1∑
t=tj

`t(φ
T

twj)−`t(φT

tŵj)


︸ ︷︷ ︸

Bj

+

tj+1−1∑
t=tj

`t(φ
T

tŵj)−`t(φT

tw)


︸ ︷︷ ︸

Cj

.

Fix an epoch j. We now bound Aj , Bj , and Cj separately.

Bounding Aj Since wj ∈ Hj , projecting wj toHj won’t change it, i.e., wj = P̃jwj and

φT

twj = φT

tP̃jwj = φT

tΦIjUjΣ
−1
j Σ−1j UT

jΦ
T

Ijwj = φ̃T

tωj

with ωj = Σ−1j UT
jΦ

T

Ijwj . Remembering that w̃t = ΦIjUjΣ
−1
j ω̃t for all t in the epoch

`t (φT

tw̃t)− `t (φT

twj) = `t
(
φT

tΦIjUjΣ
−1
j ω̃t

)
− `t

(
φT

tP̃jwj

)
= `t

(
φ̃T

t ω̃t

)
− `t

(
φ̃T

tωj

)
.

Now, using Assumption 2, we get

`t(φ̃
T

t ω̃t)− `t(φ̃T

tωj) ≤ g̃T

t (ω̃t − ωj)−
σt
2

(g̃T

t (ω̃t − ωj))2 (7)

and due to the update rules and the contracting property of projections [6],

‖ω̃t − ωj‖2Ãt−1
≤ ‖ω̃t−1 − Ã−1t−1g̃t−1 − ωj‖2Ãt−1

= ‖ω̃t−1 − ωj‖2Ãt−1
− 2g̃T

t−1Ã
−1
t−1Ãt−1(ω̃t−1 − ωj) + ‖Ã−1t−1g̃t−1‖2Ãt−1

= ‖ω̃t−1 − ωj‖2Ãt−1
− 2g̃T

t−1(ω̃t−1 − ωj) + g̃T

t−1Ã
−1
t−1gt−1

12



except for last round of epoch j, i.e., round tj+1 − 1, where due to the reset we cannot use the update
rule, the we need to treat separately. Therefore, for any round t = tj , tj + 1, . . . , tj+1 − 2 of epoch j,
we have that

2g̃T

t (ω̃t − ωj) ≤ ‖ω̃t − ωj‖2Ãt
− ‖ω̃t+1 − ωj‖2Ãt

+ g̃T

tÃ
−1
t gt. (8)

Using the upper bound on the loss difference (7), we get
tj+1−1∑
t=tj

`t (φT

tw̃t)− `t (φT

twt)

= `tj+1−1

(
φT

tj+1−1w̃tj+1−1

)
− `tj+1−1

(
φT

tj+1−1wtj+1−1

)
+

tj+1−2∑
t=tj

`t (φT

tw̃t)− `t (φT

twt)

= Rj +

tj+1−2∑
t=tj

`t

(
φ̃T

t ω̃t

)
− `t

(
φ̃T

tωj

)

≤ Rj +

tj+1−2∑
t=tj

g̃T

t (ω̃t − ωj)−
σt
2

(g̃T

t (ω̃t − ωj))2 ,

with Rj
def= `tj+1−1

(
φT
tj+1−1w̃tj+1−1

)
− `tj+1−1

(
φT
tj+1−1wtj+1−1

)
that corresponds to the regret

of the last round of the epoch that we need to treat separately. Now for the all other rounds,
tj+1−2∑
t=tj

g̃T

t (ω̃t − ωj)−
σt
2

(g̃T

t (ω̃t − ωj))2

≤
tj+1−2∑
t=tj

‖ω̃t − ωj‖2Ãt
− ‖ω̃t+1 − ωj‖2Ãt

+ g̃T

tÃ
−1
t gt − ‖ω̃t − ωj‖2σt

2 g̃tg̃T
t

= −‖ω̃tj+1−1 − ωj‖2Ãtj+1−1
+ ‖ω̃tj − ωj‖2Ãtj

+ g̃T

tjÃ
−1
tj gtj − ‖ω̃tj − ωj‖2σtj

2 g̃tj g̃
T
tj

+

tj+1−2∑
t=tj+1

‖ω̃t − ωj‖2Ãt
− ‖ω̃t − ωj‖2Ãt−1

+ g̃T

tÃ
−1
t gt − ‖ω̃t − ωj‖2σt

2 g̃tg̃T
t

Now we treat the terms above equation separately. First, since Ãt = Ãt−1 + σt
2 g̃tg̃

T
t , we have

‖ω̃t − ωj‖2Ãt−1
+ ‖ω̃t − ωj‖2σt

2 g̃tg̃T
t

= ‖ω̃t − ωj‖2Ãt
. Second, by Algorithm 1, we know that at the

beginning of each epoch, Ãtj = αI + g̃tj g̃
T
tj . This also helps us to bound the term g̃T

tjÃ
−1
tj gtj as

g̃T

tjÃ
−1
tj gtj = g̃T

tj

(
αI +

σtj
2 g̃tj g̃

T

tj

)−1
gtj =

g̃T
tj g̃tj

α+
σtj
2 g̃T

tj g̃tj
≤

g̃T
tj g̃tj

α
=

(
`′tj
(
ỹtj
))2

φ̃T
tj φ̃tj

α

≤
L2φ̃T

tj φ̃tj

α
=
L2φT

tj P̃jφtj

α
≤
L2φT

tjφtj

α
≤ L2

α
·

By Algorithm 1, we also know that at the beginning of each epoch ω̃tj = 0 which helps us to bound
the two terms outside of the summation as

‖ω̃tj − ωj‖2Ãtj

− ‖ω̃tj − ωj‖2σtj
2 g̃tj g̃

T
tj

= ‖ω̃tj − ωj‖2αI + ‖ω̃tj − ωj‖2σtj
2 g̃tj g̃

T
tj

− ‖ω̃tj − ωj‖2σtj
2 g̃tj g̃

T
tj

= α‖ω̃tj − ωj‖22 = α‖ωj‖22.
Altogether, we combine the upper bounds of the terms to
tj+1−1∑
t=tj

`t(φ
T

tw̃t)− `t(φT

twt) ≤ α‖ωj‖2 +Rj +
L2

α
− ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

+

tj+1−2∑
t=tj+1

g̃T

tÃ
−1
t gt.

13



Using the result of [6] we can upper bound the sum of the quadratic forms as

tj+1−2∑
t=tj

g̃T

tÃ
−1
t g̃t =

tj+1−2∑
t=tj

g̃T

t

 t∑
s=tj

σs
2 g̃sg̃

T

s + αI

−1g̃t
=

tj+1−2∑
t=tj

2

σt

(√
σt/2α · g̃T

t

) t∑
s=tj

σs
2 g̃sg̃

T

s/α+ I

−1(√σt/2α · g̃t)
≤ 2

σmin
log
(

Det
(
G̃jG̃

T

j/α+ I
))

,

where G̃j is the j × hj matrix with
√
σt/2 · g̃t columns. Let D̃j be the hj × hj diagonal matrix

with ġt
√
σt/2 on the diagonal and Φj (resp., Φ̃j) the matrix with φt (resp., φ̃t) as columns for

tj ≤ t < tj+1 We can rewrite G̃j = Φ̃jD̃j = Σ−1j UT
jΦ

T

IjΦjD̃j . We also have

G̃T

jG̃j = D̃jΦ
T

jΦIjU
T

jΣ
−1
j Σ−1j UT

jΦ
T

IjΦjD̃j = D̃jΦ
T

jP̃jΦjD̃j � D̃jΦ
T

IjΦIjD̃j ,

since ‖P̃j‖ ≤ 1 because P̃j is a projection matrix. Knowing that Det(A) ≤ Det(B) whenever
A � B, together with Sylvester’s determinant identity, we get that

Det(G̃jG̃
T

j/α+ I) ≤ Det(D̃jΦ
T

jΦjD̃j/α+ I) =

hj∏
t=1

(λt/α+ 1),

where λt are the eigenvalues of D̃jΦ
T

IjΦIjD̃j = D̃jKjD̃j = Kj and Kj is the kernel matrix
between the samples in epoch j. Using the result of Calandriello et al. [1, Lemma 3] we can further
bound the expression above as

log

 hj∏
t=1

λt/α+ 1

 ≤ 2djeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

≤ 2dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kt)/α
)
.

Putting it all together, and using ‖ωj‖22 = ‖Σ−1j UjΦ
T

Ijwj‖22 = wT

jP̃jwj = ‖wj‖22 we get

Aj ≤
4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

+ α‖wj‖22

+Rj +
L2

α
− ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

.

Bounding Bj We begin by adding and subtracting α‖wj‖2 and α‖ŵj‖2

tj+1−1∑
t=tj

`t(φ
T

twj)− `t(φT

tŵj) =

tj+1−1∑
t=tj

`t(φ
T

twj)

−
tj+1−1∑

t=tj

`t(φ
T

tŵj)


= α‖ŵj‖2 − α‖wj‖2 +

tj+1−1∑
t=tj

`t(φ
T

twj) + α‖wj‖2
−

tj+1−1∑
t=tj

`t(φ
T

tŵj) + α‖ŵj‖2


We will now apply the following result from Xu et al. [18].
Proposition 2 (Xu et al. [18, Lemma 2]). Suppose the loss functions `t are L-Lipschitz continuous,
and wj = P̃jwj = ΦIjUjΣ

−1/2
j ωj . We have

1

hj

tj+1−1∑
t=tj

`t(φ
T

twj) +
α

2
‖wj‖2 ≤

1

hj

tj+1−1∑
t=tj

`t(φ
T

tŵj) +
α

2
‖ŵj‖2 +

L2

2αhj
‖Φj − P̃jΦj‖22.
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First, it is important to quantify the last term in Proposition 2,

‖Φj − P̃jΦj‖22 = λmax

((
Φj − P̃jΦj

)T (
Φj − P̃jΦj

))
= λmax

(
ΦT

jΦj − 2ΦT

jP̃jΦj + ΦT

jP̃jP̃jΦj

)
= λmax

(
ΦT

jΦj −ΦT

jP̃jΦj

)
= λmax

(
Kj − K̃j

)
≤ γε

1− ε
,

when in the last step we applied Proposition 1 that bounds the quality of the approximation. In order
to apply Proposition 2 we also need to rescale Bj ,

tj+1−1∑
t=tj

`t(φ
T

twj) + α‖wj‖2 = hj

 1

hj

tj+1−1∑
t=tj

`t (φT

twj) +
α

2

2

hj
‖wj‖2


≤ hj

 1

hj

tj+1−1∑
t=tj

`t (φT

tŵj) +
α

2

2

hj
‖ŵj‖2 +

L2hj
4αhj

‖Φj − P̃jΦj‖22


=

tj+1−1∑
t=tj

`t (φT

tŵj) + α‖ŵj‖2 +
L2hj
4α
‖Kj − K̃j‖22

≤
tj+1−1∑
t=tj

`t (φT

tŵj) + α‖ŵj‖2 +
L2ε

4(1− ε)
hjγ

α
·

Therefore, the difference of the regularized losses for the best solution within epoch j when consider-
ing the whole spaceH versus subspaceHj is bounded as

tj+1−1∑
t=tj

`t(φ
T

twj) + α‖wj‖

−
tj+1−1∑

t=tj

`t(φ
T

tŵj) + α‖ŵj‖

 ≤ L2ε

4(1− ε)
hjγ

α

and therefore their unregularized counterparts are bounded as

Bj ≤ α‖ŵj‖2 − α‖wj‖2 +
L2ε

4(1− ε)
hjγ

α
·

Bounding Cj Similarly as for Bj , we add and subtract the regularizers,

tj+1−1∑
t=tj

`t(φ
T

tŵj)− `t(φT

tw) =

tj+1−1∑
t=tj

`t(φ
T

tŵj)

−
tj+1−1∑

t=tj

`t(φ
T

tw)


= α‖w‖2 − α‖ŵj‖2 +

tj+1−1∑
t=tj

`t(φ
T

tŵj) + α‖ŵj‖2
−

tj+1−1∑
t=tj

`t(φ
T

tw) + α‖w‖2
 ·

By the definition of ŵj as a minimizer, we have that the difference between the summations is
negative or zero. Therefore, term Cj is trivially bounded as

Cj ≤ α‖w‖2 − α‖ŵj‖2.
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Bounding the regret: We put all the bounds on decomposed regret together:
T∑
t=1

`t(φ
T

tw̃t)− `t(φT

tw) =

J∑
j=1

Aj +Bj + Cj

≤
J∑
j=1

4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

+ α‖wj‖22 +Rj +
L2

α
− ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

+ α‖ŵj‖2 − α‖wj‖2 +
L2ε

4(1− ε)
hjγ

α
+ α‖w‖2 − α‖ŵj‖2

=

 J∑
j=1

4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2 Tr (Kj) /α
)+

 J∑
j=1

L2ε

4(1− ε)
hjγ

α

+
JL2

α
+ Jα‖w‖

+

J∑
j=1

Rj − ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

≤

 J∑
j=1

4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2T/α
)+

L2

α

(
Tγε

4(1− ε)
+ 1

)
+ Jα‖w‖

+

J∑
j=1

Rj − ‖ω̃tj+1−1 − ωj‖2Ãtj+1−1

≤ Jα‖w‖+
4J

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2T/α
)

+
L2

α

(
Tγε

4(1− ε)
+ 1

)
+

J∑
j=1

Rj

= 3βdTeff (γ) log (2T )

(
4

σmin
dTeff

(
α

σminL2

)
log
(
2σminL

2T/α
)

+ α‖w‖
)

+
L2

α

(
Tγε

4(1− ε)
+ 1

)
+

J∑
j=1

Rj

C Proof of Theorem 2: Regret bound for squared loss

In the special case of squared loss, we can obtain a different kind of guarantee. We proceed in
a similar way as in Appendix B and highlight the differences. Starting from the Aj + Bj + Cj
decomposition given in Appendix B, we will bound Bj differently using the following result.
Proposition 3 (Zhdanov and Kalnishkan [22, Thm. 1]). Take a kernel K on a domain X and a
parameter α > 0. LetH be the RKHS for the kernel K. For any sequence {(xt, yt)}Tt=1 let yT ∈ RT
be the concatenation of the yt target variables. Then

L∗T (H) = min
f∈H

(
T∑
t=1

(
f(xt)− yt

)2
+ α‖f‖2H

)
= αyT

T (KT + αI)−1yT .

BoundingBj In our particular case, we apply Proposition 3 to the whole spaceH and all subspaces
Hj , one for each epoch j.

L∗j (H) =

tj+1−1∑
t=tj

(
φT

tŵj − yt
)2

+ α‖ŵj‖22 = min
w∈H

tj+1−1∑
t=tj

(
φT

tw − yt
)2

+ α‖w‖22

 = αyT

j(Φ
T

jΦj + αI)−1yj ,

L∗j (Hj) =

tj+1−1∑
t=tj

(
φT

twj − yt
)2

+ α‖wj‖22 = min
w∈Hj

tj+1−1∑
t=tj

(
φT

tw − yt
)2

+ α‖w‖22

 = αyT

j(Φ
T

jPjΦj + αI)−1yj .

Therefore, taking account for the regularization in Proposition 3, for any epoch j,
tj+1−1∑
t=tj

(
φT

twj − yt
)2

= −α‖wj‖22 +

tj+1−1∑
t=tj

(
φT

twj − yt
)2

+ α‖wj‖22

= −α‖wj‖22 + αyT

j(Φ
T

jPjΦj + αI)−1yj .
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Now using the kernel approximation guarantees of Proposition 1 we have

αyT

j(Φ
T

jPjΦj + αI)−1yj ≤ αyT

j

(
ΦT

jΦj −
γε

1− ε
I + αI

)−1
yj

=

(
α− ε

1− ε
γ

)−1
α

(
α− ε

1− ε
γ

)
yT

j

(
ΦT

jΦj +

(
α− ε

1− ε
γ

)
I

)−1
yj

=

((
α− ε

1− ε
γ

)−1
α

)
α′yT

j

(
ΦT

jΦj + α′I
)−1

yj

= (1 + ε′)α′yT

j

(
ΦT

jΦj + α′I
)−1

yj ,

where we denoted ε′ =

((
α− γε

1−ε

)−1
α

)
− 1 and α′ =

(
α− γε

1−ε

)
. Putting it together,

tj+1−1∑
t=tj

(
φT

twj − yt
)2 ≤ −α‖wj‖22 + (1 + ε′)α′yT

j

(
ΦT

jΦj + α′I
)−1

yj

= −α‖wj‖22 + (1 + ε′)

tj+1−1∑
t=tj

min
w∈H

(
φT

twj − yt
)2

+ α′‖wj‖22


≤ −α‖wj‖22 + (1 + ε′)

tj+1−1∑
t=tj

min
w∈H

(
φT

twj − yt
)2

+ α‖wj‖22


= −α‖wj‖22 + (1 + ε′)

tj+1−1∑
t=tj

(
φT

tŵj − yt
)2

+ α‖ŵj‖22


= −α‖wj‖22 +

tj+1−1∑
t=tj

(
φT

tŵj − yt
)2

+ ε′α‖ŵj‖22 + ε′

tj+1−1∑
t=tj

(
φT

tŵj − yt
)2

+ α‖ŵj‖22

 .

Therefore, extracting the Bj part of the regret we get

Bj ≤ −α‖wj‖22 + ε′α‖ŵj‖22 + ε′

tj+1−1∑
t=tj

(
φT

tŵj − yt
)2

+ α‖ŵj‖22

 .

Bounding Cj Changing slightly the regularizers that we add and subtract in the bound on Cj we
obtain

J∑
j=1

Bj + Cj =

J∑
j=1

−α‖wj‖22 + ε′α‖w‖22 + ε′L∗j .

Integrating this with the bound for Aj obtained in the proof of Thm 1 we get

T∑
t=1

`t

(
φ̃T

t ω̃t

)
− `t (φT

tw) ≤

 J∑
j=1

4

σmin
djeff

(
α

σminL2

)
log
(
2σminL

2 Tr(Kj)/α
)

+ ε′L∗j


+ JLC +

JL2

α
+ Jε′α‖w‖22.
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