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Abstract— Architecture Analysis and Design Language
(AADL) is widely used for the architecture design and analysis
of safety-critical real-time systems. Based on the Hybrid annex
which supports continuous behavior modeling, Hybrid AADL
enables seamless interactions between embedded control systems
and continuous physical environments. Although Hybrid AADL
is promising in dependability prediction through analyzable
architecture development, the worst-case performance analysis
of Hybrid AADL designs can easily lead to an overly pessimistic
estimation. So far, Hybrid AADL cannot be used to accurately
quantify and reason the overall performance of complex systems
which interact with external uncertain environments intensively.
To address this problem, this paper proposes a statistical model
checking based framework that can perform quantitative evalua-
tion of uncertainty-aware Hybrid AADL designs against various
performance queries. Our approach extends Hybrid AADL to
support the modeling of environment uncertainties. Furthermore,
we propose a set of transformation rules that can automatically
translate AADL designs together with designers’ requirements
into Networks of Priced Timed Automata (NPTA) and perfor-
mance queries, respectively. Comprehensive experimental results
on the Movement Authority (MA) scenario of Chinese Train
Control System Level 3 (CTCS-3) demonstrate the effectiveness
of our approach.

Index Terms— Hybrid AADL, Uncertainty, Statistical model
checking, Quantitative performance evaluation.

I. INTRODUCTION

TO promptly and accurately sense and control the physical
world, more and more real-time embedded systems are

deployed into our surrounding environment. As a result, the
stringent safety-critical requirements coupled with increasing
interactions with uncertain physical environments make the
design complexity of Cyber-Physical Systems (CPS) skyrock-
eting [1], [2]. Unfortunately, due to the lack of architecture-
level performance evaluation approaches considering uncertain
environments, the required performance of integrated CPS
implementations can be easily violated. Therefore, how to
model the uncertain behaviors of both cyber and physical
elements and how to guarantee meeting the critical functional
and real-time requirements have become major challenges in
CPS architecture design.
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As a component-oriented modeling language, Architecture
Analysis and Design Language (AADL) [3], [4] has been
widely adopted in the design and analysis of safety-critical
real-time systems (e.g., automotive, avionics and railway sys-
tems). By defining various modeling constructs for hardware
and software components, AADL core language supports the
structural description of system partitioning and connectivity
between components, while the semantics of AADL can be ex-
tended via annex sublanguages and user-defined properties. To
increase comprehension about a system and enhance the prob-
ability of successful implementations, an AADL specification
provides a set of modeling constructs for the description and
verification of both functional and non-functional properties
of interactive software and hardware components. Since the
core AADL language only supports modeling of hardware and
software components, to model the physical environment we
adopt the Hybrid AADL, which supports continuous behavior
modeling via Hybrid annex [5].

When modeling a safety-critical system using AADL, be-
fore the design refinement, there is a rigorous certification
process to verify whether the properties of the AADL design
are satisfied. Although existing AADL IDE tools such as
OSATE [6] can be used to check timing properties (e.g., flow
latency), most of existing approaches adopt the worst-case
timing analysis without considering performance variations,
which can easily lead to an overly pessimistic performance
estimation. To extend the performance analysis capability of
AADL designs, various model transformation approaches [7],
[8] have been proposed to verify AADL models based on exist-
ing verification and analysis tools. For the quantitative analysis
of uncertainty-aware AADL designs, designers would like to
ask the question “What is the probability that a specified
scenario can be achieved within time x?”. However, existing
approaches focus on the safety property checking which only
have an answer of “yes” or “no” without considering uncertain
environments. Few of them can quantitatively reason why
a given performance requirement cannot be achieved and
answer how to improve the design performance. Clearly, the
bottleneck is the lack of powerful quantitative evaluation
approaches that can help AADL designers to make decisions
during the architecture design.

To enable the quantitative analysis for Hybrid AADL de-
signs, we propose a novel framework based on Statistical
Model Checking (SMC) [9], [11] which relies on the mon-
itoring of random simulation runs of systems. By analyzing
the simulation results using the statistical approaches (e.g.,
sequential hypothesis testing or Monte Carlo simulation),
the satisfaction probability of specified properties (i.e., per-
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formance requirements) can be estimated. Unlike traditional
formal verification methods which need to explore all the state
space, SMC only investigates a limited number of simulation
runs of systems, which requires far less memory and time.
Therefore, SMC is very suitable for the approximate functional
validation of complex AADL designs. We use the statistical
model checker UPPAAL-SMC [10], [11] as the engine of our
approach, to leverage its rich modeling constructs and flexible
mapping mechanisms. Based on UPPAAL-SMC, this paper
makes three following major contributions: i) We extend
the syntax and semantics of Hybird AADL specifications [5]
using our proposed Uncertainty annex, which enables the
accurate modeling of both performance variations caused by
uncertain environments and performance requirements spec-
ified by designers. ii) To automate the quantitative analysis
of uncertainty-aware Hybrid AADL designs, we adopt the
Network of Priced Timed Automata (NPTA) [9] as the model
of computation in our approach. We propose a set of map-
ping rules that can automatically transform uncertain-aware
Hybrid AADL designs into NPTA models and convert the
performance requirements into various kinds of queries in the
form of cost-constrained temporal logic [12]. iii) Based on our
proposed SMC-based evaluation framework, we implement a
tool chain which integrates both UPPAAL-SMC and the open-
source AADL tool environment OSATE to enable the auto-
mated performance evaluation and comparison of uncertainty-
aware Hybrid AADL designs.

The rest of this paper is organized as follows. After intro-
ducing the related work on AADL and SMC-based evaluation
in Section II, Section III presents the details of our approach.
Based on an industrial CTCS-3 MA design, Section IV shows
that our proposed approach can be effectively applied to
the quantitative analysis of Uncertain Hybrid AADL designs.
Finally, Section V concludes the paper.

II. RELATED WORK

To facilitate architecture design and analysis of safety-
critical systems, various AADL simulation and verification
tools were investigated based on extended annexes. For exam-
ple, Jahier et al. [13] proposed an approach that can translate
both AADL models and software components developed in
synchronous languages (i.e., SCADE, Lustre) into executable
models, which can be simulated and validated together. In [14],
Al-Nayeem et al. developed a modeling framework in AADL
to automatically transform the synchronous design of a real-
time distributed system into an asynchronous design satisfying
the Physically-Asynchronous Logically-Synchronous (PALS)
protocol. Furthermore, they developed a static analysis checker
to find necessary conditions that must be satisfied for the cor-
rect PALS transformation. In [16], Larson et el. introduced the
Behavioral Language for Embedded Systems with Software
(BLESS) annex for AADL. The extended AADL language
together with the developed BLESS proof tool enable the
implementation verification against the specified specification.
In [18], Bodeveix et al. proposed a verification toolchain
for AADL models through their transformation to the Fiacre
language. They investigated the semantics of AADL models

and Fiacre subsets expressed in a common framework. Al-
though these approaches are promising in functional checking
of AADL designs, few of them consider performance issues
for safety-critical systems.

Rather than developing dedicated verification tools for
AADL designs, more and more model transformation-based
AADL analysis approaches resort to the benefits of widely-
used model checking [19] and theorem proving techniques
[5], [25]. For instance, Björnander et al. [15] extended the
semantics of AADL using a behavior annex with time annota-
tions. By mapping AADL designs to the Timed Abstract State
Machines (TASM) language, their approach allows timing
analysis with timed simulation or timed model checking.
Similarly, Hu et al. [7] presented a set of formally defined rules
that can translate a subset of AADL to corresponding Timed
Abstract State Machines (TASM) models for the purpose
of timing and resource verification. To ensure completeness
and consistency of an AADL specification as well as its
conformity with the end product, Johnsen et al. [8] presented
a formal verification technique by translating AADL designs
to timed automata models. In [26], Wei et al. developed a
safety verification approach called QaSten for AADL designs
by transforming them into probabilistic models, which can be
checked by the model checker PRISM. Due to the increasing
interactions with physical environments, the support of hybrid
behavior modeling and verification is becoming an important
research topic in AADL design. For example, based on BLESS
annex [16] and Hybrid annex [5], Ahmad et al. [21] investi-
gated the modeling and analysis of the movement authority
scenario of the Chinese Train Control System Level 3 (CTCS-
3) in AADL. Their approach can verify both discrete and
hybrid behaviors of annotated Hybrid AADL designs based
on the interactive Hybrid Hoare Logic prover [17]. Although
there exist dozens of methods that can be used to verify the
correctness and dependability of safety-critical AADL designs,
very few of them take the uncertain physical environment into
account. Unlike tranditional theorem provers which focus on
proving functional correctness rather than reasoning design
performance, the simulation-based UPPAAL-SMC used in our
approach can be fully automated without manual “proof as-
sistants”. Moreover, UPPAAL-SMC requires far less memory
and time, which allows high scalable validation.

Due to the scalability and effectiveness in evaluating
stochastic behaviors of systems, statistical model checking
[22] is becoming a preferred option in the uncertainty-aware
performance analysis of system designs. Based on UPPAAL-
SMC, Chen et al. [23] proposed an approach that can model
the process of MPSoC task allocation and scheduling under
time and power variations. By using their method, inferior
resource allocation and scheduling solutions can be filtered,
thus the performance yield of MPSoC chips can be improved.
In [24], Bruintjes et al. introduced a statistical approach for
timed reachability analysis of extended AADL designs. They
developed a simulator that can perform probabilistic analysis
of underlying stochastic models using Monte Carlo simulation.
Our approach differs greatly from [24]. In [24], the extended
AADL is based on linear-hybrid models, whereas our approach
supports the modeling of nonlinear behaviors for a large group
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of CPSs. In particular, the clock rates in UPPAAL-SMC can
be described using ordinary differential equations [11], e.g.,
c1′ == sin(c2), c1′ == c1∗ c2+ c3, where c1, c2 and c3 are
three clock variables. In addition to the capability of model-
ing nonlinear behaviors, our approach focuses on evaluating
CPS performance under uncertain environments, while [24]
puts emphasis on the error behavior modeling of hardware
and software components. Moreover, [24] only considers the
probability of event occurrences and delay variations following
either uniform or exponential distributions, while our approach
allows designers to define their own uncertain objects (e.g.,
system parameters, user inputs) following a wide spectrum of
programmable distributions. Furthermore, the method in [24]
only supports the evaluation of time-bounded queries, while
our evaluation approach is based on cost-constrained temporal
logic which is more comprehensive.

To the best of our knowledge, so far there is no approach
that supports the quantitative performance evaluation for Hy-
brid AADL designs considering the uncertainties caused by
physical environments. Our proposed approach is the first
attempt that not only supports the uncertainty modeling in
AADL, but also enables the quantitative performance rea-
soning and comparison of uncertainty-aware designs at the
architecture level.

III. OUR APPROACH

Figure 1 shows the workflow of our approach. Since the core
AADL focuses on structural modeling, to model concrete exe-
cution behaviors of components, we need to resort to the annex
which is a mechanism provided by AADL for the purpose of
semantics extension. In this paper we focus on uncertain hy-
brid systems, thus our approach adopts the Hybrid and BLESS
annexes which can be used to describe the dynamic and
hybrid behaviors of systems. To extend the semantics of hybrid
systems, we propose the Uncertainty annex which can be
used to specify various performance variations (e.g., network
delays, sensor inputs) and performance requirements posed
by designers. Based on our defined AADL and NPTA meta-
models which define the syntax information of both AADL
and NPTA designs, the Hybrid AADL designs with extended
performance variation information can be extracted and trans-
formed into corresponding uncertainty-aware NPTA models.
The specified performance requirements are also parsed by
our developed parser for the generation of properties, which
are in the form of cost-constrained temporal logic [11]. Based
on statistical model checker UPPAAL-SMC, our approach can
conduct the quantitative evaluation of Uncertain Hybrid AADL
designs against various properties (i.e., performance and safety
queries). In the following subsections, we will explain the
major steps of our approach in detail.

A. Uncertainty-Aware Hybrid AADL Modeling

1) Formal Definitions for Uncertain Hybid AADL: To
model a hierarchical real-time system, a typical AADL [3],
[4] design comprises both software components and their
corresponding execution platform. Software components such
as thread, thread group, process, data and subprogram can

be used to construct the software architecture of systems.
Execution platform components including processor, memory,
device and bus can be used for hardware modeling. Within
a system, all these components communicate with each other
through connections to accomplish specific functions.

Definition 3.1: An Uncertain Hybrid AADL design is a 9-
tuple < Comp,Port ,Conn,Mp,D,Σ,MΣ,Annex,Ma > where: i)
Comp is a finite set of hardware/software components includ-
ing their declarations and implementations; ii) Port is a finite
set of component ports including data ports, event ports and
event data ports; iii) Conn ⊆ Port × Port denotes a finite set
of connections between ports; iv) Mp : Port → Comp assigns
ports to corresponding components; v) D is a finite set of
data which can be transfered via connections; vi) Σ is a finite
set of AADL properties; vii) MΣ : Σ→Comp assigns AADL
properties to corresponding components; viii) Annex is a finite
set of BLESS annex, Hybrid annex, and Uncertainty annex; ix)
Ma : Annex→Comp maps annexes to their components.

To enable the quantitative evaluation of Hybrid AADL
designs considering uncertain environments, Definition 3.1
gives the formal definition of our Uncertain Hybrid AADL. In
AADL, the definitions of both hardware and software compo-
nents contain two parts, i.e., declaration and implementation.
To enable interactions with other components, declaration
defines ports for components which can be used to transmit
and receive data or events, whereas implementation provides
the details of a component including its subcomponents, prop-
erties and the connections between ports. In addition to basic
data types, AADL allows designers to define their own data
types to enrich AADL designs. By using annexes, designers
can precisely define and interpret behaviors of components
by themselves. Different from traditional AADL designs, our
Uncertain Hybrid AADL is based on a combination of BLESS,
Hybrid and Uncertainty annexes. Our approach adopts BLESS
annex and Hybrid annex to model discrete and continuous be-
havior of AADL components, respectively. To model various
uncertainties caused by external environments, we introduce
the Uncertainty annex.

Definition 3.2: A BLESS Annex Instance (BAI) [16] is a 6-
tuple< S,s0,BV,Act,G,T > where, i) S is a finite set of states;
ii) s0 is the initial state; iii) BV is a finite set of variables;
iv) Act is a finite set of actions; v) G is a finite set of guard
conditions over BV; and vi) T ⊆ S×G×2Act ×S denotes the
finite set of transitions.

Based on state machine like semantics, BLESS annex [16]
provides a set of notations which can be used to formally
define discrete component behaviors, while the BLESS asser-
tions can be used to specify and check the desired system
properties. Definition 3.2 gives the formal definition of a BAI
which can be embedded into a component implementation.
Note that a transition of a BAI may have multiple actions
for variable assignments or port communications. Since our
approach does not adopt the assertions provided by BLESS
annex, we did not incorporate it in Definition 3.2.

Definition 3.3: A Hybrid Annex Instance (HAI) is a 5-tuple
< HV,HC,P, I,Mi > where, i) HV is a finite set of discrete
and continuous variables; ii) HC is a finite set of constants
that can only be initialized at declaration; iii) P is a finite
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set of processes that are used to specify continuous behaviors
of AADL components; iv) I is a finite set of interrupts that
synchronize processes; and v) Mi : I→ P maps interrupts to
associated processes.

Definition 3.3 gives the formal definition of Hybrid annex
instances, which can be applied in continuous behavior model-
ing of AADL device and abstract component implementations,
such as sensors, actuators and physical processes [5]. When
using the Hybrid annex, both discrete and continuous variables
are declared in the variables section, and the values of
constants are initialized in the constants section. The behavior
section of an HAI is used to describe the continuous behaviors
of annotated AADL components in terms of concurrently-
executing processes. Note that the Hybrid annex also supports
the assertions which take the same format as BLESS assertions
[16]. Since none of these assertions are suitable for quantitative
analysis, we neglect the assertion definition in Definition 3.3.

Definition 3.4: An Uncertain Annex Instance (UAI) is a
7-tuple < TV,PV,DIST,Mtv,Mpv,Mdist ,Q > where, i) TV is
a finite set of stochastic time variables; ii) PV is a finite
set of stochastic price variables; iii) DIST is a finite set of
distribution functions; iv) Mtv : TV → {Port ∪ T} binds each
time variable tv ∈ TV to a port p ∈ Port or a transition t ∈ T ;
v) Mpv : PV → {BV ∪HC} binds each variable pv ∈ PV to
a variable bv ∈ BV or a constant hc ∈ HC; vi) Mdist : {TV ∪
PV} → DIST assigns each variable v ∈ {TV ∪ PV} with a
distribution function; and vii) Q is a finite set of queries for
the quantitative performance evaluation.

Although there are many tools that are proposed to check
the performance of AADL designs, most of them assume the
uniform distribution of flow delays. Few of them consider the
variations (e.g., sensor inputs, network delays) caused by un-
certain environments. To support the modeling of such kinds of
uncertainties, based on Definition 3.4, we extend the semantics
and syntax of Hybrid AADL using our proposed Uncertainty
annex. Unlike existing approaches, our Uncertainty annex
supports a large spectrum of distributions which can be used

to accurately capture the system behaviors within uncertain
environment. To simplify the stochastic behavior modeling, we
define two kinds of stochastic variables, i.e., time variables
which denote the time variations of AADL constructs (e.g.,
ports), and price variables that indicate the value variations of
AADL variables and constants. For example, if a time variable
tv is binded to a port p, the data transmission time via p
will follow the specified time distribution Mdist(tv). Such time
variation modeling can also be applied to the transitions within
a BAI to indicate the time variations of action executions. To
enable automated quantitative evaluation, Uncertainty annex
allows the designers to specify their queries to reason whether
an Uncertain Hybrid AADL design satisfies the requirements.

2) Syntax and Semantics of Uncertainty Annex: As an
extension, UAIs can be embedded into AADL components as
a subclause to specify their uncertain behaviors. To describe
the context-free syntax of UA, we explain all the notations
of Uncertainty annex using the Extended Backus-Naur Form
(EBNF), where literals are printed in bold; alternatives are
separated by “|”; grouping are enclosed with parentheses“( )”;
square braces “[ ]” delimit optional elements; and “{ }+”
and “{ }∗” are used to signify one-or-more, and zero-or-
more of the enclosed elements, respectively. As shown in the
above production rule, an Uncertainty annex consists of three
parts, i.e., variables section, distributions section and queries
section. Their functions and usages are explained as follows.

Uncertainty Annex :: = {∗∗
variables {variables declaration}+
distributions {distribution declaration}+
queries {query declaration}+

∗∗}

Variables section: Instead of modeling the uncertainties
of environment components directly, our approach implicitly
reflects the environment uncertainties by specifying distribu-
tions for both data transmission time via connections between
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interconnected ports and the values of system parameters
(e.g., AADL variables and constants). To model stochastic
behaviors of systems, we define local variables in this section
to indicate the uncertain dynamics of the corresponding AADL
component features. In our approach, all these variables are
associated with specific probability distributions to signify
their possible values within an uncertain environment. The
following production rules show the grammar for variables
section.

variables declaration :: =
type pre f ix {variable identi f ier}+

applied to {component re f}∗
type pre f ix :: = time | dynamic price | static price
component re f :: = f eatures re f | annex subclause

In the above rules, the type prefix time means that local
variables are used to model the stochastic timing information
of component features. For example, a local time variable
can be bound to a component port to specify uncertain com-
munication delays on the connection via this port. The local
variables with type prefix static/dynamic price can be used
to specify the uncertain value assignment for variables and
constants declared in annotated components or components’
annexes. In our approach, we consider two kinds of local
price variables, i.e., static price variables and dynamic price
variables. Here, static price means that the initial value of
the associated AADL (or annex) variables and constants are
assigned stochastically at the beginning of system execution.
Unlike static price variables which only conduct the initial-
ization of variables or constants once, local dynamic price
variables are usually bound to AADL (or annex) variables to
model their random value updates when newly referred.

Distributions section: The distributions section is to specify
the probability distributions of the variables defined in the
variables section. To allow the modeling of various stochastic
behaviors, our Uncertainty annex has a built-in distribution
functional library which supports a large spectrum of widely
used distributions, such as uniform, exponential and normal
distributions. The following production rules show how to bind
a variable with a specific distribution function.

distribution declaration ::=
varable identi f ier re f erence = distribution

distribution ::= Normal‘(’const,const‘)’
| Uniform‘(’const,const‘)’
| Exponential‘(’const‘)’ | ...

Queries section: To quantify the performance of Uncertain
Hybrid AADL models during the architecture level design,
the designers would like to ask “what is the probability that
a scenario can happen or a condition can be satisfied with
limited resources?”. Uncertainty annex provides the queries
section that can be used for declaring such queries to enable
safety and performance evaluation of AADL designs. As an
effective way to check the quality and performance of AADL
designs, designers can put all their design requirements in this

section. Only when all the evaluated requirements meet design
targets, the AADL design can be used as a reference for the
implementation.

query declaration ::=
query identi f ier = query target under constraint

querr target ::= expr {&& expr}∗
expr ::= condition | ‘(’ condition ( && | ‖ ) expr ‘)’
condition ::= identi f ier operation ( const | identi f ier )

constraint ::= [ identi f ier ] operation const

operation ::=< | ≤ | == | != | ≥ | >

When specifying a query, designers should provide two
things: i) a query target that denotes a safety scenario or
performance metric in the form of a predicate expression;
and ii) a constraint indicating the available resources to
achieve the target. The above production rules present how to
declare queries. Here, identifier denotes the name of AADL
features (e.g., ports) or annex variables declared in annotated
component implementations, and const denotes the constant
value. The target of a query is a predicate represented by a
conjunction of expressions. The query constraint is in the form
of “res op lim”, where res denotes the resource, op denotes the
operation and lim denotes the resource limit. If the resource
is not specified explicitly, the system time will be used as the
resource by default.

1 abstract Train
2 features
3 ts: out data port CTCS_Types::Position;
4 tv: out data port CTCS_Types::Velocity;
5 ta: in data port CTCS_Types::Acceleration;
6 end Train;
7

8 abstract implementation Train.impl
9 annex Uncertainty {**

10 variables
11 time v_delay applied to Train.ts
12 -- modeling connection delay
13 static price v_fr applied to Train.fr
14 -- modeling track friction
15 distributions
16 v_delay = Normal(0.15,0.04)
17 v_fr = Normal(-0.1,0.05)
18 queries
19 p1 = Train.v<=0 && Train.s<EOA
20 && Train.s>0 under <=300
21 p2 = Train.s >= 4000 under <=200
22 **};
23

24 annex hybrid {**
25 variables
26 s : CTCS_Types::Position -- train position
27 v : CTCS_Types::Velocity -- train velocity
28 a : CTCS_Types::Acceleration -- train acceleration
29 t : CTCS_Types::Time -- system time
30 fr : CTCS_Types::Deceleration -- track friction
31 behavior
32 Train ::= ’DT 1 s=v’ & ’DT 1 v=a+fr’ & ’DT 1 t=1’
33 [[> ts!(s), tv!(v),ta?(a)]]> Continue
34 Continue ::= skip
35 RunningTrain ::= s:=0 & v:=0 & a:=0 & REPEAT(Train)
36 **};
37 end Train.impl;

Listing 1. An Example of Uncertainty Annex

Listing 1 presents an AADL example annotated with an
uncertainty annex, which describes the uncertain behaviors of
the train component within the CTCS-3 Movement Authority
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scenario (see details in Section IV). To operate safely, the
train periodically sends its current location and velocity in-
formation to the on-board train controller through ports ts,
tv and receives the acceleration instruction directed by the
controller from the port ta. All these ports are defined in the
Train declaration. To model the continuous behaviors, the train
design adopts the Hybrid annex. Within the Hybrid annex,
the system time is modeled using the continuous variable t
whose rate is 1 (indicated by notation ’DT 1 t=1’ which
means the derivation of t is 1). In the Hybrid annex behavior
section, the notation ’DT 1 s=v’ defined train speed and the
notation ’DT 1 v=a+ f r’ denotes the acceleration of the train.
During the running, the traction control force is determined
by the value of a calculated by the controller, while the
resistance is determined by the friction coefficient of the track.
In this example, we consider two kinds of uncertainties. The
first one represents uncertain communication delays between
trains and controllers. The second one is the track friction
which is highly dependent on the external environment (e.g.,
weather, temperature). Therefore, we define two local variables
in the variables section of the uncertainty annex. The time
variable v delay is bound to the port ts with a distribution
Normal(0.15,0.04) (defined in the distributions section). We
set the variable v acc as a static price variable, since we
assume that the coefficient for the whole track and its value
is only updated once at the beginning of each system run. In
the queries section, query p1 tries to figure out the probability
that the train can stop before the end of authority (denoted
by EOA) within 300 seconds, and query p2 tries to reason
whether the train can run 4 kilometers within 200 seconds.

B. NPTA Generation from Uncertain Hybrid AADL

To formalize the semantics of Uncertain Hybrid AADL,
we adopt NPTA [9], [11] as the model of computation.
The following subsections will give the details of our model
transformation approach.

1) Preliminary Knowledge of NPTA: Unlike traditional
timed automata, the clocks of a Priced Timed Automaton
(PTA) [27] can evolve with different rates. To simplify the
formal definition, we skip the richer flavors of PTAs supported
by UPPAAL-SMC, e.g., urgent locations [27]. Let C be a clock
set. A clock valuation is a function v : C→ R>=0 which maps
C to the set of non-negative reals R>=0. Let v0 be the initial
valuation where v0(c) = 0 for all c ∈ C. Let U(C) (L(C))
be the set of upper-bound (lower-bound) guards which are in
the form x ∼ k or x− y ∼ k, where x,y ∈ C, k ∈ R and ∼∈
{<,≤,==} (∼ in{>,≥,==}). Assuming g ∈ L(C)∪U(C),
v(C) |= g denotes that valuation v(C) satisfies the constraint g.
Definition 3.5 presents the formal definition of a PTA.

Definition 3.5: A PTA is a 8-tuple A = (L, l0,C,Σ,E,R, I,τ)
where: i) L is a finite set of locations; ii) l0 ∈ L is the initial
location; iii) C is a finite set of clocks; iv) Σ = Σi ∪Σo is a
finite set of actions where Σi and Σo indicate exclusive input
and output actions, respectively; v) E ⊆ L×L(C)×Σ×2C×L
is a finite set of transitions, where L(C) denotes the transition
guard and 2C denotes the reset clocks; vi) R : L→ FC assigns
each location with a clock rate vector, where F is a set of

clock expressions; vii) I : L→ U(C) assigns an invariant to
each location; and viii) τ is the system clock which will not
be reset.

An NPTA in the form (A1 | . . . | An) comprises a set of
correlated PTAs (i.e., A1..n) that communicate with each other
using broadcast channels or shared variables [11]. Let (l,v) ∈
L×RX

>=0 be an NPTA state where l is a composite location
and v |= I(l). Let v[X ] be the reset operation on the clock
set X . That is if c ∈ X , v(c) will be reset, otherwise v(c) will
keep the value. Following the composition rules, the semantics
of an NPTA is mainly based on the following two kinds of
transitions [27]: i) a discrete transition (l,v) a−→ (l′,v′) can
be triggered if there is a transition (l,g,a,X , l′) such that v |=
g and v′ = v[X ]; ii) a delay transition (l,v) d−→ (l,v′) can
be triggered if v′ = v+

∫ v(τ)+d
v(τ) F(l)dτ such that v |= I(l) and

v′ |= I(l), where v(τ) indicates the system time of entering
state (l,v).

(a) PTA A

(b) PTA B
Fig. 2. An NPTA (A|B)

Figure 2 shows an NPTA consisting of two PTAs A and
B, where each PTA has four locations and two clocks (e.g.,
c1 and ca in A). The locations here marked with symbol
“U” are urgent locations which can freeze time. In other
words, time is not allowed to pass when a PTA is in an
urgent location [11]. Note that clocks can evolve with different
rates (i.e., unit price) in different locations. The rate of a
clock is 1 by default. To change the rate of a clock, we
need to modify the rate value of the primed version of the
clock. For example, c′a == 3 in A2 denotes that the rate
of ca is 3 in this location. Since UPPAAL-SMC supports
complex clock expression-based assignment for the primed
clocks, UPPAAL-SMC can be used to model non-linear hybrid
systems. Note that although UPPAAL-SMC only supports
the uniform and exponential distributions explicitly, based
on the C-like programming constructs and built-in function
random() provided by UPPAAL-SMC various distributions
can be constructed. For example, we can construct the normal
distribution based on the Box-Muller approach [20]. Assume
that the values of two variables t1 and t2 follow the normal
distributions N(1,0.32) and N(4,12), respectively. The action
t 1=Normal(1,0.3) on the outgoing edge of A1 assigns t1 with
a random value following N(1,0.32). Since the invariant in
A2 is c1 ≤ t1 and the guard on the outgoing edge of A2
is c1 ≥ t1, PTA A will be stuck at A2 for a time of t1.
If the NPTA is simulated for numerous times, the sojourn
time at location A2 will follow the distribution N(1,0.32). In
this example, PTAs are synchronized by two complementary
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action pairs (“!” indicating sending and “?” denotes receiving)
via urgent channels a and b. While simulating (A|B) with
a large number of runs, we can find that the reaching time
of the composite location (A3,B3) follows the normal distri-
bution N(4+1,12 + 0.32), since the sojourn time of (A|B) at
composite locations (A0,B1) and (A2,B2) follows the normal
distributions N(4,12) and N(1,0.32), respectively. By adopting
the NPTA template like the above example, arbitrarily complex
stochastic behaviors can be modeled.

2) Mapping from Uncertain Hybrid AADL to NPTA: To
facilitate the detailed modeling of system architectures, AADL
provides more types of syntax modeling constructs than
NPTA. Since our approach focuses on quantitative analysis
of stochastic behaviors of Uncertain Hybrid AADL designs,
during the model transformation we neglect all the AADL
constructs which cannot affect the system behaviors. Table I
shows the structural mappings from uncertain Hybrid AADL
constructs to NPTA constructs. Note that we only list a
subset of AADL constructs that have a strong correlation with
uncertainty-aware hybrid features. This subset can essentially
be used to fully describe the behaviors of hybrid systems
within an uncertain environment. In our approach, we use
BLESS annex to specify the discrete components of systems,
e.g., controller. We use the Hybrid annex to describe both
discrete and continuous behaviors of hybrid components, e.g.,
plants. The instances of both annexes can be described using
PTAs. Note that our proposed uncertainty annex focuses on the
variation modeling of communication delays and parameter
values. It only slightly changes structure of PTAs. To model
the overall uncertain behaviors of the whole hybrid system,
all the generated PTAs are synchronized through the channels,
which are transformed from AADL connections.

TABLE I
CONSTRUCT MAPPINGS BETWEEN AADL AND NPTA

AADL Constructs NPTA Constructs
system (PTA1 | . . . | PTAn)

thread / device PTA template
(event) data port variable

connection urgent channel
property set / type global variable

BLESS annex subclause PTA template
Hybrid annex subclause PTA template

Uncertainty annex subclause PTA actions/invariants/guards

Our approach adopts the meta-models of AADL and its
annexes to guide AADL model parsing as well as the con-
struct mapping. Similar to the formal definitions presented
in Section III-A, the meta-models define a set of correlated
sub-constructs of the model, which can be used to extract
the necessary information for the model transformation. Due
to the space limit, we do not introduce the meta-models
used in our approach here. The meta-model for the AADL
without annex can be found in [4], and the meta-models
for BLESS and Hybrid annexes can be obtained from [16]
and [5], respectively. Similar to BLESS and Hybrid annex,
the meta-model of Uncertainty annex can be inferred from
Definition 3.4.

In our approach, the generated NPTA model can be divided
into two parts: i) back-end configurations that are used to

declare necessary data structures (e.g., variables, channels) and
functions (e.g., distributions, actions) for the stochastic mod-
eling of NPTA modes, and ii) front-end models that are used
to model the behaviors of hardware, software and environment
components. Our approach assigns each of AADL components
annotated by BLESS and Hybrid annex subclauses with a
front-end model and a back-end configuration. Moreover, there
is a global back-end configuration for the whole system whose
information are shared by all the front-end models.

3) Back-end Configuration Generation: As a textual file, a
back-end configuration mainly consists of: i) a set of decla-
rations of variable and channels, and ii) a set of distribution
and action functions. By using our approach, such information
can be automatically extracted from AADL designs. Listing 2
shows the back-end configuration generated from the train
AADL shown in Listing 1. To save the space, we put both
the global configuration and the local configuration for the
train within a same file.

For a back-end configuration, the global declarations of
variable and channels are generated from the top level of
AADL designs, i.e., hardware/software components and their
interconnections. For each port of an AADL component, we
create an urgent channel which indicates the AADL connec-
tion associated with the port. For example, assuming that the
connection name bound by the port tv in the AADL design
is tv, we will declare two things for this port in the global
configuration. The first one is an urgent channel c tv that is
used for the synchronization with other components. Since
tv is a data port for the velocity of trains, we declare a
variable v tv of type double to hold data value during the data
transmission via the connection. The constants defined in the
global NPTA configuration correspond to the constants (e.g.,
EOA) defined in top level of AADL designs. For each NPTA
model, a clock systime is defined in the global configuration to
model the system time. To model different stochastic behaviors
of PTAs, the global back-end configuration comprises a library
of distribution functions, which can be used by front-end
NPTA models or the local configurations.

1 //global declarations & distribution function lib.
2 urgent chan c_tv, c_ts, c_ta;
3 double v_tv, v_ts, v_ta;
4 const double EOA=6000;
5 clock systime;
6 double Normal(double mean, double deviation){
7 // Box-Muller method
8 }
9 double Uniform(double min, double max){

10 ...
11 }
12 //local configuration for Train.
13 clock s, v, a, t, d_t;
14 double v_delay, fr;
15 void initialize(){
16 fr=Normal(-0.1,0.05);
17 }
18 //local configurations for other components.
19 ...

Listing 2. Back-end configuration of Train

The local back-end configuration mainly deals with the def-
inition of data structures for specific AADL components and
annexes. During the model transformation, all the continuous
AADL variables are converted to clock typed variables, and
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other AADL variables are converted to non-clock variables
with different types. For each local configuration of PTAs,
we define one built-in function initialize() which is used to
initialize the values of variables. To enable the reset operation
in a PTA, for each local configuration, we define one clock
d t. For the uncertainty annex in Listing 1, there are two
variables declared, i.e., v delay and v fr. Note that only v delay
has a counterpart in the back-end configuration, since it is
a time variable. The price variables have no counterparts,
since they are used as intermediate variables during the model
transformation. Note that the transformation rules for static
and dynamic price variables are different. Since static price
variables only take effect at the beginning of the simulation,
we assign their random values to associated variables in
the function initialize() of local back-end configurations. For
example, we initialize the variable fr with a value following
normal distribution N(−0.1,0.052) in the back-end function
initialize() of the train example. Unlike static price variables,
the dynamic price variables generate random values during
the execution when necessary. It is widely used in front-end
modeling to indicate the random value change of variables. For
example, it can be used to model time-varying port delays.

4) Front-end Model Generation: As a graphical repre-
sentation, front-end models are used in UPPAAL-SMC to
describe the stochastic behaviors of PTAs. To describe the
hybrid behaviors of systems, our approach adopts two kinds
of annexes. We model the discrete behaviors of AADL com-
ponents (e.g., thread component) using the BLESS annex.
To describe continuous behaviors of components (e.g., device
and abstract components), we use the Hybrid annex that is
based on Hybrid CSP (Communicating Sequential Processes)
[29]. For an AADL component without any annotated annexes,
we assume a simplified semantics for its behavior, where the
component periodically receives the data from its input ports
and send the data to its output ports. Therefore, the major
task of front-end model generation is to transform uncertainty-
aware BLESS annexes and Hybrid annexes to their NPTA
counterparts.

Uncertainty Modeling of Front-end Model: For front-end
model transformation, we consider two kinds of uncertainties
in the Uncertainty annex. The first one is described by time
variables which are used to model the delay variations of
network communication or task execution. To model such
stochastic timing behaviors of system, we use the transforma-
tion pattern as shown in Figure 3. Figure 3(a) shows a scenario
that the PTA tries to send something via the channel using the
action channel!. Without annotated Uncertainty annexes, the
sending time of the action is fixed. However, by using our
Uncertainty annex, we can associate a time variable v delay
following normal distribution (i.e., N(1,0.22)) with this chan-
nel. By splitting the transition in Figure 3(a) and introducing a
temporary location to indicate the waiting, we can model the
model the scenario that the action time follows the N(1,0.22)
as shown in Figure 3(b). On the incoming edge of the newly
added location temp, we assign v delay with a random value
following N(1,0.22) and we reset the clock d t. Since the
invariant of location temp is d t<=v delay and the guard on
the outgoing edge of temp is d t>=v delay. Therefore, the

PTA will stay at location temp for a time of v delay following
the normal distribution N(1,0.22). The second uncertainty in
the front-end model is specified by dynamic price variables
in the uncertainty annex, which can mimic the random value
of parameters (e.g., sensor inputs). The transformation of such
uncertainty only needs to assign or replace the applied variable
with the given distribution function.

(a) Certain (b) Uncertain

Fig. 3. Transformation pattern for uncertain PTA models

BLESS Annex Based PTA Generation: The BLESS annex
shares a large overlap of the modeling constructs with PTA.
During the transformation, we can directly map the BLESS
states to PTA locations. Since the definition of BLESS tran-
sitions is more complex than the one of PTA transitions, we
need to use some specific transformation patterns to generate
PTA counterparts with equivalent semantics. In BLESS annex,
a transition allows for a sequence of send (denoted by “!”)
and receive (denoted by “?”) actions. However, PTA models
only allow one of such actions on a transition. To model such
combined send and receive actions, for each action on the
BLESS transition, we introduce one temporary transition and
one temporary location to trigger the action in the order of
their occurrences on the BLESS transition. Note that there
may be some time variable associated with the channel used
by the send or receive actions. In this case, we need to
introduce one more location together with one new transition
to model the time delay of the action as the one shown in
Figure 3. Moreover, BLESS annex provides assert section
and invariant section to specify the behavior constraints of an
AADL component. Such information can be directly parsed
and used as the transition guards and location invariants in
the generated PTA models.

Hybrid Annex Based PTA Generation: When transforming
a Hybrid annex annotated AADL [5], the front-end PTA model
is mainly extracted from the behavior section. Since Hybrid
annex adopts the process algebra notations, the behavior of
component is described by a set of CSP process, e.g., Train
defined in the hybrid behavior section of Listing 1. During the
transformation, each CSP process is converted to a location
except for skip CSP process (e.g., Continue in Listing 1).
The continuous evolution of a CSP process is expressed using
differential expressions, which are translated and used as the
invariant of the corresponding non-urgent location. As an
example shown in Listing 1, the differential expression ’DT 1
s=v’ indicates that the derivative of s is v. It can be translated
into the derivative expression s’=v and used as a part of
invariant for the location Train. To enable the communication
between computation components and physic environments,



9

the semantics of Hybrid AADL allows two kinds of inter-
ruptions, i.e., timed interrupts and communication interrupts.
In the behavior section of Hybrid annex, a timed interrupt is
defined as a part of CSP process in the form of [> time val]>,
which will preempt the continuous evolution after an amount
of time (i.e., time val). By using the similar transformation
pattern shown in Figure 3, we can assure that the continuous
evolution of CSP process can be interrupted after a time of
time val. The communication interrupts enable the preemption
of continuous evolutions by communication events via AADL
ports. For example, the communication interrupt in the form
of [[> pout!(v)]]> EV denotes that whenever a value of v is
sent out the port pout, the current evolution will be terminated
and the CSP process EV will be adopted as the subsequent
behavior of the process. Generally, a communication interrupt
may contain a sequence of send or receive actions. During
the PTA transformation, we model the actions based on their
occurrence order in the interrupt. For each action, we generate
a new PTA location together with a new transition with the
corresponding action on it. Note that in the generated PTA a
location should be set as urgent if the action on next edge is
a send action. When translating the choice operator of a CSP
process, we will create a new adjacent location in the generated
PTA for each alternative. The subsequent behavior of the
process is determined by the Boolean expression associated
with the alternative. To model the behavior of a repeating
process defined in the behavior section, we connect the last
location to the first location of the process in the PTA model
to form a loop.

Fig. 4. PTA model of Train

Figure 4 shows the PTA of the Train example defined
in the behavior section of Listing 1. To enable the exe-
cution of function initialize() defined in the local back-end
configuration, we introduce an urgent location start. On the
outgoing transition of location RunningTrain, the continuous
variables s, a and v are initialized. Since the first action in the
communication interrupt is a send action (i.e., ts!(s)), we make
the location Train urgent. As defined in the uncertainty annex,
the channel associated with the port ts has a communication
delay following N[0.15,0.042]. Based on the pattern shown
in Figure 3, we need to create a new location (i.e., temp0)
to model the delay information. Note that ts is a data port,
we need to sent the value of s via this port. However, the
corresponding action c ts! on the outgoing edge of temp0
cannot hold the value information. Therefore we use the
variable v ts which corresponds to the channel c ts to hold the
data value during the communication via the channel. Since an

urgent location requires no invariants, we move the invariant
derived from the different expression of CSP process Train
to the new location temp0. Since there are three actions in
the communication interrupt of the CSP process Train, we
create two new locations to perform the actions according to
their occurrence order. Note that the newly introduced three
locations (i.e., temp0, int0 and int1) can be considered as the
sub-locations of CSP process Train. Therefore, they should
have the same location invariant. For the action ta?(a) of the
communication interrupt, we need to get the data value from
port ta. Therefore, we use the action a=v ta to update the
value of a.

C. Property Generation for Quantitative Analysis

To enable the quantitative evaluation of Uncertain Hybrid
AADL designs, our proposed Uncertainty annex allows de-
signers to specify design requirements as performance queries.
These performance queries will be transformed as properties
in the form of cost-constrained temporal logic to reason the
performance of the NPTA models generated from Uncertain
Hybrid AADL designs. Since we focus on the reasoning of
stochastic behaviors of AADL systems, the designers would
like to conduct following two kinds of queries.
• Performance query: The performance query can be used

to check the probability that an expected performance
metric can be achieved under a given resource limit. The
performance metric can be expressed as the predicate and
the resource limit can be specified as the constraint using
the keyword under.

• Safety query: The safety query can be used to check
the probability that an unexpected scenario can happen
eventually with a given resource limit. In the query, the
unexpected scenario can be expressed as the predicate
and the resource limit can be specified as the constraint
using the keyword under.

Although safety queries and performance queries have
different meaning, they share the same template during the
property generation. In the queries section, a query consists
of two parts, i.e., predicate φ and resource constraint ψ. The
predicate φ can be used to denote either an unexpected scenario
or an expected performance metric.

To evaluate the performance of generated NPTA models,
UPPAAL-SMC adopts cost-constrained temporal logic [12]
based performance queries in the form of Pr[bound](<>
expr), where [bound] indicates the bound of the cost and
the expression <> expr asserts that the scenario expr should
happen eventually. By using our approach, the queries will be
transformed into properties in the form of Pr[ψ](<> φ). For
example, the performance query p2 in Listing 1 intends to
check the probability that the travel length of the train exceeds
4 kilometers within 200 seconds. In order to conduct the
quantitative evaluation using UPPAAL-SMC, the query will
be converted to a property Pr[<= 200](<> Train.ts>= 4000)
in the form of cost-constrained temporal logic. Based on the
specified probability of false negatives (i.e., α) and probability
uncertainty (i.e., ε), UPPAAL-SMC will simulate a specific
number of stochastic runs which are terminated when either
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bound or <> expr holds. The success rate p of <> expr
satisfying bound will be reported in the form of a probability
range [p− ε, p+ ε] with a specified confidence 1−α.

IV. CASE STUDY

To show the efficacy of our approach, this section presents
the experimental results of verifying the Movement Authority
(MA) control of Chinese Train Control System Level 3 (CTCS-
3) [30], [21]. By using our proposed Uncertainty annex,
we extended the hybrid CTCS-3 AADL model presented in
[21] using the tool OSATE2 [6] based on the uncertainty
information suggested by railway experts from our industrial
partner. Based on our XMI parser and NPTA model generator
implemented using JAVA 1, we can obtain the corresponding
NPTA model as well as performance queries. We employed
the model checker UPPAAL-SMC (version 4.1.19, α = 0.02,
ε = 0.02) to conduct the quantitative evaluation. All the
experimental results were obtained on a desktop with 3.3GHz
AMD CPU and 12GB RAM.

A. System Model of CTCS-3 MA Scenario

As one of the fourteen basic scenarios of CTCS-3 System
Requirements Specification (SRS), the MA control plays an
important role in prohibiting trains from colliding with each
other. Typically an MA scenario involves three major compo-
nents as follows: i) trains that are moving objects periodically
(every 500 milliseconds) sending its status (i.e., current loca-
tion and velocity) to the controller and receiving acceleration
information directed by the controller; ii) Radio Block Centers
(RBCs) that provide MAs to trains based on information ex-
change with trackside subsystems and the on-board controller;
and iii) on-board controller subsystems which control the
velocity of trains by changing their accelerations.

Radio Block Center

Movement 
Authority EoA

SR

Fig. 5. MA scenario of CTCS-3 [21]

As shown in Figure 5, the RBC assigns a dynamic MA to
the left train based on the track situation and the movement of
the right train. Here, EOA stands for the End of Authorization.
When a train reaches a specific distance (i.e., SR) away from
EOA, it needs to apply for a new MA. If the authorization is
not granted in time, according to SRS the train should stop
before the EOA. According to SRS [30], an MA comprises

1We have shared our tool (including the source code of Uncer-
tain Hybrid AADL parser and NPTA model generator) and the un-
certain CTCS-3 MA example on Github. The download address is
https://github.com/tony11231/aadl2uppaal.

a sequence of segments, where each segment has two speed
limits v1 and v2 (v1 ≥ v2). In this example, we set the speed
limits v1 and v2 for each segment to 73m/s and 66m/s,
respectively. If the train speed exceeds v1 (v2), an emergency
(normal) brake will be performed to slow down the train. Upon
receiving an MA request from controller, RBC will reply
a new MA together with all the segment information (e.g.,
speed limits, operation mode). More details can be found in
[30], [21]. In this example, we set the length of an MA to
6 kilometers, and set the length of SR to 1 kilometer. The
train starts with a speed of 0m/s. All the segments have the
same length and the speed limits. Note that within an uncertain
environment, the SRS requirements cannot be guaranteed. For
example, due to the mutual interference between varying com-
munication delays and friction coefficient of tracks, inaccurate
estimation of train location can make the train pass the EOA.
Although train drivers can conduct emergency brake manually,
proper quantitative analysis of these unsafe scenarios should
be studied at architecture level to make the train movement
more safe.
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Fig. 6. AADL model for CTCS-3 MA

Figure 6 shows the graphical AADL model for CTCS-3
MA design, where the controller plays a central role. Within
the MA scenario, the controller sends the MA request to
RBC via the port r and receives the segment and EOA
information from the ports m and ea, respectively. To achieve
the train status, the controller receives the location and speed
information from the ports cs and cv in every 500 milliseconds.
It also controls the train by specifying the newly calculated
acceleration for the train via port ca. Although this figure
does not explicitly present any uncertainty information, in this
example we consider various uncertainties that may affect the
performance of the MA control, e.g., communication delays
between RBC and controllers, computation time variations of
both software/hardware components of controllers, and varied
coefficient of friction of tracks. The cumulative variations by
all these uncertainties strongly affect the performance and
safety of the CTCS-3 MA. In other words, the risk of train
collisions is high within an uncertain environment.

As shown in Table II, this experiment took nine uncertain
aspects of CTCS-3 MA into consideration. Similar to the
work in [28], [23], this paper adopts normal distributions to
model the performance variations in the CTCS-3 MA scenario.
All such variation information was collected from historical
data of train operations. Note that our approach supports
a variety of distributions, which can be used to accurately
model the Uncertain Hybrid AADL designs. In this table,
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the first column presents the category of the uncertainties.
The second column presents the AADL constructs that cause
the uncertainties. For example, when controller sends a MA
request to RBC via port Controller.r, there is a delay variation
caused by the connection conn req following the distribution
N(0.1,0.032), where the expected execution time is 0.1 second
and the standard deviation is 0.03 second. Note that during the
statistical model checking the network delay of 0.1 second
with standard deviation of 0.03 may lead to a negative value.
In our approach, if the variable with type “time” is randomly
assigned with a negative value, we will set it to 0. According
to the three-sigma rule [31], this approximation will still
be accurate in this case. The last two columns provide the
variation distributions and value unit, respectively. By using
our tool chain, the NPTA model of the Uncertain Hybrid
AADL design can be obtained automatically.

TABLE II
UNCERTAINTIES OF MA COMPONENTS

Causes Constructs Variations Unit
Controller.r N(0.1,0.032) Seconds

RBC.m N(0.1,0.032) Seconds
Network RBC.ea N(0.1,0.032) Seconds

Delay Train.tv N(0.15,0.042) Seconds
Train.ts N(0.15,0.042) Seconds

Controller.ca N(0.17,0.042) Seconds

Parameter Train.fr N(−0.1,0.052) MPSS∗

Execution RBC.T0 N(0.1,0.032) Seconds
Time Controller.T5 N(0.2,0.072) Seconds

*MPSS indicates Meter Per Second Squared.

B. Performance Analysis for CTCS-3 MA Scenario

To focus on quantitative analysis of the MA scenario
influenced by uncertain factors, we investigated stochastic
behaviors of a train within an MA as shown in Figure 5. We
assume that the train will fail to get the next MA when entering
SR. Therefore, it should stop before EOA. By using our tool,
three queries are generated to analyze the performance of
Uncertain Hybrid AADL design for CTCS-3 MA.
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Fig. 7. Performance query results with different accelerations

To investigate the probability that a train can stop safely
before the end of authorization within 300 seconds, we
adopt the performance query Pr[<= 300](<> Train.v <=
0 && Train.s< 6000 && Train.s> 0), where Train.v denotes
velocity of the train and Train.s indicates the location of the

train. Figure 7 presents the evaluation results for the query
in the form of Cumulative Probability Distribution (CPD).
In this figure, the x-axis denotes the time limit, and the y-
axis indicates success rate of the performance requirement
indicated by the query. In this evaluation, we considered three
Uncertain Hybrid AADL designs, where the accelerations
directed by the controller are different. We set the accelerations
of three designs to 0.3 MPSS, 0.4 MPSS and 0.7 MPSS,
respectively. By running 868 runs, we can get a probability
interval [0.91,0.95] with a confidence 98% for the query of
the AADL design with an acceleration of 0.3 MPSS. The
SMC simulation for this query costs around 132 seconds.
For the AADL designs with acceleration of 0.4 MPSS and
0.7 MPSS, we can get probability intervals [0.88,0.92] and
[0.81,0.85] with a confidence of 98%, respectively. From this
figure, we can find that the CPD of the design with 0.7
MPSS rises earlier (i.e., 173 seconds), since it has a larger
acceleration and can reach the speed limit v2 more quickly
than the other two designs. However, the larger acceleration
indicates the higher difficulty in managing the train speed. In
other words, the chance that the train exceeds EOA becomes
higher. Therefore, we can find that the AADL design with
0.3 MPSS can achieve the highest success rate to stop before
reaching EOA. Moreover, we can find that the success rate
will not increase significantly after a time threshold, since the
train has stopped before the time limit, i.e., 300 seconds.
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Fig. 8. Performance query results with different control periods

The interaction frequency between trains and the controller
plays an important role in CTCS-3 MA design, since it
strongly affects the cost and performance of train designs.
Although longer control periods cost less communication
bandwidth, the infrequent updates of train accelerations make
the train hard to be controlled. To investigate the effects
of different control periods, we assume that the acceleration
(without consider frictions) sent from the controller is fixed
(i.e., 0.4 MPSS) for the train design. Figure 8 shows the
evaluation results of using the same query as the one used
in Figure 7. We consider three designs with different control
periods, i.e., 0.2, 0.5 and 0.7 second, respectively. From this
figure, we find that the design with the smallest control period
(i.e., 0.2S) can achieve the highest rate of success. By running
266 runs, we can achieve a probability interval [0.95,0.99] with
a confidence 98% for the query of the AADL design with a
control periods of 0.2 second.
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To determine the performance of the AADL design, we used
the query Pr[<= 200](<> Train.s >= 4000) which checks
whether the train can run a distance of 4.0 kilometers within
200 seconds. As shown in Figure 9, we adopted three designs
with different accelerations. We can find that the performance
difference among these three designs is quite small. The
design with an acceleration of 0.3 MPSS achieves the worst
performance, since it needs a worst-case time of 193 seconds
to reach the specified location. Interestingly, the design with
1.0 MPSS does not win the comparison. It needs longer time
to hit the specified location than the design with 0.6 MPSS,
since the design with a larger acceleration will have a more
drastic speed updates near the speed limits.
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Fig. 9. Performance query results for reaching a location

C. Quantitative Safety Analysis for CTCS-3 MA Scenario

During the running of the train, we do not expect the
train speed exceeds the upper speed limit v1, since it can
easily make the train derailed. Therefore, when the train
reaches the speed v1, we need to apply the urgent brake to
reduce the train speed drastically. To check the probability
of overspeed of trains, we used the safety query in the form
of Pr[Tran.s <= 5000](<> Train.v >= 73), which indicates
that within a distance of |EOA−SR| the train speed cannot be
larger than or equal to v1 (i.e., 73m/s). Figure 10 shows the
quantitative evaluation results for the three AADL designs with
different accelerations. For the design with an acceleration
of 0.3 MPSS, UPPAAL-SMC uses 17 seconds to obtain a
probability interval [0.009, 0.049] for the query. From this
figure, we can find that the larger the acceleration is, the
higher chance the train can exceed the upper speed limit. To
achieve a 2% chance of overspeed, the design with 1.0 MPSS
needs an average travel distance of 3.0 kilometers, whereas
the designs with 0.3 MPSS and 0.6 MPSS need an average of
3.5 kilometers and 4.1 kilometers, respectively.

V. CONCLUSIONS

Although there exist dozens of approaches for the analysis
of AADL designs, most of them focus on the architectural
correctness or the reachability analysis. Few of them support
the performance analysis of AADL designs within uncertain
environments. In this paper, we proposed a novel SMC-based
framework that enables quantitative performance evaluation of
Hybrid AADL designs considering various uncertain factors
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Fig. 10. Safety query results for overspeed

caused by physical environments. We introduced a lightweight
language extension to AADL called Uncertainty annex for
the stochastic behavior modeling. By using our proposed
transformation rules, the uncertainty-aware Hybrid AADL
designs can be automatically converted into NPTA models.
Based on the statistical model checker UPPAAL-SMC, our
framework enables automated evaluation of Uncertain Hybrid
AADL designs against various complex performance and
safety queries. Comprehensive experiment results carried on
the CTCS-3 MA scenario demonstrate the feasibility and
efficacy of our approach.
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