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Abstract

Erythropoiesis, the red blood cell production process, involves interactions be-
tween cell populations with different differentiation states, mainly immature
progenitor cells and mature erythrocytes, and growth factors such as erythro-
poietin and glucocorticoids, known to respectively inhibit cell apoptosis, stimu-
late proliferation and differentiation, and stimulate self-renewal. The feedback
regulation of this process allows a very fast and efficient recovery in the case of
a severe anemia. We consider an age-structured model of red blood cell pro-
duction accounting for these feedback regulations and the dynamics of growth
factors. We theoretically show the existence of a unique positive steady state
for the model and we propose a numerical method to obtain an approximation
to its solution. Experiments are reported to show numerically, on one hand, the
optimal convergence order of the numerical scheme and, on the other hand, a
fine approximation to real experimental data, with a suitable selection of the
parameters involved.

Keywords: erythropoiesis model, nonlinear age-structured system, numerical
scheme, long-time integration
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1. Introduction

Production of red blood cells occurs in the bone marrow, where undifferen-
tiated immature hematopoietic stem cells differentiate, throughout a number of
divisions, into more and more mature cells until fully differentiated mature red
blood cells are produced. The process of production and regulation of red blood
cells is called erythropoiesis. The first stage of differentiation of hematopoietic
stem cells is the progenitor stage: erythroid progenitors are undifferentiated
cells committed to the red blood cell – or erythroid – lineage. These cells share
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a lot of properties with stem cells, such as the ability to proliferate and differ-
entiate but also to self-renew, that is to produce by division two daughter cells
identical to the mother cell. Erythroid progenitors proliferate and differentiate
in more mature cells, meanwhile losing their self-renewal ability, until they reach
the stage of reticulocytes. These latter are immature red blood cells that will
finish their differentiation process within few divisions, ejecting their nucleus,
and finally differentiating in erythrocytes that leave the bone marrow and enter
the bloodstream as red blood cells. The entire process is regulated by a vari-
ety of feedback controls, involving growth factors. Among them, erythropoietin
has been identified in 1990 as the main regulator of erythropoiesis: released by
the kidneys when the organism detects a lack of red blood cells, erythropoietin
binds to the surface of erythroid progenitors and prevents their death, called
apoptosis, hence increasing the amount of differentiated cells [24]. Glucocorti-
coids have also been shown to influence erythropoiesis in stress conditions by
inducing erythroid progenitor self-renewal [15, 22].

We propose a mathematical model of stress erythropoiesis in mice based on
age-structured nonlinear partial differential equations describing erythroid pro-
genitor and erythrocyte dynamics in the next section. This model is based on
previous models, proposed in [8, 21], that were inspired by the initial works by
Mackey [26] and co-authors, and Loeffler et al. [25, 33], to describe stress ery-
thropoiesis in mice. Several mathematical models of erythropoiesis have been
proposed over the last 30 years (see [32] for a review), in order to address the
mechanisms of regulation and their role in stress or pathological conditions.
Mackey Mackey [26] published a pioneering paper on hematopoietic stem cell
dynamics, which has then been used and modified by many authors, including
Mackey and co-workers, to describe differentiation and maturation processes
involved in hematopoiesis more precisely [4, 5, 18, 19, 31]. Belair et al [16]
proposed a model of erythropoiesis considering the influence of growth factors
on stem cell differentiation in erythroid progenitors, later improved by Mahaffy
et al [27], and recently analyzed in more details [2, 3]. Another erythropoiesis
model, inspired by the same article, was introduced by Adimy et al. [6] in 2006,
in which Epo is the only growth factor supposed to act during erythropoiesis.
An important contribution to mathematical modeling of erythropoiesis is also
due to Loeffler and his collaborators [25, 32, 37]. Their models consider feed-
back controls from progenitors on the stem cell level and from mature cells
on progenitors, and were fitted to various experiments (including irradiations,
bleeding, and phenylhydrazine treatments of mice). Most of these works were
nevertheless performed before the role of Epo was definitely identified and long
before erythroid progenitor self-renewal was hypothesized.

The equations we propose are coupled via age-dependent feedback functions
associated with cell ability to die by apoptosis, to self-renew and to differentiate.
Contrary to previous, simpler models on which it is based [8, 21], that partially
described regulation of erythropoiesis (for instance, none of them described age-
dependency of feedback functions, and only the model studied in [8] assumed
a non-constant mortality rate of erythrocytes), our model additionally consid-
ers explicit growth factor dynamics, unlike all previously published models of
erythropoiesis (except for Adimy et al. [6]). We first establish the theoretical
existence of a unique positive stationary solution in section 3 then propose a new
numerical scheme to simulate solutions of the system in section 4. In section 5
we illustrate the efficiency of our method by showing numerically that it is of
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Figure 1: Schematic Model of Erythropoiesis. Plain lines with arrows represent cell pro-
cess (differentiation, death, proliferation, cell cycle), whereas dashed lines represent feedback
controls.

second order of convergence, and that it allows to compare simulated solutions
of the model with real biological data.

2. Model of Stress Erythropoiesis

Let consider a population of erythroid progenitors and a population of ery-
throcytes, defined by cell age a and the time of the observation t (see Figure 1).
Cell age a is considered to be the time spent from the birth of a cell up to the time
of observation, hence cells age with unitary velocity (see (4)). Among progeni-
tors, a difference is made between self-renewing progenitors, whose population
is denoted by s(t, a), and differentiating progenitors that are not self-renewing,
denoted by p(t, a). The duration of the differentiating progenitor compartment
is denoted by τp, and the duration of one self-renewing cycle by τc. One may
note that τc < τp. All progenitors are supposed to be localized in the bone
marrow, and all of them can die by apoptosis. The number of erythrocytes,
circulating in blood, is denoted by e(t, a), and E(t) denotes the total number of
erythrocytes at time t, defined by

E(t) =

∫ +∞

0

e(t, a)da.

Two growth factors, erythropoietin (Epo) and glucocorticoids (GC), are as-
sumed to be the main regulators of erythroid progenitor apoptosis and differen-
tiation, and self-renewal respectively [21]. Denote by Epo(t) the concentration
of Epo at time t in bloodstream, and by GC(t) the concentration of gluco-
corticoids at time t. These concentrations are regulated by the total number
of erythrocytes E(t): the more erythrocytes, the less Epo and glucocorticoids
[15, 24].

Denote by α(Epo) the erythroid progenitor apoptosis rate, and by σ(a,GC)
the erythroid progenitor self-renewal rate. The function α is assumed to be
decreasing with respect to Epo (negative feedback, [24]). The function σ is
assumed to be increasing with respect to GC (positive feedback), and decreasing
with respect to the age a of progenitor cells [15] with σ(τp, GC) = 0. This
latter assumption illustrates a lack of sensitivity to GC of mature progenitors,
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contrary to early progenitors that are more sensitive to GC. These assumptions
are summarized hereafter, with ∂x denoting the partial derivative with respect
to x:

α′(Epo) ≤ 0, ∂aσ(a,GC) ≤ 0, ∂GCσ(a,GC) ≥ 0, σ(τp, GC) = 0.

Denote by δ(a,Epo) the differentiation rate of progenitors into erythrocytes.
This rate depends on the age of progenitors, older ones being more inclined to
differentiate [23], and on the concentration of Epo, the more Epo the more
differentiation [23]. The function δ is hence assumed to be increasing with
respect to a and Epo,

∂aδ(a,Epo) > 0, ∂Epoδ(a,Epo) > 0.

In addition, since all progenitors which did not die in the differentiating compart-
ment must differentiate in erythrocytes, we assume lima→τp δ(a,Epo) = +∞
whatever the level of Epo.

The following functions α, σ and δ, will be used in section 5 to perform
numerical experiments,

α(Epo) = Cα
θnαα

θnαα + (log10(Epo))nα
, (1)

where Cα > 0 is the maximal apoptosis rate, θα > 0 is a threshold value, and
nα > 1 is a sensitivity parameter;

σ(a,GC) = Cσ(τp − a)
(log10(GC))nσ

θnσσ + (log10(GC))nσ
, (2)

where, similarly to the function α, θσ > 0, nσ > 1, and Cσ > 0 is a constant
characterizing the maximum self-renewal rate given, for a fixed value of GC, by
Cσ(τp − a);

δ(a,Epo) = Cδ1
τp

τp − a
+ Cδ2

(log10(Epo))nδ

θnδδ + (log10(Epo))nδ
=: δ1(a) + δ2(Epo), (3)

where Cδ1 is the minimum of the age-dependent differentiation rate δ1(a),
reached when a = 0, Cδ2 is the maximum of the Epo-dependent differentia-
tion rate δ2(Epo), and Cδ1 > 0, Cδ2 > 0, θδ > 0 is a threshold value for the
Epo-dependent part of the differentiation rate, nδ > 1 a sensitivity parameter.

It must be noted that in the absence of GC, the self-renewal rate is sup-
posed to vanish, whatever the age of cells, whereas differentiation occurs in the
presence or the absence of Epo: Epo is assumed to positively act on erythroid
progenitor differentiation, yet differentiation can be induced independently of
Epo levels. This explains why the differentiation rate is composed of two addi-
tive terms, whereas the self-renewal rate is composed of only one term.

Denote by γ the mortality rate of erythrocytes. To our knowledge, no precise
measurement of this rate is available in the literature, so it is usually supposed
to be constant. It can however be modified under specific circumstances (see
[21] and section 5 for instance), so without loss of generality we will consider
that it depends on both erythrocyte age a and observation time t, and we will
write γ(t, a) (see [8]).
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Then, the quantities p, s and e satisfy the following system, for t > 0,
∂tp(t, a) + ∂ap(t, a)=− [α(Epo(t)) + δ(a,Epo(t))] p(t, a)

−σ(a,GC(t))p(t, a), a ∈ (0, τp),

∂ts(t, a) + ∂as(t, a)=−α(Epo(t))s(t, a), a ∈ (0, τc),

∂te(t, a) + ∂ae(t, a)=−γ(t, a)e(t, a), a > 0.

(4)

Boundary conditions associated with (4) describe cell flux between compart-
ments, 

p(t, 0) = HSC + 2s(t, τc),

s(t, 0) =

∫ τp

0

σ(a,GC(t))p(t, a)da,

e(t, 0) = A

∫ τp

0

δ(a,Epo(t))p(t, a)da.

(5)

New erythroid progenitors come both from the division of self-renewing progen-
itors in two newborn cells and the differentiation of hematopoietic stem cells:
HSC denotes the flux of hematopoietic stem cells differentiating in erythroid
progenitors, assumed to be constant over time. Self-renewing progenitors are
produced at a rate σ from differentiating progenitors. Erythrocytes are pro-
duced from differentiating progenitors, and A denotes a constant amplification
coefficient accounting for divisions of mature progenitors. For instance, A = 2n

where n is the number of differentiation stages during the reticulocyte stage
[21].

Concentrations of growth factors Epo(t) and GC(t) satisfy the following
ordinary differential equations [20],

d

dt
Epo(t) = f(E(t))− kEpoEpo(t),

d

dt
GC(t) = g(E(t))− kGCGC(t),

(6)

where kEpo > 0 and kGC > 0 are degradation rates, and the functions f and g
describe feedback controls by the total number of erythrocytes on the production
of growth factors. Both functions are assumed to be decreasing (see Figure 1),

f ′(E) < 0, g′(E) < 0.

The model is completed with suitable initial conditions

p(0, a) = p0(a), a ∈ [0, τp],

s(0, a) = s0(a), a ∈ [0, τc],

e(0, a) = e0(a), a > 0,

Epo(0) = Epo0,

GC(0) = GC0.

(7)

Existence and uniqueness of solutions of system (4)–(7) follow from the clas-
sical theory of age-structured equations [36], under conditions of smoothness of
the various nonlinear feedback functions. In section 3, we analyze the existence
of stationary solutions for this model.
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The effort made on increasing the realism in the model is however achieved
at the expense of loss in mathematical tractability. We point out that, without
other restrictive assumptions, this model cannot be solved analytically. There-
fore, the use of efficient methods that provide a numerical approach is the most
suitable mathematical tool for studying the problem and, indeed, it is often the
only one available. Besides, numerical methods have been successfully applied
to structured models to replicate available field and/or laboratory data for a
variety of different systems (e.g. [9, 11, 12, 13] and references therein). We
completely describe, in section 4, the explicit second order numerical scheme,
built “ad hoc”, which has been used to obtain the solutions of (4)–(7). And,
finally, we perform a wide numerical experimentation which includes conver-
gence, long-time integration with the simulation of the theoretical steady state
and a comparison with real biological data in section 5.

3. Existence of a Positive Steady State

We focus in this section on the existence of steady states for system (4)–
(6) when γ does not depend on time t, that is in normal erythropoiesis. From
a biological point of view, system (4)–(6) is expected to possess in this case
only one positive steady state, due to the constant positive flux HSC from the
hematopoietic stem cell compartment.

Suppose (p∗(a), s∗(a), e∗(a), Epo∗, GC∗) is a steady state solution of system
(4)–(6). Then, it satisfies

dp∗

da
(a) =− [α(Epo∗) + σ(a,GC∗) + δ(a,Epo∗)] p∗(a), a ∈ (0, τp),

ds∗

da
(a) =−α(Epo∗)s∗(a), a ∈ (0, τc),

de∗

da
(a) =−γ(a)e∗(a), a > 0,

(8)

with 

p∗(0) = HSC + 2s∗(τc),

s∗(0) =

∫ τp

0

σ(a,GC∗)p∗(a)da,

e∗(0) = A

∫ τp

0

δ(a,Epo∗)p∗(a)da,

(9)

and
kEpoEpo

∗ = f(E∗), kGCGC
∗ = g(E∗),

where

E∗ =

∫ +∞

0

e∗(a)da. (10)

Let us introduce the following notations,
ᾱ(E∗) := α(F (E∗)),

σ̄(a,E∗) := σ(a,G(E∗)), a ∈ [0, τp],

δ̄(a,E∗) := δ(a, F (E∗)), a ∈ [0, τp],

β(a,E∗) := ᾱ(E∗) + σ̄(a,E∗) + δ̄(a,E∗), a ∈ [0, τp],
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where F (E∗) := f(E∗)/kEpo and G(E∗) := g(E∗)/kGC . Consider the following
assumptions,

(H1) Suppose for all θ ∈ [0, τp],

∂Y β(θ, Y ) > 0, ∀Y ≥ 0.

(H2) Suppose, for all θ ∈ [0, τp], there exists Ȳ > 0 such that{
∂Y β(θ, Y ) < 0, ∀Y ∈ [0, Ȳ ),

∂Y β(θ, Y ) > 0, ∀Y ∈ (Ȳ ,+∞).

From a biological point of view, Assumption (H1) describes a situation in which
as the number of erythrocytes increases progenitor apoptosis increases. This
is expected, otherwise the erythrocyte population could be unbounded. As-
sumption (H2) has a similar interpretation, but it also considers that for small
erythrocytes counts, progenitor apoptosis rate becomes negligible compared to
self-renewal and differentiation rates. This should theoretically allow a repopu-
lation of the erythrocyte population. Both assumptions are in agreement with
biological knowledge.

The next proposition states the existence of a unique positive steady state.

Proposition 1. Assume inequality

e−α(0)τc

∫ τp

0

σ(a, 0) exp

(
−
∫ a

0

α(0) + σ(θ, 0) + δ(θ, 0)dθ

)
da <

1

2
(11)

holds true. Then whether Assumption (H1) or (H2) is satisfied, system (4)–(6)
has a unique steady state.

Proof. This proof is in two parts. We first show that system (8)–(10) has a
solution if and only if condition (21) holds true. Then, as a second step, we
show that under Assumption (H1) or (H2) condition (21) holds true as soon as
(11) is satisfied.

Step 1. Solving system (8)–(9) gives

p∗(a) = exp

(
−
∫ a

0

β(θ,E∗)dθ

)
[HSC + 2s∗(τc)] , a ∈ [0, τp], (12)

s∗(a) = exp (−ᾱ(E∗)a)

∫ τp

0

σ̄(θ,E∗)p∗(θ)dθ, a ∈ [0, τc], (13)

e∗(a) = exp

(
−
∫ a

0

γ(θ)dθ

)
A

∫ τp

0

δ̄(θ,E∗)p∗(θ)dθ, a > 0. (14)

Using (13) in (12), we deduce

p∗(a) = exp

(
−
∫ a

0

β(θ, E∗)dθ

)
Ψ(E∗, p∗), a ∈ [0, τp], (15)

where

Ψ(E∗, p∗) := HSC + 2e−ᾱ(E∗)τc

∫ τp

0

σ̄(θ,E∗)p∗(θ)dθ. (16)
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Using now (15) in (14) one obtains

e∗(a) = exp

(
−
∫ a

0

γ(θ)dθ

)
AΛ(E∗)Ψ(E∗, p∗), a > 0,

with

Λ(E∗) :=

∫ τp

0

δ̄(θ,E∗) exp

(
−
∫ θ

0

β(u,E∗)du

)
dθ. (17)

It follows that

E∗ :=

∫ +∞

0

e∗(a)da = ξAΛ(E∗)Ψ(E∗, p∗), (18)

where

ξ :=

∫ +∞

0

exp

(
−
∫ a

0

γ(θ)dθ

)
da > 0.

From (15), one gets for a ∈ [0, τp]

σ̄(a,E∗)p∗(a) = σ̄(a,E∗) exp

(
−
∫ a

0

β(θ,E∗)dθ

)
Ψ(E∗, p∗). (19)

Introducing the following notations,
µ(E∗) := e−ᾱ(E∗)τc ,

ν(E∗) :=

∫ τp

0

σ̄(a,E∗) exp

(
−
∫ a

0

β(θ,E∗)dθ

)
da,

(20)

and using (16), we finally get from the integration of (19)

[1− 2µ(E∗)ν(E∗)]

∫ τp

0

σ̄(θ,E∗)p∗(θ)dθ = ν(E∗)HSC.

Hence, providing that 1− 2µ(E∗)ν(E∗) 6= 0, we have from (16)

Ψ(E∗, p∗) = HSC + 2µ(E∗)
ν(E∗)HSC

1− 2µ(E∗)ν(E∗)
=

HSC

1− 2µ(E∗)ν(E∗)
,

and from (18)

Ψ(E∗, p∗) =
E∗

AξΛ(E∗)
.

This yields that system (4)–(6) has a steady state (p∗(a), s∗(a), e∗(a), Epo∗, GC∗),

with
∫ +∞

0
e∗(a)da := E∗, if

1− 2µ(E∗)ν(E∗) 6= 0 and E∗ = A.HSC.ξ
Λ(E∗)

1− 2µ(E∗)ν(E∗)
. (21)

Conversely, suppose there exists a constant X > 0 such that

1− 2µ(X)ν(X) 6= 0 and X = A.HSC.ξ
Λ(X)

1− 2µ(X)ν(X)
.
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Define

K := HSC
ν(X)

1− 2µ(X)ν(X)
,

and set
z(a) = exp

(
−
∫ a

0

β(θ,X)dθ

)
[HSC + 2µ(X)K] , a ∈ [0, τp],

y(a) = exp (−ᾱ(X)a)K, a ∈ [0, τc],

x(a) = exp

(
−
∫ a

0

γ(θ)dθ

)
A.Λ(X) [HSC + 2µ(X)K] , a > 0.

Then, it is straightforward, using (20) and setting Epo∗ = F (X) and GC∗ =
G(X), to check that (z, y, x) satisfies (8)–(9) and (10). In particular, using the
definition of x and ξ one obtains∫ +∞

0

x(a)da = AξΛ(X) [HSC + 2µ(X)K] ,

and using the definitions of K and X one finally gets∫ +∞

0

x(a)da = A.HSC.ξΛ(X)

[
1 + 2µ(X)

ν(X)

1− 2µ(X)ν(X)

]
= X,

so (10) is satisfied. This defines a steady state solution of system (4)–(6).

Step 2. We now prove that, under assumptions (H1) or (H2), there exists a
unique E∗ > 0 satisfying (21). We first set

χ(Y ) := 1− 2µ(Y )ν(Y ), Y ≥ 0,

and focus on the problem

Find Y ≥ 0 such that χ(Y ) > 0 and cY =
Λ(Y )

χ(Y )
, (22)

where c := 1/(A.HSC.ξ) > 0. From (17) and (20), and the previous assump-
tions on the functions α, σ and δ (see section 2), we obtain

d

dY
Λ(Y ) =

∫ τp

0

[
∂Y δ̄(θ, Y )−

(∫ θ

0

∂Y β(u, Y )du

)
δ̄(θ, Y )

]
e−

∫ θ
0
β(u,Y )dudθ,

and

d

dY
ν(Y ) =

∫ τp

0

[
∂Y σ̄(θ, Y )−

(∫ θ

0

∂Y β(u, Y )du

)
σ̄(θ, Y )

]
e−

∫ θ
0
β(u,Y )dudθ,

and δ̄(θ, Y ) > 0, σ̄(θ, Y ) > 0, ∂Y δ̄(θ, Y ) < 0 and ∂Y σ̄(θ, Y ) < 0.
First assume (H1) holds true. Then

d

dY
Λ(Y ) < 0 and

d

dY
ν(Y ) < 0 for Y ≥ 0.

9



A first consequence, since by definition dµ(Y )/dY < 0, is that

d

dY
χ(Y ) = −2

[
ν(Y )

d

dY
µ(Y ) + µ(Y )

d

dY
ν(Y )

]
> 0.

Hence, the function χ is increasing on [0,+∞). Moreover, (11) implies that
limY→+∞ χ(Y ) > 0. Hence, there exists Y0 ≥ 0 such that χ(Y ) > 0 for Y ∈
(Y0,+∞) and χ(Y0) ≥ 0.

Moreover, from (H1) and as long as χ(Y ) > 0,

d

dY

(
Λ(Y )

χ(Y )

)
=
χ(Y )

d

dY
Λ(Y )− Λ(Y )

d

dY
χ(Y )

χ(Y )2
< 0.

Hence, the function Λ(Y )/χ(Y ) is decreasing on the domain (Y0,+∞), and
Λ(Y0)/χ(Y0) > 0. Consequently (22) has a unique solution Y > Y0.

Assume (H2) holds true. Similarly to the above reasoning, Λ(Y ) and ν(Y )
are decreasing on (Ȳ ,+∞), and the function Λ(Y )/χ(Y ) is decreasing for Y >
max{Y0, Ȳ }. We then conclude similarly to the previous case to the existence
and uniqueness of Y > max{Y0, Ȳ } satisfying (22).

Under assumptions (H1) or (H2) we can then define a unique steady state
to our problem. This concludes the proof.

Let us briefly comment on (11). This condition implies that no more than
half of the progenitor population can self-renew in order to obtain a stationary
solution. Indeed, the term exp

(
−
∫ a

0
α(0) + σ(θ, 0) + δ(θ, 0)dθ

)
describes the

survival rate of differentiating progenitors, σ(a, 0) refers to the maximal fraction
of the population that will self-renew, and exp(−α(0)τc) is the maximal survival
fraction of self-renewing progenitors. Inequality (11) is satisfied with our choices
for α, σ and δ (see Equations (1), (2), (3)). If inequality (11) is not satisfied,
then one may hypothesize the non-existence of a stationary solution and the
unboundedness of the cell population.

4. Numerical Scheme

We introduce a new numerical method to simulate the system (4)-(7). It
is based on the integration along the characteristic curves with the use of a
representation formula of the solution [1].

The existence of a maximum age of differentiation, τp, makes the differen-
tiation rate δ unbounded. This fact has been circumvented in [7, 14] with the
use of an exact integration value at the end of the age-differentiation interval.
However, this method is only possible when such an exact value is known, and
this only happens with specific functions. In general, it is necessary to introduce
a new different dependent function as in [30]. We assume, from now on, that
age and Epo dependences of the function δ are independent, and we write, as
in (3), δ(a,Epo) = δ1(a) + δ2(Epo).

Thus, let q(t, a) be defined as p(t, a) = Π(a) q(t, a), where

Π(a) = exp

(
−
∫ a

0

δ1(x) dx

)
,
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and, accordingly, p0(a) = Π(a) q0(a). The first equation of (4) is replaced with

∂t q + ∂a q = −(α(Epo(t)) + δ2(Epo(t)) + σ(a,GC(t))) q, a ∈ (0, τp). (23)

This change also modifies the boundary condition (5), that writes

q(t, 0) = HSC + 2s(t, τc),

s(t, 0) =

∫ τp

0

σ(a,GC(t)) Π(a) q(t, a)da,

e(t, 0) = A

∫ τp

0

δ(a,Epo(t)) Π(a) q(t, a)da.

(24)

The unbounded age domain for erythrocytes is another circumstance that
must be avoided in the numerical integration. Thus, we introduce a maximum
age Amax for erythrocytes as in [7], that would be large enough to simulate the
dynamics of the model. This means that the numerical method approaches the
evolution of a “truncated” version of problem (23)-(24) and (6)-(7), which in
turn is an approximation to the solution of the original problem (see [10]).

The formula we use in the numerical method is based on the theoretical
integration along the characteristics, which gives us the next representation of
the solution to the new system,

q(t∗ + h, a∗ + h)

= q(t∗, a∗) exp

(
−
∫ h

0

β∗(a∗ + x,Epo(t∗ + x), GC(t∗ + x)) dx

)
,

a∗ + h ≤ τp,
s(t∗ + h, a∗ + h)

= s(t∗, a∗) exp

(
−
∫ h

0

α(Epo(t∗ + x)) dx

)
, a∗ + h ≤ τc,

e(t∗ + h, a∗ + h)

= e(t∗, a∗) exp

(
−
∫ h

0

γ(t∗ + x) dx

)
, a∗ + h ≤ Amax,

(25)

where β∗(a,E,G) = α(E) + δ2(E) + σ(a,G). Note that, in this new layout, we
have two different problems: solving (25), which provides the solution to the
population densities, and integrating (6), which gives the solution to the growth
factor concentrations. We use discretization procedures in order to solve them.

We consider the numerical integration of model (23)-(24) and (6)-(7) along
the time interval [0, T ]. Thus, given a positive integer Jc, we define h = τc/Jc,
Jp = [τp/h], Jmax = Amax/h and N = [T/h] (it is usual that τc and τp would
be proportional, and Amax might be chosen to be proportional to τc, these
restrictions do not play an important role in the numerical integration). We
introduce the discrete time levels tn = nh, 0 ≤ n ≤ N , and the grid nodes
aj = j h, 0 ≤ j ≤ Jmax. Then, we denote the numerical approximations to the
theoretical solutions by: Qnj to qnj = q(aj , tn), 0 ≤ j ≤ Jp; Snj to snj = s(aj , tn),
0 ≤ j ≤ Jc; I

n
j to enj = e(aj , tn), 0 ≤ j ≤ Jmax; On to on = Epo(tn); and Gn

to gn = GC(tn); 0 ≤ n ≤ N . We propose a new method to obtain them: (i) we
start from an approximation of the initial data (7) of the problem, for instance

11



the grid restriction of functions q0, s0, e0 and the values Epo0 and GC0, and (ii)
the numerical solution at a new time level is described in terms of the previous
one by means of a two steps scheme.

Such a general time level is obtained by means of the following second-order
discretization of (24)-(25) and (6). For, 0 ≤ n ≤ N − 1,

Qn+1
j+1 = Qnj exp (−h (β∗(aj , O

n, Gn) + β∗(aj+1, O
n+1,∗, Gn+1,∗))/2),

0 ≤ j ≤ Jp − 1,
Sn+1
j+1 = Snj exp (−h (α(On) + α(On+1,∗))/2), 0 ≤ j ≤ Jc − 1,

In+1
j+1 = Inj exp (−h (γ(aj , t

n) + γ(aj+1, t
n+1))/2), 0 ≤ j ≤ Jmax − 1,

with

Qn+1
0 = HSC + 2Sn+1

Jc
,

Sn+1
0 = Qh(σn+1 ·Π ·Qn+1),

In+1
0 = AQh(δn+1 ·Π ·Qn+1),

and

On+1 = On + h (f(Qh(In)) + f(Qh(In+1,∗))− kEpo (On +On+1,∗))/2,
Gn+1 = Gn + h (g(Qh(In)) + g(Qh(In+1,∗))− kGC (Gn +Gn+1,∗))/2.

Where the intermediate step is given by

Qn+1,∗
j+1 = Qnj exp (−hβ∗(aj , On, Gn)), 0 ≤ j ≤ Jp − 1,

Sn+1,∗
j+1 = Snj exp (−hα(On)), 0 ≤ j ≤ Jc − 1,

In+1,∗
j+1 = Inj exp (−h γ(aj , t

n)), 0 ≤ j ≤ Jmax − 1,

with

Qn+1,∗
0 = HSC + 2Sn+1,∗

Jc
,

In+1,∗
0 = AQh(δn+1,∗ ·Π ·Qn+1,∗),

and

On+1,∗ = On + h (f(Qh(In))− kEpoOn),

Gn+1,∗ = Gn + h (g(Qh(In))− kGC Gn).

One can note that initializing Sn+1,∗
0 is not necessary. In these formulae,

Qh(Vn) represents a quadrature rule to approximate the integral on the inter-
val [0, Amax] (approximation to the total number of erythrocytes E(t)) or [0, τp]
(discretization of the boundary condition (24)) of the function with grid values
Vn, with different number of nodes each case, this fact is indicated by the vector
so it does not cause confusion. In this case Πj = Π(aj), δ

n+1
j = δ(aj , O

n+1),

δn+1,∗
j = δ(aj , O

n+1,∗), σn+1
j = σ(aj , G

n+1), 0 ≤ j ≤ Jp, and δn+1 ·Π ·Qn+1,

δn+1,∗ · Π · Qn+1,∗, σn+1 · Π · Qn+1, denote the componentwise product of
the involved vectors. Here, a second order quadrature rule is appropriate, and
we propose the composite trapezoidal quadrature rule. We point out that our
method is completely explicit and also shows a good behaviour in the long-time
integration to get the approximations to the theoretical steady state. We do
not describe its convergence analysis because it is beyond the purposes of this
work.
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5. Numerical Experiments

We present in this section the analysis performed to experimentally check the
behavior of the proposed numerical method with different test problems. The
first test consists in confronting predictions of the theoretical analysis (steady
state values) with the method’s ability to generate a good approximation to the
solution of the problem, even in the case of a long time integration allowing to
approach steady state values. The second test aims at showing the capacity to
obtain an accurate approximation when confronting the model to real biological
data: we simulate an experimentally-induced anemia in mice and the response
of the organism. The accuracy in the numerical integration is more important
in this case than the long time integration.

In order to perform each test, we have used the functions α, σ and δ defined
in (1)-(3).

The average lifespan of an erythrocyte is known to be 40 days in mice [21],
so we assume a constant mortality rate, γ(a, t) = γ = 1/40 d−1.

Finally, the following Hill functions have been used in (6),

f(E) = Cf
θ
nf
f

θ
nf
f + Enf

, g(E) = Cg
θ
ng
g

θ
ng
g + Eng

, (26)

where (avoiding the subscripts) C > 0 denotes the maximum of the function,
θ > 0 a threshold value, and n > 1 a sensitivity parameter.

Parameter values are listed in Tables 1 and 3. Some values have been ob-
tained from existing values in the literature, others have been estimated using
a classical minimization of a weighted residual sum of squares in order to fit
biological measurements (this is indicated by [NS] in Tables 1 and 3).

Test Problem 1. The following numerical experiment shows the efficacy of the
numerical method in simulating our model. To this end, we compare the be-
havior of the numerical solution with the solution provided by the theoretical
analysis in section 3. In this section, existence of a unique positive stationary
population density was shown, and we shall use it in the comparison of the
numerical order of convergence of our scheme. We will show the optimal rate of
convergence obtained with the numerical method.

We take the functions in (1)-(3) and (26) and use the parameter values in
Table 1.

In order to avoid discontinuities caused by an incompatible initial condition,
we use

s0(a) =
1

7
τpHSC σ(0, GC0) (1− a/τc), a ≤ τc,

e0(a) =

 AHSC

(
Cδ1
5

+
δ2(0, Epo0)

6

)
(τp − a), a ≤ τp,

0, a > τp,

and for a ≤ τp,

p0(a) = HSC

(
1− a

τp

)5

,

q0(a) =
p(a, 0)

Π(a)
, (27)
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Table 1: Parameter values. Sources of parameter values are given between brackets, with
[NS] = values obtained by performing numerical simulations. The values of θα, θσ , Cf and

Cg are respectively given by θ∗α = log10(2Epo∗), θ∗σ = log10(3GC∗), C∗
f = kepoEpo∗(θ

nf
f +

(E∗)nf )/θ
nf
f , C∗

g = kgcGC∗(θ
ng
g + (E∗)ng )/θ

ng
g . (N.U. = no unit)

Par. Value Unit Par. Value Unit
Cell Populations [21], [NS] Growth factors [20]
A 28 N.U. kEpo 5.55 day−1

HSC 104 cells.g−1.d−1 Epo∗ 5.7 mU.µL−1

γ 1/40 d−1 kGC 11.1 d−1

E∗ 1.51× 107 cells GC∗ 44.6 mU.µL−1

Cell Cycle and Differentiation Durations [21]
τp 4 d τc 1 d
Apoptosis Rate [21], [NS] Self-Renewal Rate [21], [NS]
Cα 0.6 d−1 Cσ 1 d−2

θα θ∗α mU.µL−1 θσ θ∗σ mU.µL−1

nα 2 N.U. nσ 2 N.U.
Differentiation Rate [21], [NS]
Cδ1 1.15 d−1 θδ 1 mU.µL−1

Cδ2 0.1 d−1 nδ 2 N.U.
Epo Production Rate [20], [NS] GC Production Rate [20], [NS]
Cf C∗f mU.µL−1.d−1 Cg C∗g mU.µL−1.d−1

θf 0.7E∗ cells.g−1 θg 0.4E∗ cells.g−1

nf 7 N.U. ng 6 N.U.

which satisfy the first compatibility condition. Note that (27) is well defined.
We complete the initial condition with Epo0 = 5 mU.µL−1 and GC0 = 44
mU.µL−1.

We do not know the analytical solution to the problem then, in order to
compare with the numerical solution, we use the value of the steady state of the
problem, given by the following formulae

s∗(a) = HSC
σ(0, GC∗) i1

1− 2σ(0, GC∗) i1 e−α(a,Epo∗) τc
e−α(a,Epo∗) a, a ≤ τc, (28)

e∗(a) = AHSC
Cδ1i−1 + δ2(0, Epo∗) i0

1− 2σ(0, GC∗) i1 e−α(a,Epo∗) τc
e−γ a, a ≤ τp, (29)

p∗(a) = HSC
e−a (α(a,Epo∗)+δ2(a,Epo∗)+(1−a/(2 τp))σ(0,GC∗))

1− 2σ(0, GC∗) i1 e−α(a,Epo∗) τc

(
1− a

τp

)τp Cδ1
,

a ≤ τp, (30)

q∗(a) = HSC
e−a (α(a,Epo∗)+δ2(a,Epo∗)+(1−a/(2 τp))σ(0,GC∗))

1− 2σ(0, GC∗) i1 e−α(a,Epo∗) τc
, a ≤ τp, (31)

where, for r = −1, 0, 1,

ir =

∫ τp

0

(
1− a

τp

)Cδ1τp+r

e−[α(a,Epo∗)+δ2(a,Epo∗)+(1−a/(2 τp)σ(0,GC∗)]ada.
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h Eph Esh Eeh EEpoh EGCh
3.125e-2 5.6446e-3 3.4988e-3 5.1756e-1 2.3044e-6 1.6660e-5

1.5625e-2
1.4187e-3 8.8050e-4 1.3073e-1 5.7095e-7 4.1277e-6

1.99 1.99 1.99 2.01 2.01

7.8125e-3
3.5520e-4 2.2052e-4 3.2773e-2 1.4241e-7 1.0296e-6

2.00 2.00 2.00 2.00 2.00

3.9063e-3
8.8846e-5 5.5164e-5 8.2001e-3 3.5589e-8 2.5729e-7

2.00 2.00 2.00 2.00 2.00

1.9531e-3
2.2236e-5 1.3806e-5 2.0524e-3 8.9049e-9 6.4378e-8

2.00 2.00 2.00 2.00 2.00

Table 2: Test problem 1. Error and numerical convergence order, for T = 1600.

We have carried out an extensive numerical experimentation with differ-
ent final-times T , step-sizes h and maximum erythrocites age Amax values. We
observe that Amax = 1600 is enough to obtain a good approximation to the non-
truncated problem and T = 1600 produces a sufficiently long time integration
in order to provide a numerical approximation to the steady state.

In Table 2, we present the results obtained with the method for different
values of the step size. For each h, we compare at the final time T = 1600, the
computed numerical solution Un

h, with the steady state unh, where Un
h and unh

represent, respectively, Pn
h, Snh, Inh, On and Gn and pnh, snh, enh, Epo∗ and GC∗,

0 ≤ n ≤ N . In each row of Table 2, the upper number shows the maximum
error with different step sizes h (first column); that is

Euh = max
0≤n≤N

‖Un
h − un‖∞,

and the lower number the numerical order of convergence, which we compute
with the formula

su2h =
log(Eu2h/Euh )

log(2)
.

Results in Table 2 clearly confirm the expected second-order of convergence.

Test Problem 2. The second test deals with the reproduction of biological mea-
surements. Data come from an experiment of induced anemia in mice, intro-
duced in [21]. We assume that the initial condition of the system is given by
the steady state (28)-(31), then we simulate the anemia (induced by a drug
called phenylhydrazine that kills red blood cells upon injection on days 0 and
1, see Figure 2) and we observe the reaction of the organism that leads to full
recovery within few days (see Figure 2). Thus, we are not interested on a long
time integration but rather on an accurate description of transient dynamics.

Let first recall that “hematocrit” is a test that measures the volume of red
blood cells in a blood sample. It gives a percentage of erythrocyte volume
found in the whole blood volume. It can be considered [21] that a blood sample
is mainly composed with erythrocytes and plasma, since platelet and white
cell volumes can be easily neglected. The system (4)-(6) is then numerically
solved with the method proposed in section 4, and the corresponding simulated
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Figure 2: Experimental and Simulated Hematocrits. Experimental data are given
by the blue dashed line, with error bars on every experimental time point. The simulated
hematocrit is given by the red curve. Mice are rendered anemic by two consecutive injections
of phenylhydrazine on days 0 and 1. The hematocrit shows a strong fall following the anemia
(the hematocrit reaches very low values), then it rapidly increases to reach a high value, and
then returns to the equilibrium. The simulated hematocrit is able to correctly capture all
these features. All parameter values are given by Tables 1 and 3.

hematocrit HCT is computed using the formula in [21],

HCT (t) =
E(t)

E(t) + E∗(1−HCT ∗)/HCT ∗
,

where E(t) is the total number of erythrocytes and HCT ∗ is the steady state
value of the hematocrit, obtained through experimental data (in mice, HCT ∗

is around 45%− 50%, see Figure 2).
Again, we use the functions in (1)-(3) and (26) to perform the simulations.

We have carried out an extensive numerical experimentation with different final-
times T , step-sizes h and values of the parameters involved in the problem.
We observe that T = 200 and h = 7.8125e−3 provide sufficiently accurate
approximations to the theoretical stationary state.

In [21] the authors noticed that in order to correctly reproduce experimental
data (the rapid increase of the hematocrit following anemia and the damped
oscillations observed after the peak of the response), a modification of the value
of the mortality rate of erythrocytes should be accounted for. This has been
identified as a consequence of using phenylhydrazine to induce anemia: one
effect of this substance is to dramatically alter the lifespan of erythrocytes that
were not killed by it (see [34] for a study on chicken’s erythrocytes lifespan, as
well as [17, 28, 29, 35]). We then introduce a modification of the erythrocyte
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Table 3: Parameter values. Sources of parameter values are given between brackets, with
[NS] = values obtained by performing numerical simulations. (N.U. = no unit)

Par. Value Unit Par. Value Unit
Steady States [21], [NS]
E∗ 1.72× 107 cells HCT ∗ 48% N.U.
Phenylhydrazine Injections [NS]
R 2 d−1 K 9 d−1

tf 1 d m 4 N.U.
t2 1 d

mortality rate γ(a, t), as follows

γ(t, a) = γ (1 + phz(a, t, 0, tf ) + phz(a, t, t2, tf )) ,

where the function phz accounts for the effect of phenylhydrazine, as follows

phz(a, t, ti, tf )=


0, t ≤ ti or a ≤ t− ti,

K
(ti + tf − t)m

tmf
+R, ti ≤ t ≤ ti + tf and a ≥ t− ti,

R, ti + tf ≤ t and a ≥ t− ti,

with ti the time of the injection, tf the duration of the phenylhydrazine effect
in the blood, R a nonnegative residual effect, K a positive constant which
determines the maximum effect of the phenylhydrazine injection, and m an
exponent associated with the clearance of the phenylhydrazine while in blood.

In order to compare the model simulations with the experimental data,
we then reproduced the experimental protocol consisting in two injections of
phenylhydrazine, with the initial injection occurring at time t = 0 and the
second injection at time t2 = 1 day. Since experimentally both injections are
similar (same dose, same route of injection), we assumed that they both have
the same effects and we used the same parameter values for the function phz,
except for the value of ti. Additional parameter values are shown in Table 3.

Figure 2 shows the simulation performed numerically with γ = 1/
√

40, pa-
rameter data in Tables 1, and 3, and associated experimental data. One can
appreciate how the numerical solution reproduces the behavior of the phenyl-
hydrazine action in inducing anemia and the recovery of the organism.

6. Conclusions

We considered an age-structured partial differential equation system, cou-
pled to a system of ordinary differential equations, which generalizes a previous
model published in [21] to describe erythropoiesis. In addition to cell population
dynamics, this new model incorporates growth factor dynamics, and explicitly
considers an age-dependency of feedback control functions describing immature
cell self-renewal and differentiation. The complexity of the mathematical model
we considered limited the theoretical analysis that could be performed, however
a study about the existence of steady states has been performed.
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In order to perform a more complex analysis of the model, we needed to
introduce numerical approximation to the solution. Therefore, we presented an
“ad hoc” new numerical method to generate a simulated solution of the system.

We have studied numerically both its accuracy and its potential to simulate
real biological behaviors, based on experimental data. On one hand, we have
shown numerically a second order of convergence. On the other hand, the
method proved able to accurately replicate an experimental protocol, consisting
in injecting mice with a substance that kills red blood cells and induces anemia,
which has been modeled following [8]. Thus, the numerical scheme shows a
second order convergence in a finite time integration, a good behavior in a long-
time one and it is able to simulate and replicate biological data.
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