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Abstract. Bubbles are pairs of internally vertex-disjoint (s, t)-paths
with applications in the processing of DNA and RNA data. For exam-
ple, enumerating alternative splicing events in a reference-free context
can be done by enumerating all bubbles in a de Bruijn graph built from
RNA-seq reads [16]. However, listing and analysing all bubbles in a given
graph is usually unfeasible in practice, due to the exponential number of
bubbles present in real data graphs. In this paper, we propose a notion
of a bubble generator set, i.e. a polynomial-sized subset of bubbles from
which all the others can be obtained through the application of a specific
symmetric difference operator. This set provides a compact representa-
tion of the bubble space of a graph, which can be useful in practice
since some pertinent information about all the bubbles can be more con-
veniently extracted from this compact set. Furthermore, we provide a
polynomial-time algorithm to decompose any bubble of a graph into the
bubbles of such a generator in a tree-like fashion.

Keywords: Bubbles, Bubble generator set, Bubble space, Decomposi-
tion algorithm

1 Introduction

Bubbles are pairs of internally vertex-disjoint (s, t)-paths with applications in the
processing of DNA and RNA data. For example, in the genomic context, genome
assemblers usually identify and remove bubbles in order to remove sequencing
errors and linearise the graph [14, 22, 18, 10]. However, bubbles can also repre-
sent interesting biological events, e.g. allelic differences (SNPs and indels) when
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processing DNA data [7, 20, 21], and alternative splicing events in RNA data [17,
16, 15, 11]. Due to their practical relevance, several theoretical studies concern-
ing bubbles were done in the past few years [1, 4, 13, 15, 19], usually related to
bubble-enumeration algorithms, but the literature regarding this mathematical
object remains small when compared to the literature on cycles, i.e. undirected
eulerian subgraphs, which is a related concept.

In practice, due to the high throughput of modern sequencing machines, the
genomic and transcriptomic de Bruijn graphs tend to be huge, usually containing
from millions to billions of vertices. As expected, the number of bubbles also
tends to be large, exponential in the worst case, and therefore algorithms that
deal with them either simplify the graph by removing bubbles, or just analyse
a small subset of the bubble space. Such subsets usually correspond to bubbles
with some predefined characteristics, and may not be the best representative of
the bubble space. More worrying is the fact that all the relevant events described
by bubbles that do not satisfy the constraints are lost. On the other hand, any
algorithm that tries to be more exhaustive, analysing a big part of the bubble
space, will certainly spend a prohibitive amount of time in real data graphs and
will not be applicable. This motivates further work for finding efficient ways to
represent the information contained in the bubble space. In a graph-theoretical
framework, one way to do this is to obtain a compact description of all bubbles.

In this paper, we propose a bubble generator, i.e. a “representative set” of
the bubbles in a graph that allows to reconstruct all and only the bubbles in a
graph. More specifically, we show how to identify, for any given directed graph
G, a generator set of bubbles G(G) which is of polynomial size in the input, and
such that any bubble in G can be obtained in a polynomial number of steps by
properly combining the bubbles in the generator G(G) through some suitably
defined graph operations. We also propose a polynomial-time decomposition
algorithm that, given a bubble B in the graph G, finds a sequence of bubbles
from the generator G(G) whose combination results in B. The latter algorithm
can be applied when one needs to know how to decompose a bubble into its
elementary parts, which are the bubbles in G(G), e.g. when identifying and
decomposing complex alternative splicing events [17] into several elementary
alternative splicing events.

This work was inspired by the studies on cycle bases, which represent a com-
pact description of all the cycles in a graph. The study of cycle bases started
a long time ago [12] and has attracted much attention in the last fifteen years,
leading to many interesting results such as the classification of different types
of cycle bases, the generalisation of these notions to weighted and to directed
graphs, as well as several complexity results for constructing bases. We refer the
interested reader to the books of Deo [5] and Bollobás [2], and to the survey of
Kavitha et al. [8] for an in-depth coverage of cycle bases. However, it is worth
mentioning some characteristics that make the problems related to bubble gen-
erators very different (and more difficult) from the ones related to cycle bases.
Indeed, a cycle base in a directed graph contains cycles with orientations that
can be arbitrary, so that elements in the base are not even directed cycles in the
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original graph [9] (if the graph is strongly connected, then it is possible to find a
cycle base composed only of directed cycles [6]). On the contrary, bubbles impose
a particular orientation of the cycle. Observe that a cycle base composed solely
of bubbles cannot be directly translated into a bubble generator, since such set
represents the cycle space, which is a superset of the bubble space. In order to
obtain a representative set of only the bubble space, it is required to change the
symmetric difference operator, i.e. the operator used to combine two bubbles.
The restriction we impose in this operator is that two bubbles are combinable if
the output is also a bubble, i.e. the operator is undefined if the output is not a
bubble. By imposing such restriction, the bubble space is not closed under the
symmetric difference operator, and thus cannot be represented as a vector space
over Z2, as is the case with the cycle space. As such, the algorithms developed
for cycle bases in undirected and directed graphs do not apply to our problem
with bubbles.

The remainder of the paper is organised as follows. Section 2 present some
definitions that will be used throughout the paper. Section 3 introduces the bub-
ble generator. Section 4 presents a polynomial-time algorithm for decomposing
any bubble in a graph into elements of the generator set. Finally, we conclude
with open problems in Section 5.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard
graph terminology, as contained for instance in [3]. A directed graph is a pair
G = (V,A), where V is the set of vertices, and A is the set of arcs. Given a graph
G, we also denote by V (G) the set of vertices of G, and by A(G) the set of arcs
of G. For convenience, we set n = |V (G)| and m = |A(G)|. In this paper, all
graphs considered are directed, unweighted, without parallel arcs and finite. An
arc a = (u, v) is said to be incident to vertices u and v. In particular, a = (u, v)
is said to be leaving vertex u and entering vertex v. Alternatively, a = (u, v) is
an outgoing arc for u and an incoming arc for v. The in-degree of a vertex v is
given by the number of arcs entering v, while the out-degree of v is the number
of arcs leaving v. The degree of v is the sum of its in-degree and out-degree.

We say that a graph G′ = (V ′, A′) is a subgraph of a graph G = (V,A) if
V ′ ⊆ V and A′ ⊆ A. Given a subset of vertices V ′ ⊆ V , the subgraph of G
induced by V ′, denoted by G[V ′], has V ′ as vertex set and contains all arcs of G
that have both endpoints in V ′. Given a subset of arcs A′ ⊆ A, the subgraph of
G induced by A′, denoted by G[A′], has A′ as arc set and contains all vertices
of G that are endpoints of arcs in A′. Given a subset of vertices V ′ ⊆ V and a
subset of arcs A′ ⊆ A, we denote by G− V ′ the graph G[V \ V ′] and by G−A′
the graph G[A \A′]. Given two graphs G and H, their union G∪H is the graph
F for which V (F ) = V (G)∪V (H) and A(F ) = A(G)∪A(H). Their intersection
G∩H is the graph F for which V (F ) = V (G)∩V (H) and A(F ) = A(G)∩A(H).

Let s, t be any two vertices in G. A (directed) path from s to t in G is
a sequence of vertices s = v1, v2, . . ., vk = t, such that (vi, vi+1) ∈ A for
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i = 1, 2, . . . , k − 1. We also allow a single vertex to be a path. A path is simple
if it does not contain repeated vertices. A path from s to t is also referred to
as an (s, t)-path. The length of a path p is the number of arcs in p and will be
denoted by |p|. We write p ⊆ q if p is a subpath of q. Given a path p1 from
x to y and a path p2 from y to z, we denote by p1 · p2 their concatenation,
i.e. the path from x to z defined by the path p1 followed by p2. For a path
p = v1, v2, . . . , vk, we say that the subpath p1 = v1, . . . , vi (p2 = vj , . . . , vk) is a
prefix (suffix ) of p for some 1 ≤ i ≤ k (1 ≤ j ≤ k). Two paths p = v1, v2, . . . , vk
and q = u1, u2, . . . , ul are vertex disjoint if they share no vertices. Further, if the
subpaths p1 = v2, . . . , vk−1 of p and q1 = u2, . . . , ul−1 of q are vertex disjoint,
we say that p and q are internally vertex disjoint. Throughout this paper, all the
paths considered will be simple and referred to as paths.

Definition 1. Given a directed graph G and two vertices s, t ∈ V (G), not neces-
sarily distinct, an (s, t)-bubble B consists of two (s, t)-paths that are internally
vertex disjoint. Vertex s is the source and t is the target of the bubble. If s = t
then one of the paths of the bubble has length 0, and therefore B corresponds to
a directed cycle. We then say that B is a degenerate bubble.

In the following, we assume that shortest paths are unique. This is without
loss of generality, and indeed there are many standard techniques for achieving
this, including perturbing arc weights by infinitesimals. However, for our goal,
it suffices to use a “lexicographic ordering”. Namely, we define an arbitrary
ordering v1, . . . , vn on the vertices of G. A path p is considered lexicographically
shorter than a path q if the length of p is strictly smaller than the length of q,
or, if p and q have the same length, the sequence of vertices associated to p is
lexicographically smaller than the sequence associated to q. We denote this by
p <lex q.

We denote by B = (p, q) the bubble having p, q as its two internally vertex-
disjoint paths, referred to as legs. We denote by `(B) (resp., by L(B)) the shorter
(resp., longer) between the two legs p, q of B. We also denote by |B| the number
of arcs of bubble B. Note that |B| = |`(B)|+ |L(B)|.

Next, we define a total order on the set of bubbles.

Definition 2. Let B1 and B2 be any two bubbles. B1 is smaller than B2 (in
symbols, B1 < B2) if one of the following holds: either (i) L(B1) <lex L(B2); or
(ii) L(B1) = L(B2) and `(B1) <lex `(B2).

3 The bubble generator

As with cycle bases in undirected graphs, we define a symmetric difference oper-
ator, but which operands are bubbles. Given two bubbles B1 and B2 of a directed
graph G, the constrained symmetric difference operator ∆ is such that B1∆B2

is defined if and only if G[(A(B1)∪A(B2)) \ (A(B1)∩A(B2))] is a bubble. Oth-
erwise, we say that B1∆B2 is undefined. If B1∆B2 is defined, we also say that
B1 and B2 are combinable. Given two combinable bubbles B1 and B2, we refer



5

to B1∆B2 as the sum of B1 and B2, and denote it also by B1 +B2. We also say
that the bubble B1 +B2 is generated from bubbles B1 and B2, and that it can
be decomposed into the bubbles B1 and B2.

Let G be a directed graph and let B be a set of bubbles in G. The set of all
the bubbles that can be generated starting from bubbles in B is called the span
of B. A set of bubbles B is called a generator if each bubble in G is spanned
by B, i.e. it can be recursively decomposed down to bubbles of B. Due to our
constrained symmetric difference operator ∆, all subgraphs generated by the
elements in B are necessarily bubbles. Since not all pairs of bubbles of G are
combinable, the bubble space is not closed under ∆, and therefore it does not
form a vector space over Z2.

Definition 3. A bubble B is composed if it can be obtained as a sum of two
smaller bubbles. Otherwise, the bubble B is called simple.

For a directed graph G, we denote by S(G) the set of simple bubbles of G.
It is not difficult to see that S(G) is a generator. For now, we are not able to:
1) prove that S(G) can be found in polynomial time or if it is NP-Hard to do
so; 2) prove that any bubble in G can be obtained in a polynomial number of
steps from bubbles in S(G). Nevertheless, we introduce next another generator
G(G) ⊇ S(G) which can be found in polynomial time and for which we can prove
that any bubble in G can be obtained in a polynomial number of steps from the
bubbles in G(G). Let p : s = x0, x1, . . . , xh = t be a path from s to t and let
0 ≤ i ≤ j ≤ h. To ease the notation, we denote by pi,j the subpath of p from xi
to xj , and refer also to p0,j as ps,j and to pi,h as pi,t. The next theorem provides
some properties of simple bubbles.

Theorem 1. Let B be a simple (s, t)-bubble in a directed graph G. The following
holds:

(1) `(B) is the shortest path from s to t in G;
(2) Let L(B) = s, v1, . . . , vr, t. Then s, v1, . . . , vr is the shortest path from s

to vr in G.

Proof. Let B be a simple (s, t)-bubble: we show that both conditions (1) and
(2) must hold.

We first consider condition (1). If B is degenerate, then it trivially satisfies
condition (1). Therefore, assume that B is non-degenerate and, by contradiction,
that `(B) is not the shortest path from s to t. Let p∗ : s = x0, x1, . . . , xh = t be
the shortest path from s to t in G. For 0 ≤ i ≤ j ≤ h, by subpath optimality, p∗i,j
is the shortest path from xi to xj . Let k be the smallest index, 0 ≤ k < h, for
which the arc (xk, xk+1) does not belong to either one of the legs of B. Such an
index k must exist, as otherwise p∗ would coincide with a leg of B. Furthermore,
let l, k < l ≤ h, be the smallest index greater than k for which xl ∈ V (B). Such
a vertex xl must also exist, since xh = t ∈ V (B). In other words, xk is the first
vertex of the bubble B where p∗ departs from B and xl, l > k, is the first vertex
where the shortest path p∗ intersects again the bubble B. By definition of xk
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Fig. 1: Case (1) of the proof of Theorem 1. The prefix of the shortest path from
s to t is shown as a solid line.

and xl, p
∗
k,l is internally vertex-disjoint with both legs of B. We now claim that

B can be obtained as the sum of two smaller bubbles, thus contradicting our
assumption that B is a simple bubble.

To prove the claim, we distinguish two cases, depending on whether xk and
xl are on the same leg of B or not. Consider first the case when xk and xl are
on the same leg p of B (see Fig. 1(a)). Let B1 be the bubble with `(B1) = p∗k,l
and L(B1) = pk,l. First, note that if either xk 6= s or xl 6= t, then pk,l is a
proper subpath of a leg of B. Hence, |L(B1)| = |pk,l| < |L(B)|, and B1 < B.
Otherwise, suppose s = xk and t = xl. Then either L(B1) = `(B) <lex L(B),
or L(B1) = L(B) and `(B1) = p∗k,l = p∗ <lex `(B). In both cases, B1 < B.
Let B2 be the bubble which is obtained from B by replacing pk,l by p∗k,l (see
Fig. 1(a)). Since p∗k,l is the shortest path, by subpath optimality, p∗k,l <lex pk,l,
thus B2 < B. As a result, B can be obtained as the sum of two smaller bubbles
B1, B2, thus contradicting the assumption that B is simple.

Consider now the case where xk and xl are on different legs of B (see
Fig. 1(b)). Notice that this means xk 6= s and xl 6= t. Let p be the leg containing
xl and q the one containing xk. Note that p = p0,l · pl,h and q = p∗0,k · qk,h.
Moreover, let B1 be the bubble such that the two legs of B1 are p∗0,k · p∗k,l <lex q
and p0,l, which is a proper subpath of p. Hence, B1 < B. Let B2 be the bub-
ble such that the two legs of B2 are qk,h, which is a proper subpath of q, and
p∗k,l · pl,h <lex p. Hence, B2 < B, and B = B1 +B2, which implies again that B
is not simple.

We show now that B satisfies also condition (2). Assume, by contradiction,
that B satisfies condition (1) but not (2), and so p = s, v1, . . . , vr (note that p
is equal to L(B) without its last arc) is not the shortest path from s to vr in G.
Let p∗ : s = x0, . . . , xh−1 = vr, p∗ 6= p, be such a shortest path in G. Similarly
to the previous case, let k be the smallest index, 0 ≤ k < h − 1, for which the
arc (xk, xk+1) does not belong to either one of the legs of B, i.e. xk is the first
vertex where the shortest path p∗ departs from B. Such an index k must exist, as
otherwise p∗ would coincide with a leg of B. Let l, k < l ≤ h− 1, be the smallest
index such that xl ∈ V (B). Namely, xl is the first vertex after xk where the
shortest path p∗ intersects again bubble B. Such a vertex xl must always exist,
since xh−1 = vr ∈ V (B). Since k < l, we have that |p∗k,l| ≥ 1. Furthermore, we
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Fig. 2: Case (2) of the proof of Theorem 1. The shortest path from s to t and
the prefix of the shortest path from s to vr are shown as solid lines.

claim that xl must be in L(B)− {s, t}. If this were not the case, we would have
two distinct shortest paths from s to xl in G (p∗0,l and the subpath of `(B) from
s = x0 to xl), which contradicts our assumption that shortest paths are unique.

We again distinguish two cases: when both xk, xl belong to L(B), and when
xk ∈ `(B) and xl ∈ L(B). We set p = L(B), q = `(B).

In the first case (see Fig. 2(a)), let B1 be the bubble with `(B1) = `(B)
and L(B1) = p∗0,k · p∗k,l · pl,h. Since |p∗k,l| <lex |pk,l| then L(B1) <lex L(B), and
thus B1 < B. Let B2 be the bubble with `(B2) = p∗k,l, and L(B2) = pk,l. Since
L(B2) ⊂ L(B) (as xk 6= t), B2 < B. As a result, B can be obtained as the sum of
two smaller bubbles B1, B2, thus contradicting the assumption that B is simple.

In the second case (see Fig. 2(b)), let B1 be the bubble with `(B1) = p∗0,k ·p∗k,l
and L(B1) = p0,l. Since L(B1) ⊂ L(B), B1 < B. Let B2 be the bubble with
`(B2) = qk,h, and L(B2) = p∗k,l · pl,h. Since |L(B2)| < |L(B)|, B2 < B. Again, B
can be obtained as the sum of two smaller bubbles B1, B2, thus contradicting
the assumption that B is simple. Finally, notice that this includes also the case
xk = t and the argument holds identically with B2 being a degenerate bubble.
For the sake of clarity, we depicted this case separately in Fig. 2(b1). �

Given a directed graph G, we denote by G(G) the set of bubbles in G satis-
fying conditions (1) and (2) of Theorem 1.

Remark 1. Conditions (1) and (2) of Theorem 1 are not sufficient to guarantee
that a bubble is simple, e.g. see Fig. 3. Thus, the generator G(G) is not necessarily
minimal.
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Fig. 3: An example showing that conditions (1) and (2) of Theorem 1 are not
sufficient to guarantee that a bubble is simple. (a) A directed graph G. (b) The
three bubbles B1, B2 and B3 of G satisfying conditions (1) and (2) of Theorem 1,
in which B1 and B2 are simple, but B3 is composed, since B1 < B3, B2 < B3

and B3 = B1 +B2.

Theorem 2. Let G be a directed graph. The following holds:

(1) G(G) is a generator set for all the bubbles of G;
(2) |G(G)| ≤ nm.

Proof. (1) Recall that S(G) is the set of simple bubbles. By Theorem 1, S(G) ⊆
G(G), and thus G(G) is a generator set for all the bubbles of G.
(2) Since every bubble b in G(G), with `(b) = s, u1, . . . , t and L(b) = s, v1, . . . , vr, t,
can be uniquely identified by its vertex s and its arc (vr, t), then the number of
bubbles in G(G) is upper-bounded by nm. �

Remark 2. The upper bound given in Theorem 2 is asymptotically tight, as
shown by the family of simple directed graphs on vertex set Vn = {1, 2, . . . , n}
and all possible n(n− 1) arcs in their arc set An = {(u, v) : u 6= v, u, v ∈ V }.

Remark 3. Given a directed graph G, a naive algorithm to find G(G) would
consist of the following steps. We start with G(G) as an empty set. We then find
all-pairs shortest paths in G (since G is unweighted, this can be done through n
BFSs). Finally, denoting, for each vertex s ∈ V (G) and each arc (vr, t) ∈ A(G),
by p1 the shortest path from s to t in G and by p2 the shortest path from s to vr
in G concatenated with the arc (vr, t), we add the bubble b = (p1, p2) to G(G)
if p1 and p2 are internally vertex disjoint. Note that if s = t, then b corresponds
to a degenerate bubble. A naive implementation of this algorithm takes O(n2m)
time.

4 A polynomial-time algorithm for decomposing a bubble

The main result of this section is to provide a polynomial-time algorithm for
decomposing any bubble of G into bubbles of G(G). To do so, we make use of a
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tree-like decomposition. We need to take extra care in this decomposition since
a naive approach could generate (several times) all the bubbles that are smaller
than B, yielding an exponential number of steps.

Definition 4. A bubble B is short if it satisfies condition (1) of Theorem 1,
but not necessarily condition (2). Namely, let L(B) = s, v1, . . . , vr, t be such that
`(B) is the shortest path from s to t in G but s, v1, . . . , vr is not necessarily the
shortest path from s to vr in G.

We next introduce a measure for describing how “close” is a bubble to being
short:

Definition 5. Given an (s, t)-bubble B, let p∗ be the shortest path from s to t.
We say that B is k-short, for k ≥ 0, if there is a leg p ∈ {`(B),L(B)} for which
p∗ and p share a prefix of exactly k arcs.

Since in our case shortest paths are unique, only one leg of a bubble B can share
a prefix with the shortest path p∗. Furthermore, any bubble B is k-short for
some k, 0 ≤ k ≤ |`(B)|. In particular, a bubble is short if and only if it is k-short
for k = |`(B)|.

Definition 6. Given a k-short bubble, we define the short residual of B as fol-
lows: residuals(B) = |B| − k.

Since 0 ≤ k ≤ |`(B)|, and |B| = |`(B)| + |L(B)|, we have that |L(B)| ≤
residuals(B) ≤ |B|.

We now present our polynomial time algorithm for decomposing a bubble of
the graph G into bubbles of G(G). In the following, we assume that we have done
a preprocessing step to compute all-pairs shortest paths in G in O(n(m + n))
time through n BFSs.

Lemma 1. Let B be an (s, t)-bubble that is not short. Then, B can be decom-
posed into two bubbles B1 and B2 (B = B1 + B2), such that: (a) B1 is short,
and (b) residuals(B2) < residuals(B). Moreover, B1 and B2 can be found in
O(n) time.

Proof. LetB be a k-short (s, t)-bubble, 0 ≤ k < |`(B)|. Let p∗ : s = x0, x1, . . . , xh =
t be the shortest path from s to t in G. To prove (a), we follow a similar approach
to Theorem 1. Since B is k-short, there is a leg p ∈ {`(B),L(B)} such that p∗

and p share a prefix of exactly k arcs, 0 ≤ k < h. In other terms, leg p starts
with arcs (x0, x1), . . ., (xk−1, xk), the arc (xk, xk+1) is not in leg p, i.e., xk is
the first vertex where the shortest path p∗ departs from the leg p. Note that as
a special case, k = 0 and xk = x0 = s. Let l, k < l ≤ h, be the smallest index
such that xl ∈ V (B). Namely, xl is the first vertex after xk where the shortest
path p∗ intersects again the bubble B. Such a vertex xl must always exist, since
xh = t ∈ V (B). Since k < l, we have that |p∗k,l| ≥ 1. We have two possible cases:
either the vertices xk and xl are on the same leg of B (see Fig. 1(a)) or xk and
xl are on different legs of B (see Fig. 1(b)). In either case, we can decompose
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B as B = B1 +B2, as illustrated in Fig. 1. Note that in both cases, the bubble
B1 is short since one leg of B1 is a subpath of the shortest path p∗, and hence
a shortest path itself by subpath optimality.

Consider now B2 in Fig. 1. To prove (b), we distinguish among the following
three cases: (1) xk 6= s and vertices xk and xl are on the same leg of B; (2) xk 6= s
and vertices xk and xl are on different legs of B; (3) xk = s. First, consider case
(1) (see Fig. 1(a)) and note that residuals(B) = |pk,l|+|pl,h|+|q0,h| where q is the
other leg of B different from p. Moreover, residuals(B2) = |pl,h|+ |q0,h|. Hence,
residuals(B) − residuals(B2) = |pk,l| ≥ |p∗k,l| ≥ 1. Consider now case (2), (see
Fig. 1(b)) and note that residuals(B) = |p0,l|+|pl,h|+|qk,h| and residuals(B2) =
|pl,h|+ |qk,h|, and thus residuals(B)−residuals(B2) = |p0,l| ≥ |p∗0,k|+ |p∗k,l| ≥ 1.
The proof of case (3) is completely analogous to case (1), with xk = s and
p∗0,k = ∅, and again residuals(B) − residuals(B2) = |pk,l| ≥ |p∗k,l| ≥ 1. In all
cases, residuals(B) − residuals(B2) > 0, and thus the claim follows. Finally,
note that in order to compute B1 and B2 from B, it is sufficient to trace the
shortest path p∗. Since all shortest paths are pre-computed in a preprocessing
step, this can be done in O(n) time. �

Lemma 2. Any bubble B can be represented as a sum of O(n) (not necessarily
distinct) short bubbles. This decomposition can be found in O(n2) time in the
worst case.

Proof. Each time we apply Lemma 1 to a bubble B, we produce in O(n) time
a short bubble B1 and a bubble B2 such that residuals(B2) < residuals(B).
Since residuals(B) ≤ |B| ≤ n, the lemma follows. �

We next show how to further decompose short bubbles. Before doing that,
we define the notion of residual for short bubbles, which measures how “close”
is a short bubble to being a bubble of our generator set G(G).

Definition 7. Let B be a short (s, t)-bubble, let `(B) = p∗1 be the shortest path
from s to t in G, let L(B) = s, v1, . . . , vr, t be the other leg of B, let p∗2 be the
shortest path from s to vr in G, and let p be the longest common prefix between
L(B) − (vr, t) and p∗2. Then, the residual of B is defined as residual(B) =
|L(B)| − 1− |p|.

Since p is a prefix of L(B) − (vr, t), we have that 0 ≤ |p| ≤ |L(B)| − 1. Thus,
0 ≤ residual(B) ≤ |L(B)| − 1.

Lemma 3. Let B be a short (s, t)-bubble such that residual(B) > 0. B can be
decomposed into two bubbles B1 and B2 (B = B1 +B2) such that B1 and B2 are
short and residual(B1) + residual(B2) < residual(B). Moreover, it is possible
to find the bubbles B1 and B2 in O(n) time.

Proof. Since B is a short (s, t)-bubble, it satisfies condition (1) of Theorem 1.
Furthermore, as residual(B) > 0, it does not satisfy condition (2). Therefore,
there exists two bubbles B1 < B and B2 < B such that B = B1 + B2 (from
the proof of Theorem 1). Since `(B) is the shortest path from s to t, using
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arguments similar to the ones in Theorem 1, it can be shown that B can be
decomposed into B1 and B2 and the only possible cases are the ones depicted in
Fig. 2. Note that in all three cases of Fig. 2, each of the bubbles B1 and B2 has
one leg that is a shortest path. Thus, in all three cases, B1 and B2 are short.
Moreover, in Fig. 2(a), residual(B1) ≤ |pl,h| − 1 and residual(B2) ≤ |pk,l| − 1.
Therefore, residual(B1) + residual(B2) ≤ |pl,h| − 1 + |pk,l| − 1 = residual(B)−
1 < residual(B). Similarly, in Fig. 2(b) and (b1), residual(B1) ≤ |p0,l| − 1,
residual(B2) ≤ |pl,h| − 1, and thus, residual(B1) + residual(B2) ≤ |p0,l| − 1 +
|pl,h| − 1 = residual(B) − 1 < residual(B). In all three cases, B1 and B2 are
short and residual(B1) + residual(B2) < residual(B). The claim thus follows.

Once again, observe that in order to compute B1 and B2 from B, it is suf-
ficient to trace the shortest path from s to t. Since all shortest paths are pre-
computed in a preprocessing step, this can be done in O(n) time. �

Lemma 4. Any short bubble B has a tree-like decomposition into O(n) (not
necessarily distinct) bubbles from the generator G(G). This decomposition can be
found in O(n2) time in the worst case.

Proof. Each time we apply Lemma 3 to a short bubble B, we produce in O(n)
time two short bubbles B1 and B2 such that residual(B1) + residual(B2) <
residual(B). Since |`(B)| + residual(B) ≤ n, this implies that a short bubble
can be decomposed in O(n) bubbles from the generator set G(G) in O(n2) time.

�

Theorem 3. Given a graph G, any bubble B in G can be represented as a sum
of O(n2) bubbles that belong to G(G). This decomposition can be found in a total
of O(n3) time.

Proof. The theorem follows by Lemma 2 and Lemma 4. �

5 Conclusions and open problems

Bubbles in de Bruijn graphs represent interesting biological events, like alter-
native splicing and allelic differences (SNPs and indels). However, the set of all
bubbles in a de Bruijn graph built from real data is usually too large to be effi-
ciently enumerated and analysed. Therefore, in this paper we proposed a bubble
generator, which is a polynomial-sized subset of the bubble space that can be
used to generate all and only the bubbles in a directed graph. The concept of
bubble generators is similar to cycle bases, but the algorithms for the latter
cannot be applied as black boxes to find the former because the bubble space
does not form a vector space. As such, this work describes efficient algorithms
to identify, for any given directed graph G, a generator set of bubbles G(G), and
to decompose a given bubble B into bubbles from G(G).

There remain several theoretical open questions. First, our generator G(G)
is not necessarily minimal, i.e. it might happen that there exists three bubbles
B1, B2, B3 ∈ G(G) such that B1 < B3, B2 < B3, and B3 = B1 +B2. Is it possi-
ble to find in polynomial time a generator G′(G) that is minimal or even better,
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to find S(G)? Second, it would be interesting to know if there are polynomial-
time algorithms to decompose any bubble of a graph G into bubbles of such
generators. Third, it would be interesting to find a generator G(G) with some
additional biologically motivated constraints, such as for example on the maxi-
mum length of the legs of a bubble [15]. Given an integer k and a graph G, is it
possible to find a generator G(G) that generates all and only the bubbles of G
which have both legs of length at most k? Fourth, are there faster algorithms to
find a bubble generator? Fifth, this work is related to the research done in the
direction of cycle bases. However, as we already mentioned, our problem displays
characteristics that make it very different from the ones related to cycle bases.
Thus, it may be of independent interest to further investigate the connections
between these problems.

Finally, application of the bubble generator to genomic and transcriptomic
graphs must be explored since it is one of the main motivations for this theoretical
study. Similarly to the case of cycle bases, the simplest application of the bubble
generators is to use it as a preprocessing step in several algorithms to reduce
the amount of work to be done. For example, it can remove from the graph all
unnecessary arcs (i.e. arcs that do not belong to any bubble) in order to lower
the running time of an algorithm that is only interested in bubbles. As another
example, the polynomial-time decomposition algorithm can be useful in the case
where we want to identify and decompose complex alternative splicing events
[17] into their elementary parts. However, exploring possible applications of the
bubble generator is out of the scope of this paper.
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