A. Baker, Transcendental number theory, 1990.
DOI : 10.1017/CBO9780511565977

S. Bernard, Y. Bertot, L. Rideau, and P. Y. Strub, Formal proofs of transcendence for e and pi as an application of multivariate and symmetric polynomials, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2016, pp.76-87, 2016.
DOI : 10.1023/A:1026518331905

J. Bingham, Formalizing a proof that e is transcendental, Journal of Formalized Reasoning, vol.4, issue.1, pp.71-84, 2011.

S. Boldo, C. Lelay, and G. Melquiond, Coquelicot: A User-Friendly Library of Real Analysis for Coq, Mathematics in Computer Science, vol.24, issue.9, pp.41-62, 2015.
DOI : 10.1109/32.713327

URL : https://hal.archives-ouvertes.fr/hal-00860648

C. Cohen, Finmap library

C. Cohen, Formalized algebraic numbers: construction and first-order theory, p.Citeseer, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00780446

G. Gonthier, Formal proof?the four-color theorem, Notices of the AMS, vol.55, issue.11, pp.1382-1393, 2008.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen et al., A Machine-Checked Proof of the Odd Order Theorem, International Conference on Interactive Theorem Proving, pp.163-179, 2013.
DOI : 10.1007/978-3-642-39634-2_14

URL : https://hal.archives-ouvertes.fr/hal-00816699

S. Lang, Algebra revised third edition, Graduate Texts in Mathematics, vol.1, issue.211, 2002.

F. Lindemann, Ueber die Zahl ?.*), Mathematische Annalen, vol.20, issue.2, pp.213-225, 1882.
DOI : 10.1007/BF01446522

J. Liouville, Sur des classes très-´ etendues de quantités dont la valeur n'est ni algébrique, ni même réductiblè a des irrationnelles algébriques, pp.133-142, 1851.

C. Muñoz and A. Narkawicz, Formalization of Bernstein Polynomials and Applications to Global Optimization, Journal of Automated Reasoning, vol.43, issue.1, pp.151-196, 2013.
DOI : 10.1007/978-1-4615-3188-3

K. Weierstrass, Zu Lindemann's Abhandlung: " ¨ Uber die Ludolph'sche Zahl
DOI : 10.1017/cbo9781139567817.017