
HAL Id: hal-01647992
https://inria.hal.science/hal-01647992

Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Management for Hybrid Memory in Managed
Language Runtime

Chenxi Wang, Ting Cao, John Zigman, Fang Lv, Yunquan Zhang, Xiaobing
Feng

To cite this version:
Chenxi Wang, Ting Cao, John Zigman, Fang Lv, Yunquan Zhang, et al.. Efficient Management for
Hybrid Memory in Managed Language Runtime. 13th IFIP International Conference on Network
and Parallel Computing (NPC), Oct 2016, Xi’an, China. pp.29-42, �10.1007/978-3-319-47099-3_3�.
�hal-01647992�

https://inria.hal.science/hal-01647992
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Efficient Management for Hybrid Memory in
Managed Language Runtime

Chenxi Wang1,2, Ting Cao1, John Zigman3, Fang Lv1,4, Yunquan Zhang1, and
Xiaobing Feng1

1 SKL of Computer Architecture, Institute of Computing Technology, CAS, China
{wangchenxi, caoting, flv, zyq, fxb}@ict.ac.cn
2 University of Chinese Academy of Sciences, China

3 Australia Centre for Field Robotics, AMME, The University of Sydney, Australia
john.zigman@sydney.edu.au

4 State Key Laboratory of Mathematical Engineering and Advanced Computing

Abstract. Hybrid memory, which leverages the benefits of traditional
DRAM and emerging memory technologies, is a promising alternative
for future main memory design. However popular management poli-
cies through memory-access recording and page migration may invoke
non-trivial overhead in execution time and hardware space. Nowadays,
managed language applications are increasingly dominant in every kind
of platform. Managed runtimes provide services for automatic memory
management. So it is important to adapt them for the underlying hybrid
memory.
This paper explores two opportunities, heap partition placement and ob-
ject promotion, inside managed runtimes for allocating hot data in a fast
memory space (fast-space) without any access recording or data migra-
tion overhead. For heap partition placement, we quantitatively analyze
LLC miss density and performance effect for each partition. Results show
that LLC misses especially store misses mostly hit nursery partitions.
Placing nursery in fast-space, which is 20% total memory footprint of
tested benchmarks on average, causes only 10% performance difference
from all memory footprint in fast-space. During object promotion, hot
objects will be directly allocated to fast-space. We develop a tool to an-
alyze the LLC miss density for each method of workloads, since we have
found that the LLC misses are mostly triggered by a small percentage of
the total set of methods. The objects visited by the top-ranked methods
are recognized as hot. Results show that hot objects do have higher ac-
cess density, more than 3 times of random distribution for SPECjbb and
pmd, and placing them in fast-space further reduces their execution time
by 6% and 13% respectively.

Keywords: Hybrid memory, Managed runtime, JVM, Memory management

1 Introduction

As processor cores, concurrent threads and data intensive workloads increase,
memory systems must support the growth of simultaneous working sets. How-
ever, feature size and power scaling of DRAM is starting to hit a fundamental

II

limit. Different memory technologies with better scaling, such as non-volatile
memory (NVM), 3D-stacked and scratchpad memory, are emerging. To leverage
the benefits of different technologies, with disparate access-cost modules into
an integrated hybrid memory opens up a promising future for memory design.
It has the potential to reduce power consumption and improve performance at
the same time [1]. However, it exposes the complexity of distributing data to
appropriate modules.

Many hybrid memory management policies are implemented in a memory
controller with or without OS assistance [2–9]. However, their page migrations
can cause time and memory bandwidth overhead. There is also hardware space
cost for recording memory access information which limits the size of manage-
ment granularity too.

For portability, productivity, and simplicity, managed languages such as Java
are increasingly dominant in mobiles, desktops, and big servers. For example,
popular big data platforms, such as Hadoop and Spark, are all written in man-
aged languages. Managed runtime provides services for performance optimiza-
tion and automatic memory management. So it is important to adapt managed
runtime for hybrid memory system.

This paper explores two opportunities: heap partition placement and object
promotion, inside managed runtime for efficient hybrid memory management
without additional data migration overhead. Hot objects (objects with high LLC
miss density, i.e. LLC misses / object size) identification is conducted offline, thus
no online profiling cost. We steal one bit from an object header as a flag to indi-
cate hot object, so no impact on total space usage even at object grain. Our work
is orthogonal to the management policies proposed inside an OS or hardware.
They can work cooperatively but with reduced cost for managed applications.
It can also work alone as a pure software portable hybrid-memory management.

For appropriate heap partition placement, we quantitatively analyze the LLC
miss density for each partition of generational GC, including nursery, mature,
metadata, and LOS (large object space). We demonstrate that the heap par-
titions according to object lifetime and characteristics also provide a natural
partially classification of hot/cold objects. A 16 MB nursery covers 76% of total
LLC misses, and most of them are store misses. Placing nursery in fast-space use
20% total memory footprint on average as fast-space, but only 10% performance
difference from all heap in fast-space.

Besides the nursery, for workloads with relatively high LLC misses in mature
partition, a small amount of the mature partition is allocated in fast-space to
place hot objects during object promotion (which moves long-lived objects from
nursery to mature partition). We develop an offline tool using the ASM byte-
code manipulation framework [10] to record LLC miss density for each method.
This information is used to direct JIT-generated machine-code to mark objects
dereferenced by top-ranked methods as hot, so that they can later be moved
to fast-space during object promotion. Results show that hot objects do have
higher LLC miss density, more than 3 times of random distribution for SPECjbb

and pmd, and placing them in fast-space further reduces their execution time by

III

Mature

 ….

Nursery Boot
image

LOS
Meta Other
Free

Fig. 1: Virtual memory space partition of Jikes RVM

6% and 13% respectively, resulting in ultimately 27% and 31% faster using our
policy compared to the default OS policy of interleaving page allocation.

The structure of the paper is as follows. Section 2 and 3 are background for
managed runtimes and related work. Section 4 is the management scheme we
proposed. Section 5 introduces our hybrid memory emulation, and experimental
settings. Finally, we discuss and conclude the results.

2 Managed runtime background

Managed runtime Managed-language applications require support services in
order to run properly, such as Just-In-Time compilation (JIT) and Garbage
collection (GC). Bytecode or only partially optimized code that are frequently
executed are translated by the JIT into more optimized code. GC is used to au-
tomatically manage memory, including object allocation, and the identification
and collection of unreachable objects. Among all types of GC, generational GC
is the most popular one as it tends to reduce the overall burden of GC. It does
this by partitioning the heap according to object lifetimes.

Generational GC and heap partition Since most objects have very short
lifetimes, generational GC uses a low overhead space (called nursery space) for
initial allocation and usage, and only moves objects that survive more frequent
early collections to a longer lived space (called mature space). When a nursery
is full, a minor GC is invoked to collect this space. When a minor GC fails due
to a lack of space in mature space, a major GC will be performed. Nursery space
is normally much smaller than mature space for efficient collection of short-lived
objects. Jikes RVM also uses generational GC for its most efficient production
configuration. This paper will use this configuration too. Under the production
setting for the Jikes RVM, the heap uses a bump-allocation nursery and an
Immix [11] mature space.

Other than nursery and mature spaces, Jikes RVM has spaces for large objects
(LOS) including stacks, metadata (used by GC), as well as some small spaces
for immortal (permanent), non-moving, and code objects, all of which share a
discontiguous heap range with the mature space through a memory chunk free
list. Figure 1 shows the virtual memory space partition of Jikes RVM. This paper
will show how to distribute those partitions to appropriate memory space.

3 Related work

Different hybrid/heterogeneous main memory structures have been proposed,
such as DRAM + NVM [12, 13, 6, 14, 3, 15, 4], on-chip memory + off-chip mem-
ory [16], and DRAMs with different feature values [17, 8]. Though with different

IV

technologies, all of them share the common characteristic that different parts
of the address space yield different access cost. Many technologies have been
proposed to manage this heterogeneity.

Page access monitoring and migration Most of works use memory controllers
to monitor page accesses [16, 6, 3, 4]. The memory controller will then migrate
top-ranked pages to fast-space, and OS will update the virtual address mapping
table accordingly. However, these research all operate at a fixed grain, mostly
on a page level. Besides, page migration invokes time and bandwidth overhead.
Bock et al. [12] qualify that page migration can increase execution time by 25%
on average. Our work utilize object promotion for object placement to suitable
space, thus does not invoke extra data migration nor time overhead.

Direct data placement To avoid data migration overhead, there are works
that place data in appropriate space directly according to their reference be-
haviours [17, 14, 8, 15]. Chatterjee et al. [17] organize a single cacheline across
multiple memory channels. Critical word (normally the first word) in a cache-
line will be placed in a low-latency channel. Wei et al. [15] show that for the
groups of objects allocated at the same place in the source code, some of them
exhibit similar behaviours, which can be used for static data placement. Li et
al. [14] develop a binary instrumentation tool to statistically report memory ac-
cess patterns in stack, heap, and global data. Liu et al. [18] also implement a
tool in OS to collect page access frequency, memory footprint, page re-use time,
etc. which can be used to identify hot pages. Phadke and Narayanasamy [8]
also profile applications’ MLP and LLC misses offline to determine from which
memory space each application would benefit the most. There are also works
require programmers to help decide data placement [13, 19, 20]. Our paper uses
offline profiling for data placement instead of online monitoring and migration,
and does not invoke extra burden to programmers.

Adaption of managed runtime There are a few works related to the manage-
ment of hybrid memory particularly for managed applications [21–26]. Shuichi
Oikawa’s group conduct some preliminary work [21–24]. They state that nurs-
ery should be in the fast memory space, but without supporting data, nor for
metadata, stacks or other partitions in the heap. They extend write barriers to
record the writes to each object online to find hot objects. However that will
include write hit to cache which can mislead the data placement. Besides, the
process could result in a non-trivial execution overhead. Inoue et al. [25] identify
a code pattern in Java applications that can easily causing L1 and L2 cache
misses. However, we find the number of memory accesses caused by this pattern
is negligible. A series of papers [27–29] describing managed runtime techniques
focusing on avoiding page faulting to disk. Those techniques could be applied to
vertical hybrid main memory, where fast-space (e.g. DRAM) acts as a cache for
slow-space (e.g. NVM). However Dong et al. [16] show that if performance dif-
ference between fast-space and slow-space (typically seen in DRAM and NVM)
is not obvious, it may not be adequate for vertical hybrid memory to be viable.
Hertz et al. [28] keep frequently used partitions such as nursery in memory, pre-
venting them from being swapped, we show that this is still very significant for

V

the nursery even in our context. This paper profiles LLC miss density for each
partition and method offline to decide object placement during a GC process.

4 Hybrid memory management scheme

4.1 Overview

The goal of our management system is to enable a machine with a small pro-
portion of fast-space to perform as well as a machine with the same amount of
memory where all the memory is fast-space. Specifically, we want hot objects
be allocated in fast-space. We exploit two opportunities in managed runtimes:
partition placement and object promotion. Analysing the LLC miss density of
the various partitions, we determine if all, none or part of a partition is placed in
fast-space. Object promotion to the mature partition provides a decision point
where an object must be moved, as such, a cheap opportunity for moving to ei-
ther slow-space or fast-space. Selecting either fast-space or slow-space is driven
by offline profiling to determine hot methods (highest LLC miss density) and
online marking of objects accessed by those methods. Compared to work before,
our scheme does not cause online monitoring or extra data migration, thus no
relevant performance overhead.

Heap partition placement To profile each heap partition, we use numactl li-
brary to map virtual memory space to fast-space or slow-space, and use PMU
counters to measure LLC load/store misses. As explained in Section 2, the nurs-
ery is a continuous space, and we map it as a whole. LOS, metadata, and mature
partitions share a dis-contiguous memory range divided into chunks. Free chunks
are maintained on a list and available for any partition to allocate. To support
hybrid memory, we change to two freelists, one for slow-space and one for fast-
space. Different partitions will be given the right to access a specific list or both
lists. When no free chunks are available in the fast-space list, objects will be
allocated from the slow-space list. The overhead of managing the additional list
is negligible.

In Section 6, we will show that the LLC miss density of the nursery partition
is much higher than other partitions, and as such it is mapped to fast-space.
A small proportion of the mature partition is mapped to fast-space, and hot
objects are moved to that portion when they are promoted.

Object promotion Minor GC promotes surviving objects from the nursery to
the mature partition. During this process, our scheme promotes hot objects to
fast-space, and all other surviving objects are promoted to slow-space. Section 3
discusses some related work for finding hot objects. However, our experiments
show that they either have a large overhead in time and space, are not effective, or
need a programmer to annotate the critical data. Dynamic optimization prevents
popular instrumentation tools, such as VTune, from being effective for profiling
hardware events.

We develop a tool called HMprof to profile LLC miss density in the mature
partition for each method of an application. Since our experiments show that
even though each application executes hundreds or thousands of methods, only a

VI

Hot method log
Application with

LLC
instrumentation

LLC misses per
method logApplication Bytecode LLC

instrumentor

JVM with perf
counters

JVM with footprint
measuring

JVM

LLC miss profiling Object footprint profiling

Fig. 2: Offline LLC miss per method profiling feeds into method footprint profil-
ing which is then used to facilitate object promotion during normal execution.

dozen of them are responsible for most of the LLC misses, for example 0.4% and
1% of the methods in pmd and hsqldb covers 51% and 54.8% LLC respectively.
This is a result of the particular access patterns and role of those methods. We
will describe the implementation details next.

4.2 HMprof offline performance instrumentation

This instrumentation and profiling take place in two phases: first, collecting each
method’s performance counter statistics of any heap partition by instrument-
ing the application’s java bytecode; and second, collecting the object visitation
statistics for the candidate methods by altering the JIT. Figure 2, shows two
offline profiling stages, and subsequence execution(s) of the application. These
phases are described below.

LLC miss profiling Performance counter instrumentation is inserted into
each method. Since methods may be compiled, and recompiled at runtime it
is not possible to use the code location to identify the method, as such each
method instrumented is given a unique numeric identifier as part of its instru-
mentation. The method code is transformed so that it has an additional local
variable which is used to record a performance counter entry-value or re-entry
value for the method, by invoking perf.readPerf(I)J, see Figure 3a. Upon
exiting the method (either by return from the method, throwing an exception,
or invoking a method), the entry-value, performance counter exit-value and the
method identifier are logged.

The performance counters read and the values logged are maintained per
thread. Logging a measurement is done by invoking perf.updatePerf(IIJ)V,
see Figure 3b, which adds the performance counter delta for that thread to a
thread specific array. Each element of the array corresponds to an instrumented
thread identifier. Since there is no interaction between the threads, there is little
impact overall, aside from a small perturbation of the cached data.

The statistics accumulated by a particular thread are finally added to the
totals when that thread terminates. This imposes some cost on thread termina-
tion, but this does not have a significant performance impact. When all threads

VII

/∗∗ read counter 0 , save
to l o c a l v a r i ab l e e . g . 3 ∗∗/

i c on s t 0
i n v ok e s t a t i c p e r f . r eadPer f (I) J
l s t o r e 3

(a) Execution entry point

/∗∗ Update l o c a l v a r i ab l e
3 f o r method 576 ∗∗/
i c on s t 0
s ipush 576
l l o a d 3
i n v ok e s t a t i c p e r f . updatePerf (I I J)V

(b) Execution exit point

Fig. 3: Example instrumentation in a method.

g e t f i e l d Result (RefType) = ObjRef , Of f se t , f i e l d
byte load t0 (B) = ObjRef ,HOT BIT OFFSET
i n t o r t1 (B) = t0 (B) ,HOT BIT MASK
byt e s t o r e t1 (B) , ObjRef ,HOT BIT OFFSET

(a) getfield

nu l l ch e ck Result (GUARD) = Result (RefType)
byte load t0 (B) = Result (refType) ,HOT BIT OFFSET
i n t o r t1 (B) = t0 (B) ,HOT BIT MASK
byt e s t o r e t1 (B) , Result (refType) ,HOT BIT OFFSET

(b) null check

Fig. 4: Example HIR after inserting hot object marking instructions.

have terminated the final statistics values are written to a file. We can get a
ranked list of methods according to their LLC misses in the mature partition.

Object footprint profiling Only LLC miss information is not enough to de-
cide the hotness of a method, because the high LLC misses may be because it
accesses a large amount of data. So LLC miss density is needed. Object visi-
tation instrumentation is used to track the number of objects visited and their
corresponding footprint for the top-ranked methods. An extra word is added to
the object header to track which ones of those methods have visited a particular
object. When a method visits an object, one corresponding bit will be marked.
Because those methods are only a few, one extra word is enough. An extra phase
is added to JIT to add marking code, and those methods are forcibly compiled
with JIT. Thus, all objects dereferenced by any method that is being tracked
are marked.

At the end of execution, the mature partition is scanned for marked objects,
this excludes objects that do not survive a nursery collection. The number and
footprint of the objects dereferences are accumulated per method. With the LLC
miss information from the first step, we can work out the hot method list. Note
that all the work above by HMprof is done offline. It will not add overhead to
application run.

4.3 Hot Object Marking

After hot methods are found, we will mark the objects they visit as hot and
move them to fast-space while an application runs. Similar as Section 4.2, we
add a new phase in the HIR optimizations of JIT to mark the objects. This
one flag bit is stolen from each object header. We target getfield, putfield,

VIII

and call as three of the most common cases where objects are dereferenced /
visited. Importantly a reference that is returned from a call or a getfield has
the potential to be dereferenced, if such dereference is to occur then before the
return value is dereferenced, the HIR inserts a null check. When a null check

of this form is seen then that too is instrumented. In general, these will cover
most of the operations that cause object and array dereferencing. Figure 4a
shows the additional instructions that are inserted after the getfield, note,
ObjRef reference will already have passed a null check or equivalent to get to
this point, so it is safe to use. A similar pattern is used for putfiled and call

(for virtual and interface calls). Similarly, we show in Figure 4b the additional
code added after a null check. In both cases they will set (mark) the hot bit in
the object header as true, and in later versions will only conditionally set the
hot bit.

We used replay compile in our experiment, so the JIT cost will not be counted
when the application runs. However, as Cao et al.[30] shows that the JIT can run
asynchronously with application threads, the application running time won’t be
sensitive to the JIT performance.

5 Experimental methodology

Hybrid memory emulator Because we do not have hybrid memory products and
software simulators are very slow to run complex managed applications, we use
a two-socket NUMA server (Intel Xeon X5650) with an interference program to
mimic a hybrid memory structure. The interference program only runs on the
remote CPUs, which regularly reads data from remote memory to increase the
remote access latency and reduce its bandwidth for other applications. Tested
benchmarks only run on the local ones.

Running the interference program and also using three channels for the local
memory and a single channel for the remote memory, the latency of the mimic
slow-space (remote memory) is 3.4 times that of the fast-space (local memory).
The fast-space’s read and write bandwidth is 5.3 times and 18.2 times those of the
slow-space respectively, which is in keeping with current NVM characteristics—
the write bandwidth is much worse than read. Those numbers fall within the
range of latency and bandwidth characteristics for current NVM technologies [9,
2].

LLC size control The paper is about memory management policy design, and
the memory footprint of the benchmarks is not large. To avoid the interference
of LLC with the policy evaluation, we need to reduce the LLC size as much as
possible. The method we used is mentioned in [31] as cache polluting method
to reduce the LLC cache size to 4 MB. Based on the settings above, Figure 5a
shows our emulated experimental platform.

Virtual machine configurations We implemented our approach in the Jikes
RVM. The mature space is set so that it is big enough to hold all objects that
survive nursery GC eliminating the effects of major GC. We use replay compila-
tion to remove the nondeterminism of the adaptive optimization system. It also
means that in our experiments, we will not include any JIT processing time.

IX

LLC 4 MB
Memory

Controller

Fast memory

Slow memory

3 channels 1 channel

4 cores x 2 HT 2.668 GHz

Memory
Controller

(a) Platform

Workload Description Working set (MB) Workload Description Working set (MB)

antlr Parser and translator
generator 44.1 avrora Simulates the AVR

microcontroller 43.3

bloat Java bytecode optimization
and analysis tool 63.6 eclipse Integrated development

environment 499.1

fop Output-independent print
formatter 43.3 hsqldb Transaction processing 112.7

jython interprets a the pybench
Python benchmark 92.4 luindex A text indexing tool 40.1

lusearch Text search tool 397.7 pmd Source code analyzer for
Java 119.7

sunflow Photo-realistic rendering
system 62.7 xalan transforms XML documents

into HTML 337.6

SPECjbb2005 Transaction processing 326.8

(b) Benchmarks

Fig. 5: Experimental platform and benchmarks.

We use DaCapo and SPECjbb benchmarks [32] for our experiments. Figure 5b
describes each benchmark and their working set size.

Default OS memory policy The default Linux memory policy interleaves
allocation across all nodes in a NUMA system [33]. This policy will compare
with ours in the performance evaluation. In our experimental platform, we use
mbind() system call to set a VMA (Virtual Memory Area) policy, and interleave
page allocation in a task’s virtual address to fast and slow memory modules.

6 Evaluation results

6.1 Heap partition placement

To decide how to place each partition in hybrid memory, we quantitatively eval-
uate the LLC misses associated with each partition, as well as the performance
effect when it is placed in fast-space. Figure 6a shows the LLC miss distribution
for each partition. It shows that though nursery is only 16 M, it covers the most
LLC misses, 76% on average. This is primarily a result for all objects, except for
large objects, being initially allocated in the nursery and causing a significant
number of LLC misses during object initialization. We evaluate various nursery
sizes from 4 M to 128 M. Results show that LLC misses due to nursery accesses
increase with the nursery size. However, the curve flattens after 16 M for most
applications, so we pick 16 M in the experiments. The mature partition covers
13% of the LLC misses on average. This percentage is relatively high for SPECjbb,
pmd, and hsqldb, 44%, 27% and 22% respectively. The LLC misses hitting other
partitions are small. Even though stacks are frequently accessed, they are mostly
in cache, so will not cause many LLC misses. With the memory footprint result
of total objects allocated in each partition, we compute the LLC miss density of
the nursery to be 12.5 times that of the mature partition, 25 times that of LOS,
and 33.3 times that of the metadata partition.

Some memory technology like NVM has a large write cost. Our hybrid mem-
ory emulator also sets the write bandwidth much smaller than that of the read
bandwidth. Figure 6b shows the portion of store misses in total hitting the nurs-
ery and the mature partition when an application or GC executes. We can see
that: a) for Java benchmarks, most LLC misses are store misses, 64% on average;

X

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

an
tlr
	

av
ro
ra
	

bl
oa
t	

ec
lip
se
	

fo
p	

hs
ql
db

	

jy
th
on

	

lu
in
de

x	

lu
se
ar
ch
	

SP
EC

jb
b	

pm
d	

su
nfl

ow
	

xa
la
n	

Av
g	

LL
C	
m
is
se
s	

Others	

mature	

los	

stack	

meta	

nursery	

(a)

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

an
tlr
	

av
ro
ra
	

bl
oa
t	

ec
lip
se
	

fo
p	

hs
ql
db

	

jy
th
on

	

lu
in
de

x	

lu
se
ar
ch
	

SP
EC

jb
b	

pm
d	

su
nfl

ow
	

xa
la
n	

av
g	

LL
C	
st
or
e	
m
is
se
s	

mature-gc	

mature-app	

nursery-gc	

nursery-app	

(b)

Fig. 6: (a) LLC misses distribution; (b) LLC store misses %.

1.00	

1.20	

1.40	

1.60	

1.80	

2.00	

2.20	

2.40	

an
tlr
	

av
ro
ra
	

bl
oa
t	

ec
lip
se
	

fo
p	

hs
ql
db

	

jy
th
on

	

lu
in
de

x	

lu
se
ar
ch
	

SP
EC

jb
b	

pm
d	

su
nfl

ow
	

xa
la
n	

Av
g	

Ti
m
e	
no

rm
al
iz
ed

	to
	a
ll	
he

ap
	in
	fa

st
-s
pa

ce
	

4.57	

nursery	

meta	

stack	

los	

immix	

Others	

(a)

1.00	

1.10	

1.20	

1.30	

1.40	

1.50	

1.60	

1.70	

an
tlr
	

av
ro
ra
	

bl
oa
t	

ec
lip
se
	

fo
p	

hs
ql
db

	

jy
th
on

	

lu
in
de

x	

lu
se
ar
ch
	

SP
EC

jb
b	

pm
d	

su
nfl

ow
	

xa
la
n	

Av
g	

Ti
m
e	
no

rm
al
iz
ed

	to
	a
ll	
he

ap
	in
	fa

st
-s
pa

ce
	

	2.63	2.60	

Nursery-16M	

Interleaving-16M	

Interleaving-64M	

(b)

Fig. 7: (a) Time effect of each partition, (b) Time comparison between nursery
in fast-space and OS interleaving allocation.

b) almost all of these store misses hit in the nursery; c) in the nursery, nearly all
store misses happen when application code executes, while in the mature parti-
tion, they happen during GC execution. Since the mature partition is set to be
large enough that no major GC is triggered, all these store misses are a result
of object promotion during minor GCs. So store misses are distributed evenly
in the mature partition, which has been confirmed in our experiment results.
This is undesirable for hybrid memory management especially for NVM, which
expect the existence of write-hot data to put into fast-space.

Figure 7a is a stacked column chart showing the time effect of placing each
partition in fast-space. The reference is the time when all heap is placed in fast-
space. The total height of a bar shows the relative time when all heap is placed
in slow-space. It reflects the LLC miss rate (LLC misses per instruction) of an
application. lusearch has the highest LLC miss rate, 7.87 per 1K instructions. The
second is xalan, 2.57 per 1K instructions. So when the heap is placed in slow-
space, compared to being placed in fast-space, the running time is 4.57 and 2.22
times respectively. avrora has the lowest LLC miss rate, 1.03 per 1K instructions.
So the time is basically the same when the heap is either in fast-space or slow-

XI

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

0% 10% 20% 30% 40% 50% 60%

LL
C

 m
is

se
s

in
 fa

st
-s

pa
ce

 /
to

ta
l m

at
ur

e

Fast-space / Total mature space

SPECjbb

pmd

hsqldb

(a)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

SPECjbb pmd hsqldb

Ti
m

e
no

rm
al

iz
ed

 to
 a

ll
he

ap
 in

fa

st
-s

pa
ce

Interleaving

Nursery

Nursery+hot

(b)

Fig. 8: (a) The correlation of LLC misses hitting in fast-space and the fast-space
used, (b) time comparison of interleaving, nursery in fast-space, and nursery plus
hot objects of mature partition in fast-space.

space. The figure also shows that corresponding to Figure 6a, placing a 16 M
nursery into fast-space can greatly reduce the time, on average from 1.76 to
1.10, only a 10% difference from placing all the heap in fast-space. Placing the
mature partition in fast-space can further reduce time from 1.08 to almost the
same as all in fast-space (1.00) on average. For SPECjbb and pmd, the mature
partition in fast-space reduces their normalized running time from 1.29 to 1.01,
and 1.23 to 1.00.

We then compare the execution time of the nursery in fast-space with the
default page interleaving scheme of OS in Figure 7b. For the interleaving scheme,
we compare both a 16 M and larger 64 M interleaved fast-space setting with our
16 M setting. However, in both instances as interleaving treats every partition
evenly, the time is much more than only the 16 M nursery in fast-space, 1.38 and
1.35 respectively compared to 1.10 on average.

All the results above suggest that the nursery should be placed directly into
fast-space. It will get rid of the online monitoring and page migration costs. For
mature space, we will allocate a small amount of fast-space for the hot objects
found by our tool HMprof. The results will be analyzed in the next section.

6.2 Hot object allocation

Marked hot objects that are promoted to the mature partition are placed in fast-
space, if available. In this subsection we show the effectiveness of our scheme, i.e.
the objects moved to fast-space have high memory accesses but relatively small
space cost. In particular SPECjbb, pmd and hsqldb are examined since they have
more LLC misses in the mature partition than other benchmarks.

Figure 8a shows the correlation of fast-space usage and the LLC misses it
covers when hot objects in mature partition are allocated in fast-space. pmd

benefits most, with the hottest method only using 15% (12 M) of the mature
partition objects (by volume) while covering 50% of the LLC misses. The hottest
12 methods of SPECjbb use 6% (18 M) of the mature partition objects (by volume)
and cover 31% of the LLC misses. After the first 12 methods the thirteenth is
proportionally less effective, resulting in a total use of 12% (36 M) of the mature

XII

partition objects (by volume) and 37% of the LLC misses being covered. The
remaining methods are not considered hot or account for too few LLC misses.
The hot methods for hsqldb are not obvious, and with the 12 hottest methods
using 43% (42 M) of the mature partition objects (by volume) while covering
56% of the LLC misses, only a little better than random promotion. As noted in
Section 6.1, the distribution of write LLC misses amongst objects in the mature
partition is more even than that of read LLC misses, and given the cost difference
between read and write, it is adversely affecting our performance improvements.

Figure 8b compares relative execution time of default OS page interleaving
policy using 64 MB fast-space, only a 16 M nursery in fast-space, and both the
16 M nursery and hot objects of mature partition in fast-space. The policy pro-
posed gets the best performance for the three benchmarks. For SPECjbb and pmd

only 16% and 23% (respectively) of their working sets reside in fast-space (in-
cluding the nursery partition), while only degrading performance by 23% and
12% respectively from that of all the heap in fast-space. Placing 51% of the
working set for hsqldb in fast-space yields a performance degradation of 8% over
than of all the heap in fast-space.

7 Conclusion

Hybrid memory is a promising alternative for future memory systems, however,
its complexity challenges effective management. This paper explores unique op-
portunities inside managed runtimes for efficient and portable hybrid memory
management with negligible online overhead. Our policy places the nursery and
a small amount of the mature partition in fast-space. Compared to the default
OS policy, for SPECjbb and pmd, our scheme is 27% and 31% faster. Compared
to placing all the heap in fast-space, we place 16% and 23% heap in fast-space,
but achieve only 23% and 12% performance difference respectively for the two
benchmarks. In future work, we will target big data applications as test bench-
marks.

Acknowledgement This work is supported by the National High Tech-
nology Research and Development Program of China (2015AA011505), the
Open Project Program of the State Key Laboratory of Mathematical En-
gineering and Advanced Computing (2016A03), the China Postdoctoral Sci-
ence Foundation (2015T80139), the National Natural Science Foundation of
China (61202055, 61221062, 61303053, 61432016, 61402445, 61432018, 61133005,
61272136, 61521092, 61502450).

References

1. Xie, Y.: Modeling, architecture, and applications for emerging memory technolo-
gies. Design Test of Computers, IEEE 28(1) (Jan 2011) 44–51

2. Qureshi, M.K., Srinivasan, V., et al: Scalable high performance main memory
system using phase-change memory technology. In: ISCA ’09, ACM (2009) 24–33

3. Ramos, L.E., Gorbatov, E., et al: Page placement in hybrid memory systems. In:
ICS, ACM (2011) 85–95

XIII

4. Zhang, W., Li, T.: Exploring phase change memory and 3d die-stacking for pow-
er/thermal friendly, fast and durable memory architectures. In: PACT ’09. (2009)

5. Li, Y., Choi, J., et al.: Managing hybrid main memories with a page-utility driven
performance model. In: arXiv.org. (Jul. 2015)

6. Dhiman, G., Ayoub, R., Rosing, T.: PDRAM: A hybrid PRAM and DRAM main
memory system. In: DAC ’09. (July 2009) 664–669

7. Yoon, H., Meza, J., Ausavarungnirun, R., Harding, R., Mutlu, O.: Row buffer
locality aware caching policies for hybrid memories. In: ICCD. (2012) 337–344

8. Phadke, S., Narayanasamy, S.: MLP aware heterogeneous memory system. In:
DATE, IEEE (2011) 956–961

9. Caulfield, A.M., Coburn, J., et al.: Understanding the impact of emerging non-
volatile memories on high-performance, io-intensive computing. In: SC. (2010)

10. OW2 Consortium: ASM (2015)
11. Blackburn, S.M., McKinley, K.S.: Immix: a mark-region garbage collector with

space efficiency, fast collection, and mutator performance. In: PLDI. (2008)
12. Bock, S., Childers, B.R., Melhem, R.G., Mossé, D.: Concurrent page migration for

mobile systems with os-managed hybrid memory. In: CF, ACM (2014) 31:1–31:10
13. Dulloor, S., Roy, A., et al.: Data tiering in heterogeneous memory systems. In:

EuroSys, ACM (2016) 15:1–15:16
14. Li, D., Vetter, J.S., et al.: Identifying opportunities for byte-addressable non-

volatile memory in extreme-scale scientific applications. In: IPDPS, IEEE (2012)
945–956

15. Wei, W., Jiang, D., McKee, S.A., Xiong, J., Chen, M.: Exploiting program seman-
tics to place data in hybrid memory. In: PACT, IEEE (2015) 163–173

16. Dong, X., Xie, Y., et al.: Simple but effective heterogeneous main memory with
on-chip memory controller support. In: SC. (2010) 1–11

17. Chatterjee, N., Shevgoor, M., et al.: Leveraging heterogeneity in DRAM main
memories to accelerate critical word access. In: MICRO, IEEE (2012) 13–24

18. Liu, L., Li, Y., Ding, C., Yang, H., Wu, C.: Rethinking memory management in
modern operating system: Horizontal, vertical or random? IEEE Trans. Computers
65(6) (2016) 1921–1935

19. Hassan, A., Vandierendonck, H., et al.: Software-managed energy-efficient hybrid
DRAM/NVM main memory. In: CF, ACM (2015) 23:1–23:8

20. Malicevic, J., Dulloor, S., et al.: Exploiting NVM in large-scale graph analytics.
In: INFLOW, ACM (2015) 2:1–2:9

21. Nakagawa, G., Oikawa, S.: Preliminary analysis of a write reduction method for
non-volatile main memory on jikes rvm. In: CANDAR. (Dec 2013) 597–601

22. Nakagawa, G., Oikawa, S.: An analysis of the relationship between a write ac-
cess reduction method for nvm/dram hybrid memory with programming language
runtime support and execution policies of garbage collection. In: IIAIAAI. (2014)

23. Nakagawa, G., Oikawa, S.: Language runtime support for nvm/dram hybrid main
memory. In: COOL Chips XVII, 2014 IEEE. (April 2014) 1–3

24. Nakagawa, G., Oikawa, S.: NVM/DRAM hybrid memory management with lan-
guage runtime support via MRW queue. In: SNPD, IEEE (2015) 357–362

25. Inoue, H., Nakatani, T.: Identifying the sources of cache misses in java programs
without relying on hardware counters. In: ISMM, ACM (2012) 133–142

26. Schneider, F.T., Payer, M., Gross, T.R.: Online optimizations driven by hardware
performance monitoring. In: PLDI, ACM (2007) 373–382

27. Yang, T., Hertz, M., Berger, E.D., Kaplan, S.F., Moss, J.E.B.: Automatic heap
sizing: taking real memory into account. In: ISMM, ACM (2004) 61–72

XIV

28. Hertz, M., Feng, Y., Berger, E.D.: Garbage collection without paging. In: PLDI,
ACM (2005) 143–153

29. Yang, T., Berger, E.D., Kaplan, S.F., Moss, J.E.B.: CRAMM: virtual memory
support for garbage-collected applications. In: OSDI, USENIX Association (2006)
103–116

30. Cao, T., Blackburn, S.M., et al.: The yin and yang of power and performance for
asymmetric hardware and managed software. In: ISCA, IEEE (2012) 225–236

31. Ferdman, M., Adileh, A., et al.: Clearing the clouds: a study of emerging scale-out
workloads on modern hardware. In: ASPLOS, ACM (2012) 37–48

32. Blackburn, S.M., Garner, R., et al.: The dacapo benchmarks: java benchmarking
development and analysis. In: OOPSLA, ACM (2006) 169–190

33. The Linux Kernel Organization: NUMA memory policy (2015)

