S. Bubeck, R. Eldan, and J. Lehec, Finite-time Analysis of Projected Langevin Monte Carlo, Proceedings of the 28th International Conference on Neural Information Processing Systems. NIPS'15, pp.1243-1251, 2015.

M. David, . Blei, Y. Andrew, . Ng, I. Michael et al., Latent dirichlet allocation, Journal of machine Learning research, vol.3, pp.993-1022, 2003.

G. Celeux, Regularization in Regression: Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation, Bayesian Analysis, vol.7, issue.2, pp.477-50212, 2012.
DOI : 10.1214/12-BA716

URL : https://hal.archives-ouvertes.fr/hal-00943727

[. Chen, Q. Shao, G. Joseph, and . Ibrahim, Monte Carlo methods in Bayesian computation, 2012.
DOI : 10.1007/978-1-4612-1276-8

[. Cousins and S. Vempala, Computation of the volume of convex bodies, 2015.

S. Arnak and . Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016.

M. Dyer and A. Frieze, Computing the volume of convex bodies: a case where randomness provably helps, Probabilistic combinatorics and its applications, pp.123-170, 1991.
DOI : 10.1090/psapm/044/1141926

E. [. Durmus and . Moulines, Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm, 2015.
DOI : 10.1214/16-aap1238

URL : https://hal.archives-ouvertes.fr/hal-01176132

E. [. Durmus and . Moulines, High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304430

E. [. Durmus, M. Moulines, and . Pereyra, Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau, p.161207471, 2016.

A. [. Gelfand, T. Smith, and . Lee, Bayesian Analysis of Constrained Parameter and Truncated Data Problems Using Gibbs Sampling, Journal of the American Statistical Association, vol.47, issue.418, pp.418-523, 1992.
DOI : 10.1093/biomet/60.2.319

E. Valen, . Johnson, H. James, and . Albert, Ordinal data modeling, 2006.

J. Kampf, On weighted parallel volumes, Beiträge Algebra Geom 50, pp.495-519, 2009.

P. John, . Klein, L. Melvin, and . Moeschberger, Survival analysis: techniques for censored and truncated data, 2005.

A. Daniel, G. Klain, and . Rota, Introduction to geometric probability, 1997.

B. [. Lan and . Shahbaba, Sampling Constrained Probability Distributions Using Spherical Augmentation, 2015.
DOI : 10.1093/biomet/74.3.646

URL : http://arxiv.org/abs/1506.05936

[. Lovász and S. Vempala, Hit-and-Run from a Corner, In: SIAM Journal on Computing, vol.354, pp.985-1005, 2006.

[. Lovász and S. Vempala, The geometry of logconcave functions and sampling algorithms, Random Structures and Algorithms, vol.3, issue.3, pp.307-358, 2007.
DOI : 10.1007/978-94-017-3087-7

[. Narasimhan and S. G. Johnson, cubature: Adaptive Multivariate Integration over Hypercubes. R package version 1.3-6. 2016. url: https

]. G. Par81 and . Parisi, Correlation functions and computer simulations, Nuclear Physics B, vol.180, pp.378-384, 1981.

J. Paisley, M. David, . Blei, I. Michael, and . Jordan, Bayesian Nonnegative Matrix Factorization with Stochastic Variational Inference " . In: Handbook of Mixed Membership Models and Their Applications, pp.205-224, 2014.

G. [. Park and . Casella, The Bayesian Lasso, Journal of the American Statistical Association, vol.103, issue.482
DOI : 10.1198/016214508000000337

A. Pakman and L. Paninski, Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians, Journal of Computational and Graphical Statistics, vol.58, issue.2, pp.518-542, 2014.
DOI : 10.2307/1907382

URL : http://arxiv.org/pdf/1208.4118

. Gabriel-rodriguez-yam, A. Richard, . Davis, L. Louis, and . Scharf, Efficient Gibbs sampling of truncated multivariate normal with application to constrained linear regression, p.Unpublished manuscript, 2004.

[. Rockafellar, Convex analysis, 2015.
DOI : 10.1515/9781400873173

G. O. Roberts and R. L. Tweedie, Exponential Convergence of Langevin Distributions and Their Discrete Approximations, Bernoulli, vol.2, issue.4, 1996.
DOI : 10.2307/3318418

R. Schneider, Convex bodies: the Brunn?Minkowski theory. 151, 2013.
DOI : 10.1017/CBO9780511526282

]. C. Vil09 and . Villani, Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften, 2009.