C. Andrieu, An introduction to MCMC for machine learning, Machine learning, pp.5-43, 2003.

Y. F. Atchadé, An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift, Methodology and Computing in Applied Probability, vol.22, issue.2, pp.235-254, 2006.
DOI : 10.1007/978-1-4757-4145-2

I. [. Bolley, A. Gentil, and . Guillin, Convergence to equilibrium in Wasserstein distance for Fokker???Planck equations, Journal of Functional Analysis, vol.263, issue.8, pp.2430-2457, 2012.
DOI : 10.1016/j.jfa.2012.07.007

URL : https://hal.archives-ouvertes.fr/hal-00632941

I. [. Bakry, M. Gentil, and . Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, p.552
DOI : 10.1007/978-3-319-00227-9

URL : https://hal.archives-ouvertes.fr/hal-00929960

N. Bou-rabee and M. Hairer, Nonasymptotic mixing of the MALA algorithm, IMA Journal of Numerical Analysis, vol.33, issue.1, pp.80-110, 1093.
DOI : 10.1093/imanum/drs003

[. Bou-rabee and E. Vanden-eijnden, Pathwise accuracy and ergodicity of metropolized integrators for SDEs, Communications on Pure and Applied Mathematics, vol.106, issue.3, pp.655-696, 2010.
DOI : 10.1017/CBO9780511526237

P. Cattiaux, D. Chafa?, and A. Guillin, Central limit theorems for additive functionals of ergodic Markov diffusions processes, ALEA 9, pp.337-382, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00585271

]. S. Cot+13 and . Cotter, MCMC methods for functions: modifying old algorithms to make them faster, In: Statist. Sci, vol.283, pp.424-446, 2013.

S. Arnak and . Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, In: Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.793, pp.651-676, 2017.

E. [. Durmus and . Moulines, High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304430

A. Durmus and . Moulines, Nonasymptotic convergence analysis for the unadjusted Langevin algorithm, The Annals of Applied Probability, vol.27, issue.3, pp.1551-1587, 2017.
DOI : 10.1214/16-AAP1238

URL : https://hal.archives-ouvertes.fr/hal-01176132

A. [. Dalalyan and . Tsybakov, Sparse regression learning by aggregation and Langevin Monte-Carlo, Journal of Computer and System Sciences, vol.78, issue.5, pp.1423-1443, 2012.
DOI : 10.1016/j.jcss.2011.12.023

URL : https://hal.archives-ouvertes.fr/hal-00773553

]. A. Ebe15 and . English, Reflection couplings and contraction rates for diffusions, pp.1-36, 2015.

A. Friedman, Stochastic differential equations and applications. Courier Corporation, 2012.

M. [. Grenander and . Miller, Representations of knowledge in complex systems With discussion and a reply by the authors, In: J. Roy. Statist. Soc. Ser. B, vol.564, pp.549-603, 1994.

W. Peter, S. P. Glynn, and . Meyn, A Liapounov bound for solutions of the Poisson equation, Ann. Probab, vol.24, issue.2, pp.916-931, 1996.

J. Gorham, Measuring Sample Quality with Diffusions, 2016.

]. U. Gre83 and . Grenander, Tutorial in pattern theory, Division of Applied Mathematics, 1983.

D. Gilbarg, S. Neil, and . Trudinger, Elliptic partial differential equations of second order, 2015.

M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Memoirs of the American Mathematical Society, vol.236, issue.1112, 1112.
DOI : 10.1090/memo/1112

[. Hutzenthaler, A. Jentzen, and P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.316, issue.3, p.2130, 2011.
DOI : 10.1016/j.jmaa.2005.04.052

[. Hutzenthaler, A. Jentzen, and P. E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, The Annals of Applied Probability, vol.22, issue.4, pp.1611-1641, 2012.
DOI : 10.1214/11-AAP803

D. J. Higham, X. Mao, and A. M. Stuart, Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations, SIAM Journal on Numerical Analysis, vol.40, issue.3, 2002.
DOI : 10.1137/S0036142901389530

S. [. Ikeda and . Watanabe, Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, 1989.

S. Fiig, J. , and E. Hansen, Geometric ergodicity of Metropolis algorithms, Stochastic Processes and their Applications 85, pp.341-361, 2000.

M. Kopec, Weak backward error analysis for overdamped Langevin processes, IMA Journal of Numerical Analysis, vol.35, issue.2, pp.583-614, 1093.
DOI : 10.1093/imanum/dru016

URL : https://hal.archives-ouvertes.fr/hal-00905684

S. [. Kumar and . Sabanis, On Milstein approximations with varying coefficients: the case of super-linear diffusion coefficients, 2016.

C. Kumar and S. Sabanis, On tamed milstein schemes of SDEs driven by Lévy noise, Discrete and Continuous Dynamical Systems - Series B 22, pp.421-463, 2017.

S. [. Karatzas and . Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 1991.

]. S. Kul97 and . Kullback, Information theory and statistics. Reprint of the second (1968) edition, p.399, 1997.

J. Gall, Brownian motion, martingales, and stochastic calculus, 2016.
DOI : 10.1007/978-3-319-31089-3

S. Livingstone, M. F. Faulkner, and G. O. Roberts, Kinetic energy choice in Hamiltonian/hybrid Monte Carlo, 2017.

J. [. Lamba, A. M. Mattingly, and . Stuart, An adaptive Euler-Maruyama scheme for SDEs: convergence and stability, IMA Journal of Numerical Analysis, vol.27, issue.3, pp.479-506, 2007.
DOI : 10.1093/imanum/drl032

URL : http://arxiv.org/pdf/math/0601029

R. Liptser, N. Albert, and . Shiryaev, Statistics of random Processes: I. general Theory, 2013.

G. Tonylelì-evre and . Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numerica, vol.25, pp.681-880, 2016.

J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101, pp.185-232, 2002.
DOI : 10.1016/S0304-4149(02)00150-3

J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov, Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations, SIAM Journal on Numerical Analysis, vol.48, issue.2, 2010.
DOI : 10.1137/090770527

URL : http://arxiv.org/pdf/0908.4450.pdf

R. [. Meyn and . Tweedie, Stability of Markovian processes. III. Foster- Lyapunov criteria for continuous-time processes, In: Adv. in Appl. Probab, vol.253, pp.518-548, 1993.

]. G. Par81 and . Parisi, Correlation functions and computer simulations, Nuclear Physics B, vol.180, pp.378-384, 1981.

Y. [. Pardoux and . Veretennikov, On the Poisson equation and diffusion approximation 3, The Annals of Probability, vol.33, issue.3, pp.1061-1085, 2001.
DOI : 10.1214/009117905000000062

URL : http://doi.org/10.1214/009117905000000062

R. [. Roberts and . Tweedie, Exponential Convergence of Langevin Distributions and Their Discrete Approximations, Bernoulli, vol.2, issue.4, pp.341-363, 1996.
DOI : 10.2307/3318418

[. Sabanis, A note on tamed Euler approximations, Electronic Communications in Probability, vol.18, issue.0, 2013.
DOI : 10.1214/ECP.v18-2824

URL : http://doi.org/10.1214/ecp.v18-2824

]. C. Vil09 and . Villani, Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften, 2009.

X. Wang and S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients, Journal of Difference Equations and Applications, vol.19, issue.3, pp.466-490, 2013.
DOI : 10.1007/BF02846028