
HAL Id: hal-01648682
https://inria.hal.science/hal-01648682

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Recency Abstraction for JavaScript Towards
an Intuitive, Compositional, and Efficient Heap

Abstraction
Jihyeok Park, Xavier Rival, Sukyoung Ryu

To cite this version:
Jihyeok Park, Xavier Rival, Sukyoung Ryu. Revisiting Recency Abstraction for JavaScript Towards
an Intuitive, Compositional, and Efficient Heap Abstraction. SOAP 2017 - International Work-
shop on the State Of the Art in Java Program Analysis, Jun 2017, Barcelona, Spain. pp.1-6,
�10.1145/3088515.3088516�. �hal-01648682�

https://inria.hal.science/hal-01648682
https://hal.archives-ouvertes.fr


Revisiting Recency Abstraction for JavaScript
Towards an Intuitive, Compositional, and Efficient Heap Abstraction

Jihyeok Park
KAIST, Republic of Korea
jhpark0223@kaist.ac.kr

Xavier Rival
DIENS, École Normale Supérieure, CNRS,
PSL Research University and INRIA, France

Xavier.Rival@ens.fr

Sukyoung Ryu
KAIST, Republic of Korea

sryu.cs@kaist.ac.kr

Abstract
JavaScript is one of the most widely used programming lan-
guages. To understand the behaviors of JavaScript programs
and to detect possible errors in them, researchers have de-
veloped several static analyzers based on the abstract inter-
pretation framework. However, JavaScript provides various
language features that are difficult to analyze statically and
precisely such as dynamic addition and removal of object
properties, first-class property names, and higher-order func-
tions. To alleviate the problem, JavaScript static analyzers
often use recency abstraction, which refines address abstrac-
tion by distinguishing recent objects from summaries of old
objects. We observed that while recency abstraction enables
more precise analysis results by allowing strong updates on
recent objects, it is not monotone in the sense that it does
not preserve the precision relationship between the underly-
ing address abstraction techniques: for an address abstrac-
tion A and a more precise abstraction B, recency abstrac-
tion on B may not be more precise than recency abstraction
on A. Such an unintuitive semantics of recency abstraction
makes its composition with various analysis sensitivity tech-
niques also unintuitive. In this paper, we propose a new sin-
gleton abstraction technique, which distinguishes singleton
objects to allow strong updates on them without changing a
given address abstraction. We formally define recency and
singleton abstractions, and explain the unintuitive behaviors
of recency abstraction. Our preliminary experiments show
promising results for singleton abstraction.

CCS Concepts •Software and its engineering → Gen-
eral programming languages; •Theory of computation
→ Program analysis

Keywords Address abstraction, recency abstraction, ad-
dress partition

1. Introduction
JavaScript is one of the most widely used programming lan-
guages. It is now the 7th popular language [1] and it becomes
the de facto language for web programming. In the ever-
growing IoT era, the realm of JavaScript may expand even
more [2] and understanding and detecting bugs in JavaScript
programs are getting more important.

Recently, researchers have presented several static ana-
lyzers for JavaScript programs. SAFE [7], TAJS [5], and
WALA [10] statically analyze JavaScript programs based
on the abstract interpretation framework. Because they aim
for sound static analysis, their analysis results are often im-
precise. Thus, each analyzer develops its own analysis tech-
niques to improve the analysis precision [3, 8, 10, 11].

For JavaScript static analysis, analyzing “object proper-
ties” precisely serves an important role in improving the
analysis precision. First, because property names themselves
are first-class values, imprecise analysis of property names
lead to imprecise analysis of property accesses. Second,
since object properties may be added or removed dynami-
cally, precisely analyzing the existence of object properties
is challenging. Imprecisely analyzing that a specific prop-
erty may not exist in an object may result in reporting a false
type error. Third, because JavaScript supports higher-order
functions, the values of object properties may be functions,
which implies that building control flow graphs precisely re-
quires precise analysis of property accesses.

To analyze object properties more precisely, JavaScript
static analyzers often use recency abstraction [4]. Note that
one of main causes of the analysis imprecision is weak up-
date, which updates the value of an object property to a join
of its old value and a new value. To analyze such updates
more precisely, recency abstraction distinguishes the most
recently allocated objects from joined old objects and per-
forms weak updates on joined old objects and strong updates
that replace old values with new values on the recently allo-
cated objects. Thus, recency abstraction enhances the analy-
sis precision for the most recently allocated objects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SOAP’17, June 18, 2017, Barcelona, Spain
c© 2017 ACM. 978-1-4503-5072-3/17/06...$15.00

http://dx.doi.org/10.1145/3088515.3088516

1



Recency abstraction is yet another address abstraction
that divides a given (underlying) partition-based address
abstraction into two parts: old and recent addresses. A
partition-based address abstraction divides addresses into
partitions and uses their powersets as its abstract domain.
One example partition-based address abstraction is the
allocation-site abstraction, which creates partitions by merg-
ing all objects created at the same allocation sites. For each
partition, recency abstraction distinguishes a recent address
that points to the most recently created objects and an old
address that points to old objects, and it allows strong up-
dates only on recent addresses. Consider the following code:

l0 : function f() { return {}; };
l1 : var x = f();
l2 : var y = f();
l3 : x.p = 1;
l4 : y.p = 2;
l5 : x.p+ y.p

Though it is contrived for brevity, it shows how recency
abstraction for the allocation-site abstraction works suc-
cinctly. Since the values of x and y are objects created at
the same allocation site, l0, both x and y have the same par-
tition l0 in the allocation-site abstraction. Thus, at the end
of the above code, both x.p and y.p have undefined (the
default value for an absent property), 1, and 2 as their val-
ues. On the contrary, recency abstraction splits l0 into two
parts: (l0,o) for joined old addresses and (l0, r) for a recent
address. At the end of the above code, x has the old abstract
address (l0,o) and y has the recent abstract address (l0, r).
Thus, x.p has both undefined and 1 as its values because
of weak updates on the old address, but y.p has only 2 as its
value because of the strong update on the recent address.

While recency abstraction provides more precise analysis
than its underlying address abstraction, it is not monotone in
the sense that it does not preserve the refinement relation-
ship between its underlying address abstraction techniques.
We say that a partition-based address abstraction A1 with
a partition δ1 is a refinement of another partition-based ad-
dress abstraction A2 with a partition δ2, if the partition δ1
is finer than the partition δ2. We prove that the refinement
relationship is proportional to the analysis precision. Unfor-
tunately, recency abstraction onA1, which is a refinement of
A2, may not be a refinement of recency abstraction on A2.
Thus, it is unclear which address abstraction would provide
the most precise analysis in conjunction with recency ab-
straction, which denotes that recency abstraction is not com-
positional with other analysis techniques.

In this paper, we present a singleton abstraction, which
improves the analysis precision of its underlying address
abstraction without the aforementioned problems of recency
abstraction. The contributions of this paper are as follows:
• We formally define recency abstraction on a partition-

based address abstraction such as the allocation-site ab-
straction, and describes how it interferes with address
partitioning and analysis sensitivities.

l0 : var obj = {};
l1 : if ( ? ) {
l2 : obj.a = 1;
l3 : obj = {};
l4 : }

Figure 1. A simple example program

• We propose a singleton abstraction, which enhances the
analysis precision while preserving the refinement rela-
tionship of its underlying address abstraction. Therefore,
it is compositional with other analysis techniques.
• Our preliminary experimental results show that the sin-

gleton abstraction provides similar analysis precision as
recency abstraction.

2. Concrete Semantics
In this section, we define the concrete semantics of a simpli-
fied variant of JavaScript. It contains essential constructs for
address abstraction, and we augment the standard concrete
semantics with time information to identify recently created
objects. We call such time information a date, which is a
non-negative integer.

2.1 Notations and Syntax
We use the following notations:

l ∈ L : control states
x, y ∈ X : variables
a ∈ A : addresses

Vp : primitive values
V : values (V = A ] Vp)
D : dates (non-negative integers)
P : property names of objects (strings)

We let � denote the undefined value (� ∈ Vp). A date de-
notes when an object is created used for recency abstraction.
Property names are string values. We consider the following
abstract syntax as a simplified variant of JavaScript:

Program ::= Func∗ Stmt∗

Func ::= function Id ( [Id [, Id]∗]? ) { Stmt∗ }
Stmt ::= var Id [= Expr]?;

| Id = Expr; | Expr.Prop = Expr;
| if ( Expr ) { Stmt∗ } else { Stmt∗ }
| return Expr;

Expr ::= Expr ( Expr∗ ) | Expr [ Expr ] | Expr.Prop | {}
| Id |? | 0 | 1 | + | − | · · · (values or operators)

Id ::= x | y | · · · (variable names)
Prop ::= a | p | · · · (property names of objects)

We use ? to denote unknown values such as dynamically
generated values. Figure 1 shows an example code. Given a
statement s, we write l0 : s; l1, if l0 is the control state right
before the statement and l1 is the control state right after it.

2.2 States and Traces
A state σ = (σL, σC, σH, σD) ∈ S consists of a control state,
a context, a heap, and a date:

2



S = L× C× H× D : states
C = E× K : contexts
E = X� V : environments
K = {ε} ] (L× C) : call contexts
H = A� (O× L× D) : heaps
O = P� V : objects

A context consists of an environment and a call context. An
environment is a partial map from variables to values. A call
context in top-level is ε; in a function f, a call context is a
pair of the control point and the context of the call-site of f.
A heap is a partial map from addresses to objects with their
allocation sites and dates. An object is a partial map from
property names to their values.

A trace τ ∈ T is a finite sequence of states 〈σ0, . . . , σn−1〉.
The date of a state captures the number of program execu-
tion steps so far: in a well-formed trace 〈σ0, . . . , σn−1〉, the
date of σi is i and the transition rules in the concrete seman-
tics defined in Section 2.3 ensure this. The following table
represents sample traces for the example code in Figure 1. A
trace executing the true branch is as follows:

σL
i σE

i (obj) σH
i σD

i
l0 � ∅ 0
l1 at0 at0 7→ ({}, l0, 0) 1
l2 at0 at0 7→ ({}, l0, 0) 2
l3 at0 at0 7→ ({a : 1}, l0, 0) 3

l4 at1
at0 7→ ({a : 1}, l0, 0) 4
at1 7→ ({}, l3, 3)

and another trace executing the false branch is as follows:
σL
i σE

i (obj) σH
i σD

i
l0 � ∅ 0
l1 af0 af0 7→ ({}, l0, 0) 1
l5 af0 af0 7→ ({}, l0, 0) 2

2.3 Concrete Semantics
We define a small-step semantics characterized by a transi-
tion relation →, and use the finite trace semantics induced
by→. The initial state is (l0, (∅, ε), ∅, 0) where l0 is the start
control point of a given program. For instance, the transitions
for simple variable creation and object allocation statements
have the following semantics:
• Simple variable creation without initialization

l0 : var x;
l1 : . . .

(l0, (σE
0 , σ

K
0 ), σH

0 , σ
D
0 )→ (l1, (σE

1 , σ
K
0 ), σH

0 , σ
D
1 ) where

σE
1 = σE

0 [x 7→ �] and σD
1 = σD

0 + 1

• Object allocation

l0 : x = {};
l1 : . . .

(l0, (σE
0 , σ

K
0 ), σH

0 , σ
D
0 ) → (l1, (σE

1 , σ
K
0 ), σH

1 , σ
D
1 ) where a

is a fresh address, σE
1 = σE

0 [x 7→ a], σH
1 = σH

0 [a 7→
({}, l0, σD

0 )], and σD
1 = σD

0 + 1.
The remaining rules are available in a companion re-

port [9]. Generally, the transition relation → should ensure
that, for each transition (σL

0 , σ
C
0 , σ

H
0 , σ

D
0 )→ (σL

1 , σ
C
1 , σ

H
1 , σ

D
1 ),

σD
1 = σD

0 + 1.

3. Recency Abstraction
We formally define a series of abstractions towards recency
abstraction on top of a given partition-based address abstrac-
tion. Then, we illustrate unintuitive behaviors of recency ab-
straction using two code examples.

3.1 Abstractions
We define a program abstraction by composing a series of
abstractions:
• a classical flow-sensitive abstraction that maps each con-

trol state to the set of states that are observed at that loca-
tion; and
• an abstraction of sets of states by collapsing addresses

according to an address abstraction given as a parameter
of the program abstraction.

Address abstraction An address abstraction is defined by:
• a set of abstract addresses A] (we note a] for an element

of this set); and
• a function φA : A −→ A] that maps each address into the

abstract address that represents it.
In the following, we consider several choices of this address
abstraction. In each case, it fixes fully for each state the
mapping between concrete addresses and abstract addresses.

State abstraction based on address abstraction Given a
pair (A], φA), we can define abstract domains and abstrac-
tion functions for the state abstraction as shown in Figure 2.
Abstractions of control states and primitive values are their
powersets. Because a power set of primitive values could be
an infinite set, we should define its finite abstraction in real
analysis, but we use powersets in this paper for the presen-
tation brevity. Abstractions of states are a pair of abstrac-
tions of environments and heaps. An abstract environment
is a map from variables to pairs of abstract addresses and
sets of primitive values. An abstract heap is a map from
abstract addresses to abstract objects. In the heap abstrac-
tion, we merge all the abstract objects corresponding to a
given abstract address. Finally, an abstract object is a map
from property names to pairs of abstract addresses and sets
of primitive values or the special consider ~; when an ab-
stract object o] has a mapping from p to ~, it denotes that
p may not exist in o]. Since abstract domains are complete
lattices, we define at each step an element-wise abstraction
function φ, that maps each element to its best abstraction.
Such functions implicitly define Galois connections. For in-
stance, A, φA defines P(A)

α−⇀↽−
γ

A] by:

α(A′) =
⊔
a∈A′ φA(a), γ(a]) = {a ∈ A | φA(a) v a]}

Recency abstraction Recency abstraction is a commonly
used address abstraction for JavaScript analysis, which is
often defined on top of the allocation-site abstraction. We
generalize the allocation-site abstraction as a partition-based
address abstraction, and define recency abstraction on it.
Thus, our formalization can represent recency abstraction

3



Concrete domain Abstract domain Element-wise abstraction function
S S] = E] ×H] φS(( , (e, ), h, )) = (φE(e), φH(h))

E E] = X −→ A] × P(Vp) φE(e) = λ(x ∈ Domain(e)) ·

{
(φA(e(x)), {}) if e(x) is an address
(⊥, {e(x)}) if e(x) is a primitive value

H H] = A] −→ O] φH(h) = λ(a] ∈ A]) ·
⊔
{φO(o) | ∃a ∈ A, φA(a) = a] ∧ h(a) = (o, , )}

O O] = P −→ A] × P(Vp ] {~}) φO(o) = λ(p) ·


(φA(o(p)), {}) if o(p) is an address
(⊥, {o(p)}) if o(p) is a primitive value
(⊥, {~}) if p 6∈ Domain(o)

Figure 2. Abstractions based on the address abstraction (A], φA)

on heap cloning [6], which is yet another partition-based
address abstraction.

A partition-based address abstraction (A]δ, φAδ ) is defined
with a partition δ : A → Π where A]δ = P(Π) and
φAδ (a) = {δ(a)}. We could simplify the heap abstraction
using the partition δ as follows:
• H]δ = Π −→ O]
• φHδ (h) = λ(π ∈ Π) ·

⊔
{φO(o) | ∃a ∈ A, δ(a) = π ∧

h(a) = (o, , )}
Given a partition-based address abstraction with a parti-

tion δ : A → Π, and a corresponding state (l , c, h, n), we
define recency abstraction as follows:
• A]r[δ] = P(Π× {r,o});

• φAr[δ](a) =

{
{(π, r)} if h(a) = (o, l , nr)
{(π,o)} otherwise

where π = δ(a)
and nr = max{n′ | ∃a′ ∈ A, o′ ∈ O, l ′ ∈ L,

δ(a′) = π ∧ h(a′) = (o′, l ′, n′)}.
This allows to abstract sets of states similarly as above ex-

cept that the address abstraction function depends on states.

3.2 Unintuitive Behaviors of Recency Abstraction
Now, we illustrate unintuitive behaviors of recency abstrac-
tion using two examples.

Example 1 The code in Figure 1 contains two allocation-
sites l0 and l3. Let us consider two partition-based address
abstractions: the allocation-site abstraction with δid : A →
L, which divides addresses based on their allocation sites
and a crude one with δ> : A → {π} for some π, which
does not partition at all. Clearly, the abstraction (A]δid , φ

A
δid

)

defines a more precise address partition than (A]δ> , φ
A
δ>

).
Unfortunately, recency abstraction does not preserve this
“more precise than” relationship. Let’s look at the analysis
results at the control state l4. The abstraction with recency
abstraction (A]r[δid], φ

A
r[δid]

) produces the following result:

e] h]

true branch obj 7→ {(l3, r)}
(l0, r) 7→ {a 7→ {1}}
(l3, r) 7→ {}

false branch obj 7→ {(l0, r)} (l0, r) 7→ {}

join
obj 7→ {(l0, r), (l0, r) 7→ {a 7→ {~, 1}}

(l3, r)} (l3, r) 7→ {}

l0 : function g(z){
l1 : var result = z.p;
l2 : }
l3 : function f(){
l4 : var obj = {};
l5 : var a = g(obj);
l6 : obj.p = 3;
l7 : return obj;
l8 : }
l9 : var x = f();
l10 : var y = f();
l11 :

Figure 3. Recency abstraction interfering with sensitivities

The joined result of both true and false branches shows
that obj.a may have values {~, 1}. On the contrary, the
abstraction with (A]r[δ>], φ

A
r[δ>]) produces the following:

e] h]

true branch obj 7→ {(π, r)} (π, r) 7→ {}
(π,o) 7→ {a 7→ {1}}

false branch obj 7→ {(π, r)} (π, r) 7→ {}

join obj 7→ {(π, r)} (π, r) 7→ {}
(π,o) 7→ {a 7→ {1}}

The joined result of both branches shows that a does not
exist in obj; thus, the value of obj.a is {~}. This example
shows that (A]r[δ>], φ

A
r[δ>]) is more precise than (A]r[δid], φ

A
r[δid]

)

while (A]δid , φ
A
δid

) is more precise than (A]δ> , φ
A
δ>

). There-
fore, the precision relationship of the underlying address
abstraction is not preserved with recency abstraction.

Example 2 The code in Figure 3 shows that recency ab-
straction may interfere with analysis sensitivities. Let us
consider two analysis sensitivities: 1-CFA that distinguishes
the same function from its different call sites using its caller,
and 0-CFA that does not distinguish different call sites of
the same function. Then, we consider the allocation-site ab-
straction refined by different sensitivities. With 1-CFA, the
partition is δ : A → {l4/9, l4/10} where l4/9 means that the
allocation-site l4 with the call-site l9 and l4/10 means that the
allocation-site l4 with the call-site l10. In this case, we get the

4



following result at the control state l1:

e] h]

call l9, l5 z 7→ {(l4/9, r)} (l4/9, r) 7→ {}

call l10, l5 z 7→ {(l4/10, r)}
(l4/9, r) 7→ {p 7→ {3}}
(l4/10, r) 7→ {}

join
z 7→ {(l4/9, r), (l4/9, r) 7→ {p 7→ {~, 3}}

(l4/10, r)} (l4/10, r) 7→ {}

With 0-CFA, the partition is δ : A→ {l4}. Thus, it has only
one partition and we get the following result at the control
state l1:

e] h]

call l9, l5 z 7→ {(l4, r)} (l4, r) 7→ {}

calll10, l5 z 7→ {(l4, r)} (l4, r) 7→ {}
(l4,o) 7→ {p 7→ {3}}

join z 7→ {(l4, r)} (l4, r) 7→ {}
(l4,o) 7→ {p 7→ {3}}

This example shows that a more precise 1-CFA may produce
less precise results than 0-CFA when combined with recency
abstraction. Therefore, the precision relationship of analysis
sensitivities is not preserved when combined with recency
abstraction.

4. Singleton Abstraction
In this section, we explain the unintuitive behaviors of re-
cency abstraction in terms of the refinement relationship be-
tween partition-based address abstractions. Then, we present
singleton abstraction, a new heap abstraction based on a
given partition-based address abstraction, which preserves
the refinement relationship of its underlying address abstrac-
tion and moreover allows strong updates on singleton ad-
dresses.

4.1 Refinement of Address Abstraction
We first define terminologies to discuss the behaviors of
recency abstraction. A partition-based address abstractions
(A]δi , φ

A
δi

) is defined with a partition δi : A → Πi. A
partition-based address abstraction is a refinement of an-
other, if and only if their partitions have the refinement rela-
tionship accordingly.

Definition 1 (�). (A]δ1 , φ
A
δ1

) � (A]δ2 , φ
A
δ2

) iff δ1 is a refine-
ment partition of δ2.

An address abstraction (A]1, φA1 ) is more precise than
(A]2, φA2 ) if and only if the concretization of the former is
a subset of that of the latter.

Definition 2 (�p). (A]1, φA1 ) �p (A]2, φA2 ) iff γ1 ◦ α1 ⊆
γ2 ◦ α2.

Then, we prove that the refinement relation implies the
precision relation.

Theorem 1 (Implication of precision from refinement).

(A]δ1 , φ
A
δ1) � (A]δ2 , φ

A
δ2)⇒ (A]δ1 , φ

A
δ1) �p (A]δ2 , φ

A
δ2)

Now, let us revisit the first example in Section 3.2
with the refinement relation. Because δid is a partition of
δ>, we have (A]δid , φ

A
δid

) � (A]δ> , φ
A
δ>

). The recency ab-
straction with a cruder partition (A]r[δ>], φ

A
r[δ>]) has two

partitions (π, r) and (π,o): γ((π, r)) = {at1 , af0} and
γ((π,o)) = {at0} where at0 and at1 are concrete addresses
created at l0 and l3, respectively, for the true branch, and
af0 is a concrete address created at l0 for the false branch.
The other recency abstraction (A]r[δid], φ

A
r[δid]

) has four par-
titions, and only two partitions (l0, r) and (l3, r) have ele-
ments: γ((l0, r)) = {at0 , af0} and γ((l3, r)) = {at1}. Thus,
(A]r[δid], φ

A
r[δid]

) 6� (A]r[δ>], φ
A
r[δ>]), which illustrates a case

where recency abstraction does not preserve the refinement
relation of its underlying address abstraction, which in turn
does not preserve their precision relation. Similarly, the sec-
ond example shows that recency abstraction with a more
precise 1-CFA analysis sensitivity does not always produce
more precise analysis results than recency abstraction with a
less precise 0-CFA.

4.2 Singleton Abstraction
To alleviate the problem, we decide not to divide a given
partition but to simply perform strong updates on single-
ton objects. Thus, we propose singleton abstraction, a new
heap abstraction that preserves the refinement relationship of
its underlying address abstraction. It can provide more pre-
cise analysis results with more precise underlying address
abstractions and with more precise analysis sensitivities.

Given a partition-based address abstraction (A]δ, φAδ ) with
a partition δ = A → Π, we define singleton abstraction as
follows:
• H]s[δ] = Π −→ O] × {s,m};

• φHs[δ](h) = λ(π ∈ Π) · (φHδ (π),

{
s if |U | = 1
m otherwise )

where U = {a′ ∈ A | δ(a′) = π ∧ a′ ∈ Domain(h)}.
It distinguishes partitions with only one address as s and

maps the other partitions to m. Merging two mappings from
the same partition to both singleton (s) and multiple (m)
results in m.

Unlike recency abstraction, the singleton abstraction pre-
serves the refinement relation of its underlying address ab-
straction because they use the same partition from the un-
derlying address abstraction. While the expressive power of
the singleton abstraction is the same as its partition-based
address abstraction, singleton abstraction allows strong up-
dates for address partitions that map to s. It permits strong
updates on objects created at specific allocation sites.

5. Evaluation
We evaluate the precision of singleton abstraction in com-
parison with recency abstraction. We conducted experi-
ments with 3 sets of benchmarks—JSAI, SunSpider, and
V8—consisting of 24 programs on a 2.8 GHz Intel Core
i5 iMac with 16GB memory. We implemented 3 address

5



Bench Program LOC Recency Singleton Total

JSAI

adn-chess.js 234 90 55 127
adn-coffee pods deals.js 367 45 37 141
adn-less spam please.js 759 213 143 432
adn-live pagerank.js 882 132 117 323
adn-odesk job watcher.js 168 56 52 71
adn-pinpoints.js 548 58 57 232
adn-tryagain.js 929 103 72 525

SunSpider

3d-morph.js 23 1 1 4
access-binary-trees.js 38 14 10 16
access-fannkuch.js 51 1 1 19
access-nbody.js 142 32 15 78
access-nsieve.js 28 2 0 4
bitops-3bit-bits-in-byte.js 13 0 0 0
bitops-bits-in-byte.js 14 0 0 0
bitops-bitwise-and.js 3 0 0 0
bitops-nsieve-bits.js 22 1 1 7
controlflow-recursive.js 18 0 0 0
math-cordic.js 53 4 4 6
math-partial-sums.js 25 4 4 4
math-spectral-norm.js 41 2 1 16
string-fasta.js 70 15 10 18

V8
navier-stokes.js 331 36 17 92
richards.js 288 119 117 197
splay.js 205 108 108 132

Total 1036 831 2, 444
Ratio (%) 42.39 33.63 −

Table 1. Analysis precision

abstractions—allocation-site abstraction, recency abstrac-
tion, and singleton abstraction—on an open-source JavaScript
static analysis framework, SAFE [7]. The implemented re-
cency abstraction and singleton abstraction are built on top
of the allocation-site abstraction.

The analyses took on average 86.92, 122.73, and 79.77
seconds for the allocation-site, recency, and singleton ab-
stractions, respectively. It means that singleton abstraction
does not incur much performance overhead like recency
abstraction while providing comparable analysis precision
with recency abstraction. We observed that the more com-
plex benchmark programs get, the more performance over-
head recency abstraction causes.

For the analysis precision, we compare the numbers of
object property loads like obj.p that have more precise re-
sults with recency or singleton abstraction compared with
just the allocation-site abstraction. Table 1 summarizes the
experimental results; the 3rd column shows the lines of code,
the 4th and the 5th columns show the numbers of more pre-
cise property loads by recency and singleton abstractions,
respectively, and the last column shows the total number of
property loads in each program. For example, the first pro-
gram in the JSAI benchmarks, adn-chess.js, has 127 property
loads, among which recency abstraction analzyes 90 prop-
erty loads more precisely than the allocation-site abstrac-
tion. In summary, recency and singleton abstractions ana-
lyze about 42.39% and 33.63% of property loads more pre-
cisely on average, respectively. Note that recency abstrac-
tion divides partitions into two parts: recent and old. There-
fore, recency abstraction provides more precise analysis re-

sults than singleton abstraction when programs update recent
addresses and their allocation sites also have old addresses
pointing to different shapes of objects. We plan to extend the
set of benchmark programs to understand the relationships
between recency and singleton abstractions more clearly.

6. Conclusion
We revisited recency abstraction, a typical address abstrac-
tion technique for static analysis of JavaScript programs.
We formally defined it on a partition-based address abstrac-
tion, and we used the formalization to describe unintuitive
behaviors of recency abstraction. We explained the behav-
iors by showing that recency abstraction does not preserve
the refinement relationship between its underlying address
abstractions. Thus, it is difficult to predict which address
abstraction would provide the most precise analysis result
for recency abstraction. Thus, we proposed singleton ab-
straction, a new heap abstraction using a partition-based ab-
straction. It preserves the refinement relationship of the un-
derlying address abstractions. Therefore, it is compositional
with other analysis techniques. Moreover, our experiments
showed that it provides similar analysis precision with re-
cency abstraction while reducing the performance overhead.

Acknowledgment
This research has received funding from the European Re-
search Council under the EU FP 7, grant Agreement 278673,
Project MemCAD, and National Research Foundation of
Korea (Grant NRF-2014R1A2A2A01003235).

References
[1] TIOBE Index for February 2017. http://www.tiobe.com/

tiobe-index.

[2] Iot.js: A framework for Internet of Things.
http://samsung.github.io/jerryscript/, 2015.

[3] E. Andreasen and A. Møller. Determinacy in static analysis for
jQuery. In OOPSLA, 2014.

[4] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated
storage. In SAS, 2006.

[5] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
JavaScript. In SAS, 2009.

[6] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In
PLDI, 2007.

[7] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. SAFE: Formal specifi-
cation and implementation of a scalable analysis framework for EC-
MAScript. In FOOL, 2012.

[8] C. Park and S. Ryu. Scalable and precise static analysis of JavaScript
applications via loop-sensitivity. In ECOOP, 2015.

[9] J. Park, X. Rival, and S. Ryu. Revisiting re-
cency abstraction for JavaScript (extended).
http://plrg.kaist.ac.kr/doku.php?id=research:material,
2017.

[10] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic determinacy
analysis. In PLDI, 2013.

[11] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correla-
tion tracking for points-to analysis of JavaScript. In ECOOP, 2012.

6


