
HAL Id: hal-01648980
https://inria.hal.science/hal-01648980

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grounding of HTN Planning Domain
Abdeldjalil Ramoul, Damien Pellier, Humbert Fiorino, Sylvie Pesty

To cite this version:
Abdeldjalil Ramoul, Damien Pellier, Humbert Fiorino, Sylvie Pesty. Grounding of HTN Planning
Domain. International Journal on Artificial Intelligence Tools, 2017, 26 (5), pp.113-120. �hal-01648980�

https://inria.hal.science/hal-01648980
https://hal.archives-ouvertes.fr


July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Grounding of HTN Planning Domain

Abdeldjalil Ramoul12, Damien Pellier1, Humbert Fiorino1, Sylvie Pesty1

1Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

firstname.lastname@univ-grenoble-alpes.fr

2Cloud Temple, 215 Avenue Georges Clemenceau,

92024, Nanterre Cedex, France,
abdeldjalil.ramoul@cloud-temple.com

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

Many Artificial Intelligence techniques have been developed for intelligent and au-

tonomous systems to act and make rational decisions based on perceptions of the world

state. Among these techniques, HTN (Hierarchical Task Network) planning is one of the
most used in practice. HTN planning is based on expressive languages allowing to specify

complex expert knowledge for real world domains. At the same time, many preprocess-
ing techniques for classical planning were proposed to speed up the search. One of these

technique, named grounding, consists in enumerating and instantiating all the possible

actions from the planning problem descriptions. This technique has proven its effective-
ness. Therefore, combining the expressiveness of HTN planning with the efficiency of

the grounding preprocessing techniques used in classical planning is a very challenging

issue. In this paper, we propose a generic algorithm to ground the domain representa-
tion for HTN planning. We show experimentally that grounding process improves the

performances of state of the art HTN planners on a range of planning problems from the

International Planning Competition (IPC).

Keywords: HTN planning, planning domain representations

1. Introduction

Act and make rational decisions based on perceptions of the world state is a central

issue in intelligent and autonomous systems. Many Artificial Intelligence techniques

have been developed to that purpose. Among these techniques, HTN (Hierarchical

Task Network) planning is one of the most used in practice [1–3]. HTN planners

are based on very expressive languages allowing to specify expert knowledge on real

world domains. Unlike classical planning [4] where the goal is defined as a set of

propositions to achieve, in HTN planning, the goal is expressed as a set of tasks

to achieve, i.e. the goal tasks, and to which it is possible to associate different kind

of constraints. A tuple (constraints, tasks) is called a Task Network. The search

for a solution consists in decomposing the goal tasks into sub-tasks satisfying the

constraints until a set of primitive sub-tasks is found: primitive tasks can be executed

1



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

2

by classical planning actions. The recursive decomposition of tasks into sub-tasks

is performed by applying hierarchical planning operators named methods.

Many efficient classical planning algorithms like Fast Forward [5] or Fast Down-

ward [6, 7] have been implemented. All of them perform a preprocessing step that

consists in enumerating and instantiating all the possible actions from the planning

problem descriptions. This step, named grounding, is crucial for many reasons. First

of all, it reduces the number of the actions through different simplification mecha-

nisms, and, consequently, the size of the research space. Secondly, generating the set

of all the relevant actions allows to assess proposition reachability in the planning

problem. This is a necessary prerequisite to compute efficient heuristics guiding the

search process [5,8–12]. Thirdly, the grounding allows to express planning problems

in others formalisms such as CSP [13,14] or SAT [15–18].

Combining the expressiveness of HTN planning with the efficiency of classical

planners is a very challenging issue. We propose in this paper a grounding algorithm

for HTN planners. This algorithm extends the grounding used in classical planners

to the HTN planners. In section 2, we present the related works, and, in section 3, we

define the HTN concepts. In section 4, we detail the instantiation and simplification

mechanisms involved in the grounding. In section 6, we show that the grounding

improves the performances of state of the art HTN planners on a range of planning

problems from the International Planning Competition (IPC).

2. Related Work

Using hierarchical action representation in the automated planning community is a

foundational idea. Already in 1975, Sacerdoti [19] proposed a planner called NOAH

(Nets of Action Hierarchies) based on this idea. The system was built up on a data

structure called procedure net. This data structure introduced for the first time the

concept of tasks network and decomposition. These two concepts are today part of

all the modern HTN planners. Each procedural net defines a hierarchy of nodes (a

task network) where each node represents a particular action primitive or method

at some level of detail (a decomposition). Nodes at each level of the hierarchy

are linked to each others with precedence constraints. NOAH planning algorithm

operates on the principle of the decomposition of an initial procedural net into a

more detail procedural net in the order defined by the precedence constraints. At

each decomposition, NOAH checks if the precedence constraints of the obtained

procedural net are satisfied. The decomposition process ends when a procedural net

containing only primitive actions is built. Many pioneering works followed NOAH:

• Nonline planner developed by [20, 21]. Nonline extends the approach of

Sacerdoti and introduces a formalism describing domains in a hierarchic

fashion.

• O-Plan planning system [22] and its successor O-Plan2 [23] extend the

Nonline planner and proposed for the first time search control heuristics

for HTN planning involving the use of condition typing, time and resources



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

3

constraints.

• SIPE (System for Interactive Planning and Execution) [24] and it successor

SIPE-2 [25] is a complete hierarchical planning system that includes many

features such as interleaving planning and execution, interactive plan de-

velopment, replanning if failures occur during execution and the possibility

to use conditional effects in action descriptions.

• UMCP (Universal Method Composition Planner) [26] is the first HTN al-

gorithm whose correctness and completeness were proved.

The common characteristic of all these works relies on the nature of the search

space explored to find a solution plan: a space of plans. No state is maintained during

the search. At each search step, the tasks network obtained after a decomposition is

a partial plan. The main advantage of this approach is to postpone decisions about

the ordering of the actions to the execution whereas total-order planning produces

a totally ordered sequence of actions.

In contrast, recent and modern HTN planners such as SHOP (Simple Hierarchi-

cal Ordered Planner) [27] maintain states during search process and explore a space

of states. Each tasks network contains a representation of the state in addition to

the tasks. A decomposition is applicable if and only if some constraints expressed as

precondition of the decomposition hold in the state. This is very powerful because

the preconditions allow to prune quickly unpromising decompositions. A compre-

hensive comparison of these different works is proposed in [28] and a complexity

analysis of HTN planning is available in [26, 29]. Many works based on this ap-

proach were developed during the last decade. For instance, SHOP was extended to

generate partial order plans [30], temporal plans [31] or plans integrating user pref-

erences [32]. It was also extended to multi-agent systems [33], to on-line search [34]

or to solve non-deterministic planning problems [35] by combining Binary Decision

Diagram and HTN-based mechanisms in order to constrain the search of a solution

plan. GoDel planning system [36] synthesizes classical and HTN planning. It defines

a simple formalism that extends classical planning to include problem decomposi-

tion and a planning algorithm based on this formalism enable to combine HTN

search when decompositions are available and classical forward-search otherwise.

Finally, [37] and [38] propose to use classical SAT and CSP solvers by encoding

respectively HTN planning problem into satisfiability problem and Dynamic CSP

problem. These two techniques are used to solve a variety of combinatorial and

optimization problems.

In terms of applications, HTN is one of the most used planning techniques for

real-world applications. For instance, it has been mainly used for automatic web

services composition. HTN is well-suited for automatic web services composition

because web services are described in a hierarchical manner like HTN planning

formalism. Thus, the translation can be done automatically. The first use of HTN

planning for automatic web services composition was done by [39,40]. In these works,

web-services are automatically translated into HTN descriptions by using ontologies,



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

4

and SHOP2 planner is used to generate the sequence of web services that must be

executed over the web to answer the query of an user. Many subsequent approaches

were proposed : OWL-S Xplan [41] is a hybrid approach that combines the Graph-

Plan based planning [42] and the HTN planning to provide a plan with incomplete

web services or methods description decomposition, [43] combines HTN planning

and CSP to schedule web services constraints, [44] proposes to associate Markov

Decision Process and HTN planning to compute multiple composition plans, and

then present the most appropriate to the user.

HTN was also widely used for decision support tools. Indeed, hierarchical reason-

ing used in HTN planner is ”human-friendly”. Decision support tools based on HTN

planning techniques were applied to many areas such as search and rescue mission

planning [45–48], in space exploration [49], or in multiple drones management [50].

Robotics is a classical field for automated planning. For instance, the HTN

planner HATP [51] was specifically designed to solve robotics planning problems by

interleaving planning and geometric reasoning. In [52–54], HTN planning techniques

are used for robot navigation and gripper manipulations, etc.

3. HTN Planning Definitions and Concepts

This section provides the basic definitions to introduce HTN planning language and

search procedure based on [55].

3.1. Operators, methods and tasks

The definition of an operator is the same as in classical planning.

Definition 3.1. An operator is a 3-tuple o = (name(o), pre(o), eff(o)). name(o)

is a syntactic expression of the form t(u1, . . . , uk) where t is the operator name

and u1, . . . , uk its parameters. pre(o) and eff (o) are logical expressions defining

respectively the preconditions that must be verified to apply the operator and the

effects that are logical propositions generated by the operator. Negated propositions

are respectively labelled pre−(o) and eff −(o), pre+(o) and eff +(o) otherwise.

An action is a ground instance of an operator. An action a is applicable to a

state s if pre+(a) ⊆ s and pre−(a)∩ s = ∅. The resulting state s′ of the application

of a in a state s is defined as follows:

s′ = γ(s, a) = (s − eff−(a)) ∪ eff+(a)

Definition 3.2. A method is a 3-tuple m = (name(m), pre(m), subtasks(m)).

name(m) is a syntactic expression of the form t(u1, . . . , uk) where t is the name

of the method and u1, . . . , uk are its parameters. pre(m) is a logical expression

that defines the preconditions that must be verified to apply the method, and sub-

tasks(m) is a list of subtasks of m.



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

5

A decomposition is a ground instance of a method. A decomposition d is appli-

cable in a state s if pre+(d) ⊆ s and pre−(d) ∩ s = ∅.

Definition 3.3. A task is a syntactic expression of the form t(u1, . . . , uk) where t is

the task name and u1, . . . , uk its parameters. A task is ground if all its parameters

are ground. If t is an operator symbol then the task is primitive; otherwise, the task

is non-primitive.

An action a accomplishes a ground primitive task (respectively a ground non-

primitive task) t in a state s if name(a) = t and a is applicable in s. Similarly, a de-

composition d accomplishes a ground non-primitive task t in a state s if name(d) = t

and d is applicable in s.

Example 3.1. (Rover domain)

To illustrate these definitions, consider the rover domain from the International

Planning Competitions. This domain deals with Mars exploration and rovers that

have to cross several waypoints to collect rocks or soil samples, photograph targets

and transmit data to a lander. Every rover is designed for a certain kind of ground

and is not able to cross all the waypoints. Therefore the rovers have to cooperate

to fulfil all the missions.

W0

W3 W2

W1

rock soil

Lander

roverObjective
0

Objective
1

Fig. 1. Rover problem diagram.

Fig. 1 depicts a simple problem with four connected waypoints w0, w1, w2, w3:

rovers can move from w0 to w1, from w1 to w2 etc. A rover is at w1, a lander is at

w1, rock and soil sample are at w0. The double arrows indicate visibility constraints

between waypoints and objectives: (visible w0 w2), (visible from objective0 w0)

etc. The goal is to communicate soil and rock data from W0, to get an image of

objective1 and communicate it to the lander. The goal tasks are expressed as :

(get soil data w0) (get rock data w0) (get image data objective1 low res).



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

6

The operator navigate in the Planning Description Definition Language (PDDL)

[56] is as follows:

( : a c t i on nav igate
: parameters (? x − rover ? from − waypoint ? to − waypoint )
: p r e cond i t i on ( and ( a v a i l a b l e ?x ) ( c a n t r a v e r s e ?x ? from ? to )

( at ?x ? from ) ( v i s i b l e ? from ? to ) )
: e f f e c t ( and ( not ( at ?x ? from ) ) ( at ?x ? to ) ) )

The operator has three parameters: ?x is of type ”rover”, ?from and ?to are of

type ”waypoint”. navigate defines rover movement from one waypoint to another.

navigate preconditions are that the rover ?x is available at ?from, ?to is visible

from ?from, and ?x can move between ?from and ?to. The effects are ”positive”

like (at ?x ?to) or ”negative” (i.e. negated) like (not (at ?x ?from)).

A method do navigate can be defined in PDDL style as follows:

( : method do nav igate
: parameters (? x − rover ? from ? to − waypoint )
: p r e cond i t i on ( and ( not ( c a n t r a v e r s e ?x ? from ? to ) )

( not ( v i s i t e d ?mid ) )
( c a n t r a v e r s e ?x ? from ?mid ) )

: subtasks ( ( nav igate ?x ? from ?mid ) ( v i s i t ?mid )
( do nav igate ?x ?mid ? to ) ( u n v i s i t e d ?mid ) ) )

The method has three parameters: the parameter ?x is of the type ”rover” and

?from and ?to are of the type ”waypoint”. The method is applicable if (1) the rover

?x is not able to cross directly from waypoint ?from to waypoint ?to (2) it has not

visited the waypoint ?mid and finally (3) it must be able to cross from the waypoint

?from to ?mid. The execution of the method involves to execute recursively the

sequence of tasks: (navigate ?x ?from ?mid), (visit ?mid), (do navigate ?x ?mid

?to) and (unvisited ?mid)). Note that unlike the operators, the methods can use

parameters that are not declared (for instance, ?mid). The type of these parameters

have to be inferred.

3.2. Problems and solutions

In this section, we introduce HTN problems and solutions.

Definition 3.4. A HTN planning problem is a 4-tuple P = (s0, T,O,M) where s0
is the initial state defined by a set of logical propositions characterizing the world,

T is ordered list of initial tasks defining the goal, O is a set of operators defining

the actions that can be performed, and M is a set of methods defining the possible

decomposition of a task.

We now define what it means for a plan, i.e. a sequence of actions π =

〈a1, . . . , an〉 to be a solution for a planning problem P = (s0, T,O,M). In other

words, what it means to accomplish the task T . Intuitively, it means that there is a



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

7

decomposition of T into π such than π is executable from s0 and each decomposition

is applicable in the appropriate state of the world. The recursive formal definition

has tree cases.

Definition 3.5. Let P = (s0, T,O,M) be a HTN planning problem. The cases in

which a plan π = 〈a1, . . . , an〉 is a solution for P are:

Case 1. T is an empty set of tasks. Then the empty plan π = 〈〉 is the solution.

Case 2. The first task t ∈ T is primitive. Then π is a solution for P if there

is an action a obtained by grounding an operator o ∈ O such that (1) a

accomplishes t, (2) a is applicable in s0 and (3) π = 〈a2, . . . , an〉 is a solution

plan for the HTN planning problem:

P ′ = (γ(s0, a1), T − {t}, O,M)

Case 3. The first task t ∈ T is non-primitive. Then π is solution if there is a

decomposition d obtained by grounding a method m ∈ M such that s

accomplishes t and π is solution for the HTN planning problem

P ′ = (s0, T − {t} ∪ subtasks(d), O,M)

3.3. HTN planning procedure

Algorithm 1 shows the HTN generic and non-deterministic procedure for solving a

HTN planning problem. The procedure is based directly on the recursive definition

of a solution plan for HTN planning problem.

The generic HTN procedure takes as input a problem P = (s0, T,O,M) where

s0 is the initial state, T = 〈t1, t2, ..., tk〉 is a list of tasks, O, the set of operators,

M , the set of methods. First, the procedure tests if the list of tasks T is empty

(line 2). In this case, no task have to be executed thus the empty plan is returned.

Then the procedure get the first task t1 of the list T . Two cases must be considered

depending on the type of t1:

Case 1. If t1 is primitive (line 3) then the procedure computes the set of all the

ground actions that accomplishes t1 and that are applicable in s0 (line 4).

If there is no action (line 5), the procedure fails because no action accom-

plishes the goal task t1. Then the procedure non-deterministically chooses

an action that accomplishes the task (line 6) and calls it-self recursively on

the planning problem P ′ = (γ(s0, a1), T − {t1}, O,M) (line 7). Finally, if

the recursive call to the procedure fails to find a plan π, it returns failure

(line 8); otherwise it returns the plan that is the concatenation of a and π

(line 9).

Case 2. If t1 is non-primitive (line 10) then the procedure computes the set of

ground decompositions that accomplishes t1 and that are applicable in s0
(line 11). If there is no decomposition to accomplishes t1 (line 12) then

the procedure returns failure. Then the procedure non-deterministically



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

8

Algorithm 1: HTN(s0, T,O,M)

1 Let T = 〈t1, . . . , tk〉
2 if k = 0 then return the empty plan 〈〉
3 if t1 is primitive then

4 A← {a | a is an action obtained by grounding an operator

o ∈ O such that a accomplishes t1 and a is applicable in s0}
5 if A = ∅ then return failure

6 non-deterministically choose an action a ∈ A
7 π ← HTN(γ(s0, a), 〈t2, . . . , tk〉, O,M)

8 if π = failure then return failure

9 else return a⊕ π
10 else if t1 is a non-primitive task then

11 D ← {d | d is a decomposition obtained by grounding a method

m ∈M such that d accomplishes t1 and d is applicable in s0}
12 if D = ∅ then return failure

13 non-deterministically choose a decomposition d ∈ D
14 return HTN(s0, subtasks(d)⊕ 〈t2, . . . , tk〉, O,M)

chooses a decomposition d that accomplishes the task t1 (line 13) and re-

cursively returns the solution plan for the problem P ′ = (s0, subtasks(d)⊕
〈t2, . . . , tk〉, O,M) (line 14).

get_soil_data-w0

nop

do_navigate-rover-w0 sample_soil-rover-
store-w0empty_store-store-rover send_soil_data-rover-w0

visit-rover-
w1 do_navigate-rover-w1-w0 unvisit-

rover-w1

navigate-rover-w1-w0

communicate_soil_data-
rover-lander-w0-w1

Fig. 2. Example of total order task decomposition: primitive and non-primitive task are respec-

tively depicted with dotted and plain lines

To illustrate the recursive decomposition of the HTN procedure, Fig. 2 shows

the decompositions tree of the task get soil data-w0 from the rover domain into

primitive tasks. At level 1, the get soil data-w0 task is decomposed into three non-

primitive tasks do navigate-rover-w0, empty store-store-rover and send soil data-

rover-w0 and the primitive task sample soil-rover-store-w0. One possible solution

plan for the task get soil data-w0 is as follows: 〈visit-rover-w1, navigate-rover-



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

9

w1-w0, unvisit-rover-w1, sample soil-rover-store-w0, communicate soil data-rover-

lander-w0-w1 〉.

4. The Problem of Grounding HTN Domain

The grounding process generates all the possible instances of the operators and the

methods from the objects (constants) defined in a planning problem. To do so, all

the typed parameters in the operators and the methods are replaced by constants

of the same type. The number of instances depends on the number of parameters

in the operators and methods as well as in the number of constants in each type.

Let xi be a parameter and D(xi) be its ”domain” i.e. the set of all the possible

constants that can be associated with this parameter (|D(xi)| is the size of D(xi)).

The number of instances I(o) of an operator o with n parameters {x1, ..., xn} having

as domain D(xi) is:

I(o) =

n∏
i=1

|D(xi)|

It is obvious that the number of instances rapidly increases with the number

of parameters. For instance, the number of actions generated by the grounding of

the operator communicate soil data (?x - rover ?l - lander ?p1 - waypoint ?p2 -

waypoint ?p3 - waypoint) in a rover problem of IPC-5 is 14 million = (14×rover)×
(1× lander)× (100× waypoint1)× (100× waypoint2)× (100× waypoint3).

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

 4.5x107

 5x107

 0  5  10  15  20

N
b 

in
st

an
ci

te
d 

m
et

ho
ds

Problems

without simplification

Fig. 3. Number of ground methods without simplification.

In addition to generate all operator instantiations, the problem of grounding for

HTN domains entails to generate all the possible method instantiations. Because

primitive tasks are necessarily defined in methods, the parameter number in meth-

ods is higher than in operators. As a consequence, method grounding generates

much more instances than operator grounding. For instance, the number of ground

methods of 23 rover problems with increasing size (with respect to the number of



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

10

objects) from the IPC-5 are shown in Fig.3: we see that the number of ground

methods increases rapidly with the number of objects in the problems. There are

14 objects in problem 0, 68 in problem 11 and 158 in problem 22. There are 2 times

more objects in the problem 22 than in the problem 11, when in the same time there

is 48 times more ground methods. Therefore, efficient simplification mechanisms are

essential as we know that the number of methods strongly influences the branching

factor of the HTN search algorithm.

5. The Grounding Algorithm for HTN Domain

Our grounding process is outlined in Fig. 4. Starting from a HTN planning problem

described by using an extended version of PDDL to HTN, we rely on the process

presented in [57] to produce a table of inertias as detailed in section 5.1. Based

on this inertia table, the operator grounding and simplification (see section 5.2)

produces a semi-instantiated problem with actions. Finally, the hierarchical problem

is totally instantiated and simplified (section 5.3).

Hierarchical PDDL problem
+

Table of inertia

Hierarchical PDDL problem

Hierarchical PDDL problem with ground 
actions and facts

Simplified hierarchical problem with ground 
actions, methods and facts

Inertia calculation

Operator grounding
and simplification

Method grounding
and simplification

Fig. 4. Overview of the hierarchical problems grounding algorithm.

5.1. Inertia calculation

The concept of inertia defined in [57] represents facts (propositions in action pre-

conditions or effects) that are never produced or consumed by any operator. There

are two types of inertia:

• Positive inertia are facts that are never produced by the positive effects



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

11

of any operator. If a positive inertia is not in the initial state of the problem,

it will never be true in any state of the problem.

• Negative inertia are facts that are never consumed by the negative effects

of any operator. If a negative inertia is in the initial state of the problem,

it will always be true in any state of the problem.

If a fact is both a positive and a negative inertia, it is an inertia. A fluent is a fact

that is neither positive nor negative inertia and may appear or disappear from one

state to another. In practice, the inertia calculation is done in two steps during the

operator grounding process as explained in [57]. The first one is done before the

grounding, with partially ground propositions to handle the grounding complexity

and reduce the operators and the methods during the process. The second one

called ground inertia is performed after the grounding to completely simplify ground

operators and methods.

Table 1. Inertia of the Rover domain.

Proposition name Positive inertia Negative inertia Status

available No Yes Negative inertia

at No No Fluent
visible Yes Yes Inertia

can traverse Yes Yes Inertia

communicated soil data No Yes Negative inertia
communicated rock data No Yes Negative inertia

at soil sample Yes No Positive inertia

at rock sample Yes No Positive inertia
at lander Yes Yes Inertia

visited No No Fluent

Table 1 shows examples of inertias in the rover domain. The facts can traverse,

visible and at lander do not appear in positive and negative effects of any operator

making them positive and negative inertias. The positive inertias at soil sample and

at rock sample do not appear in positive effects of the operators: they will never be

consumed. at and visited are fluents so they can be added or removed during a state

transition.

5.2. Operator grounding and simplification

The operator grounding process generates the relevant operator instances. It follows

the four steps algorithms as shown in Fig. 5.

5.2.1. Normalization of operator logical expressions

For each logical expression defined in the preconditions and the effects of an oper-

ator containing implications or quantifiers, a reformulation into a Conjunctive or

Disjunctive Normal Form is a prerequisite. We apply the following logical transfor-

mations:



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

12

Normalized PDDL operators

PDDL operators
+

Table of inertia

Normalized ground actions

Normalized ground actions with simplified 
atomic formula

Normalization of operator
logical expressions

Operator grounding

Atomic formula 
simplification

Ground and simplified PDDL problem

Actions simplification

Fig. 5. Overview of the operator grounding and simplification algorithm.

• φ→ ϕ ⇒ ¬φ ∧ ϕ
• ¬(φ ∧ ϕ) ⇒ ¬φ ∨ ¬ϕ
• ∀(?x− type) ⇒ x1 ∧ x2 ∧ ... ∧ xn
• ∃(?x− type) ⇒ x1 ∨ x2 ∨ ... ∨ xn

5.2.2. Operator grounding

The operator grounding consists in generating all its possible instances. For instance,

the action navigate of the following example is a possible instance of the operator

navigate:

( : a c t i on nav igate
: parameters ( rover w1 w0)
: p r e cond i t i on ( and ( a v a i l a b l e rover ) ( c a n t r a v e r s e rover w1 w0)

( v i s i b l e w1 w0) ( at rover w1) )
: e f f e c t ( and ( not ( at rover w1) ) ( at rover w0 ) ) )

The parameters are grounded as follows : ?x → rover, ?from → w1, ?to → w0.

The grounding process loops on the operators set, and defines the matching objects

for each parameter with respect to their type. If the problem is not typed, it is

necessary to perform a type inference step before the grounding. This is detailed

in [57].



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

13

5.2.3. Atomic formula simplification

The atomic formula simplification has to be done as early as possible. Using the table

of inertia calculated before, the atomic formula simplification consists in evaluating

the preconditions and effects formula contained in the operators to true or false.

Let a proposition p contained in an atomic formula of an operator and s0 the initial

state of a planning problem, the simplification of the atomic formulas follows these

rules:

• If p is a positive inertia and p /∈ s0 then p is simplified to false.

• If p is a negative inertia and p ∈ s0 then p is simplified to true.

• Else p cannot be simplified.

For instance, considering the inertia table of the rover domain, and assuming that

the proposition (can traverse rover w1 w0) is true in the initial state, then the

simplification will replace it by true. Now, assume that (can traverse rover w1 w0)

is false in the initial state, then the simplification will replaces it by false and a

formula in the precondition or the effect of an operator such as

( and ( a v a i l a b l e rover ) ( c a n t r a v e r s e rover w1 w0)
( v i s i b l e w1 w0) ( at rover w1) )

can be simplified to false.

5.2.4. Actions simplification

The goal is to find and remove actions that will never be applied because of an

atomic formula simplification. As atomic formulas can be simplified to true or false,

preconditions and effects can be simplified by applying logical transformation rules:

• If the precondition or the effect of an action is replaced by false, the action

is deleted from the planning problem: if the precondition is false, the action

will never be applied; if the effect is false, the application of the action

produces an inconsistent state.

• If all the action effects are true, the action can be removed from the problem

because it does not produce any change.

5.3. Method grounding and simplification

Method grounding and simplification follows the five stages given in Fig. 6: (1) the

preconditions of the methods are normalized; (2) the type of the undeclared param-

eters used in the preconditions are inferred; (3) the methods are instantiated; (4)

the preconditions of the method are simplified based on the atomic formula simpli-

fication previously presented and (5) irrelevant methods, i.e., methods with tasks

whose actions have been deleted in the previous simplification or with preconditions

simplified to false, are deleted from the problem.



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

14

Typed PDDL methods

PDDL methods
+

Table of inertia

Normalized ground methods

Normalized ground methods with simplified 
atomic formula

Normalization of
logical expressions

Method grounding

Simplification of 
atomic formula

Ground and simplified hierarchical 
PDDL problem

Simplification of 
methods

Normalized PDDL methods

Inference of parameter
types

Fig. 6. Overview of the method grounding and simplification algorithm.

5.3.1. Normalization of logical expressions

The normalization of a method transforms its preconditions into Conjunctive Nor-

mal Form (see section 5.2.1 for more details)

5.3.2. Inference of parameter types

In methods, parameters can be used in subtasks and precondition declaration with-

out being declared in the method parameters. Therefore, these parameters have

no explicit declared types. Their type must be inferred before performing method

grounding. The type inference process has two steps:

Step 1. Inferring types from subtasks:

• Get the list of subtasks T containing undeclared parameters.

• For each subtask t ∈ T , get the operators o and the methods m that

accomplish t.



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

15

• For each subtask t ∈ T , get the declared types in the parameters of o

or m. If there are two types A and B, where B is a subtype of A, keep

type B.

• If several types with no inheritance link are found, then an error is

reported.

Step 2. Inferring types from preconditions:

• Get the set P of propositions used in the preconditions of the methods.

• For each proposition p ∈ P , infer possible types from the set of typed

predicate list defined in the domain.

• If several types with no inheritance link are obtained, then an error is

reported. Otherwise, keep the most general type.

5.3.3. Method grounding

The grounding of a method consists in replacing all its parameters by constants.

Each combination of constants associated to the method parameters produces a

ground method. For instance, a ground method of do navifage is as follows:

( : method do nav igate
: parameters ( rover w1 w0)
: p r e cond i t i on ( and ( not ( c a n t r a v e r s e rover w1 w0) )

( not ( v i s i t e d w3) )
( c a n t r a v e r s e rover w1 w3) )

: subtasks ( ( nav igate rover w1 w3) ( v i s i t w3)
( do nav igate rover w3 w0) ( u n v i s i t w3 ) ) )

The ground method do navigate-rover-w1-w0 previously introduced is an in-

stance of the method do navigate with the following associations: ?x → rover,

?from → w1, ?to → w0, ?mid → w3 (?mid inferred type is waypoint, and it is

associated to the constant w3).

5.3.4. Simplification of atomic formulas

This simplification aims at evaluating the atomic formulas contained in the method

preconditions to true or false from the inertias. The simplification is based on the

same procedure presented for the operators.

5.3.5. Simplification of methods

The method simplification aims at identifying and deleting the methods containing

preconditions that will never be verified in the planning problem. Two kinds of

simplification are realized on the methods:

Precondition based simplification. It relies on the evaluation of the logical ex-

pressions, which can be simplified as true or false in the previous step. The

simplification is done on the following rules:



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

16

• If the precondition is simplified as true, the precondition is removed

from the method, as it is always verified.

• If the precondition is simplified as false, the method is deleted: this

precondition will never be verified in the planning problem, and this

method will never produce a solution plan.

Task based simplification. It aims at deleting methods containing primitive

tasks that cannot be applied. Assuming that the operator simplification

is made before the method simplification, it is performed as follows:

(1) Get the set T of primitive tasks in the method to be simplified,

(2) For every task t ∈ T , check if the relevant action for t was deleted

during the operator simplification step. If this is the case, then the

method is deleted.

6. Evaluation

In this section, we investigate to what extent the grounding improves the perfor-

mance of HTN algorithms. We have coded the Ground Total Order Hierarchical

Planner ”G TOHP” as implementation of the algorithm described in section 3.3,

and we have compared its performances in terms of processing time and plan lengths

with a classical HTN planner. G TOHP is in JAVA. It is based on the PDDL4J

planning library [58]. This library includes lexical and syntactical analysis modules

for classical PDDL planning. We have added the lexical and syntactical analysis of

methods, and we have implemented the HTN grounding algorithm.

6.1. Evaluation of the simplification rate

The first evaluation criteria focuses on the number of ground methods generated

with or without the simplification process. The simplification rate allows to see how

much the HTN problems are simplified in terms of ground methods and actions.

To that end, we have improved the set of tests presented in [59] by evaluating the

simplification algorithm on four HTN versions of the International Planning Com-

petition domains: rover, childsnack, satellite and barman. Each domain contains at

least twenty problems of growing size.

Fig. 7 shows the number of ground methods resulting from the full method

grounding process and from the grounding process without simplification. The sim-

plification rate is the method count without simplification on the simplified methods.

Fig. 7 shows that the number of ground methods decreases sharply after simplifi-

cation specifically in problems with large sizes. We see in Fig. 7(a, b and c) that

the difference in the number of ground methods increases exponentially with the

increase in problem sizes. In Fig. 7(a) for instance, the simplification rate is 30.16

in problem 10 with 997,202 unsimplified methods on 32400 simplified methods, and

82.58 in the problem 22 with 46,980,192 unsimplified methods on 568,850 after sim-

plification. In Fig. 7(d), the simplification rate is high, and remains stable. It ranges



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

17

between 41.65 and 65.57 because of the stable size of the barman problems that

contain between 37 and 43 objects.

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0  5  10  15  20

N
b 

gr
ou

nd
 m

et
ho

ds

Problems

without simplification
with simplification

(a) Rover

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0  5  10  15  20
N

b 
gr

ou
nd

 m
et

ho
ds

Problems

without simplification
with simplification

(b) Childsnack

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0  5  10  15  20

N
b 

gr
ou

nd
 m

et
ho

ds

Problems

without simplification
with simplification

(c) Satellite

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 0  5  10  15  20

N
b 

gr
ou

nd
 m

et
ho

ds

Problems

without simplification
with simplification

(d) Barman

Fig. 7. Logarithmic representation of the number of ground methods before and after simplifi-

cation on four planning domains: Rover, Satellite, Childsnack, Barman from IPC (International

Planning Competition)

6.2. Evaluation of the planning performance with ground problems

6.2.1. Experimental framework

These experiments compare our implementation of SHOP classical HTN plan-

ner [27] with G TOHP and FastDownard [6] on four planning domains: Rover,

Childsnack and Satellite and Barman. We show that G TOHP outperforms the

other planners.

All the results were obtained with a multi-core Intel Core i7 clocked at 2.2 GHZ

and 16GB DDR3 RAM. The algorithm evaluations follow the International Planning

Competition agile track criteria [60]: a score is calculated for each planner based

on its own plan search time compared with other competing algorithms best time.

For G TOHP, the search time results are presented in the form of two graphs, the

first one represents the total processing time which is equal to the grounding and

simplification time plus the search time, and the second presents the search time



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

18

separately in order to show the part taken by the search in the total process. It

should also be noted that the grounding and simplification time is easily deducible

since it represents the difference between the total time and the search time. In

addition to the search time, we also compare the plan lengths obtained with each

algorithm knowing that, especially in HTN, plan lengths are strongly related to

domain definitions.

All the search time results are presented in Fig. 8. The X-axis represents the

planning problems, and the Y-axis represents the processing time (in seconds) to

find a solution plan. The processing time results are shown in the same decimal

scale from 0 to 90 except for figure (c) Which has a scale from 0 to 180 due to an

isolated point with a value equal to 171 seconds. A maximum search time is set to 10

minutes and no displayed result for a problem means that the planner was not able

to find a solution in the allocated time. Fig. 9 shows the lengths of solution plans,

with the number of actions displayed on the Y-axis and the planning problems on

X-axis.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20

Se
ar

ch
 T

im
e 

(s
)

Problems

SHOP
total GTOHP

search GTOHP

(a) Rover

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20

Se
ar

ch
 T

im
e 

(s
)

Problems

SHOP
total GTOHP

search GTOHP

(b) Childsnack

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  5  10  15  20

Se
ar

ch
 T

im
e 

(s
)

Problems

SHOP
total GTOHP

search GTOHP

(c) Satellite

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20

Se
ar

ch
 T

im
e 

(s
)

Problems

SHOP
total GTOHP

search GTOHP

(d) Barman

Fig. 8. Time comparison between SHOP and G TOHP on the planning domains : Rover, Child-

snack, Satellite and Barman



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

19

6.2.2. Results analysis

In the four domains, G TOHP always takes less time to find the solution than SHOP.

This shows that the grounding makes the search faster. In addition, in all the tested

problems, the search time represents less than 5% of G TOHP’s total processing

time, and it never exceeds 3 seconds, even in the largest problems. This is interesting

in re-planning situations when goals change. Due to the fact that grounding and

simplification process is only affected by changes in the initial state, the operators or

the methods, no more grounding process is needed in replanning situations involving

only goals changes. However, in case of changes in the initial state, operators or

methods, a complete grounding and simplification process is necessary in order to

guarantee the integrity of the ground problem. In Fig. 8(a, b and c), the difference

in search time between the two algorithms is very small for small problems, and

grows rapidly with the problem size. In Barman domain, the difference in search

time is stable around 4 seconds. This is due to the stability of the Barman problem

size. SHOP cannot find a solution in the allocated time from problem 19 in the rover

domain, problem 16 in childsnack and problem 12 in satellite, whereas G TOHP

finds solutions for all the problems in the allocated time (it takes 76.33 sec to find

a plan for the largest rover problem with 7844 decompositions, 21.19 sec for the

largest childsnack problem with 25 decompositions, and 51.77 sec for the largest

satellite problem with 64550 decompositions).

Table 2. Scores of the algorithms Fast Downward, G TOHP and SHOP

Rover Childsnack Satellite Barman
Pb FD GTOHP SHOP FD GTOHP SHOP FD GTOHP SHOP FD GTOHP SHOP

00 1 1 1 0 1 1 1 1 1 0 1 0.51

01 1 1 1 0.49 1 1 1 1 1 0 1 0.55

02 1 1 1 0.34 1 0.99 1 1 1 0.38 1 0.52
03 1 1 1 1 0.62 0.61 1 1 1 0 1 0.51

04 1 1 1 1 0.66 0.66 1 1 0.33 0 1 0.51

05 1 1 1 1 0.71 0.73 1 1 0.39 0 1 0.53
06 1 1 1 0 1 0.96 1 1 0.37 0 1 0.54

07 1 1 1 0 1 0.99 1 1 0.38 0 1 0.53
08 1 1 1 0 1 0.91 1 1 0.33 0 1 0.51
09 1 0.92 0.63 1 0.89 0.84 1 1 0.42 0 1 0.51

10 1 0.86 0.79 0 1 0.94 0.84 1 0.75 0 1 0.54
11 1 0.98 0.81 0 1 0.95 1 0.96 0.40 0 1 0.51

12 1 0.72 0.63 0 1 0.83 0.71 1 0.38 0 1 0.53

13 1 0.76 0.64 0 1 0.81 0.53 1 0 0.27 1 0.51
14 1 0.79 0.59 0 1 0.84 0.64 1 0 0 1 0.50
15 1 0.74 0.62 0 1 0.83 0.42 1 0 0 1 0.54

16 1 0.74 0.54 0 1 0.59 0 1 0 0 1 0.52
17 1 0.70 0.47 0 1 0 1 0.66 0 0 1 0.52

18 1 0.70 0.54 0 1 0 0.66 1 0 0 1 0.56

19 1 0.68 0 0 1 0 1 0.60 0 0 1 0.54
20 1 0.70 0 - - - - - - - - -
21 1 0.70 0 - - - - - - - - -

22 19.00 15.32 4.84 18.89 14.51 16.81 19.22 7.75 0.65 20 10.51



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

20

In Table 2. on the Rover domain, Fast Downward obtains a perfect score of

22/22. This means that Fast Downward was the faster to find a plan for all the

problems. G TOHP is second with a score of 19/22 and SHOP is third with a score

of 15.35: G TOHP is 13.63% less efficient than Fast Downward, and 16.72% more

efficient than SHOP. G TOHP is the most efficient on the Childsnack domain with

a score of 18.89/20 and was respectively 63.85% and 19.88% more efficient than

Fast Downward and SHOP. The good scores obtained by HTN planners comparing

to Fast Downward show the effectiveness of HTN planning on problems requiring

numerous backtracking: the decomposition methods allow to sharply restrict the

search space. On satellite domain, G TOHP obtains a score of 19.22/20 and is

10.98% more efficient than Fast Downward with a score of 16.8, and is 52.14% more

efficient than SHOP with a score of 7.75. On Barman domain, G TOHP obtains

20/20 with all plans found in less than one second. SHOP is half less efficient with a

score of 10.51. Fast Downward obtains a very bad score of 0.65, as it finds only two

plans on 20. The overall score obtained by Fast Downward is 44.30/82, 77.12/82

by G TOHP and 48.10/82 by SHOP: G TOHP is 52.93% more efficient than Fast

Downward and 46.80% more efficient than SHOP. All these results confirm that

HTN planning using grounding is more efficient in terms of execution time than

classical SHOP with a clear advantage on large problems.

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20

Pl
an

 le
ng

th
 (a

ct
io

n)

Problems

SHOP
GTOHP

(a) Rover

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20

Pl
an

 le
ng

th
 (a

ct
io

n)

Problems

SHOP
GTOHP

(b) Childsnack

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  5  10  15  20

Pl
an

 le
ng

th
 (a

ct
io

n)

Problems

SHOP
GTOHP

(c) Satellite

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 0  5  10  15  20

Pl
an

 le
ng

th
 (a

ct
io

n)

Problems

SHOP
GTOHP

(d) Barman

Fig. 9. Plan lengths comparison between G TOHP and SHOP on the planning domains : Rover,

Childsnack, Satellite and Barman



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

21

In Fig. 9 (a, b, c and d) are presented the lengths of plans produced by G TOHP

and SHOP during the experiment. The two algorithms generate plans of almost the

same length. The plan length increases with the problem size except in Barman

domain where it remains stable, because in this domain, the number of goal tasks

does not change a lot from one problem to another. Unlike G TOHP, SHOP does not

find plans for all the problems (excepted for Barman). In the Childsnack domain,

the two algorithms find exactly the same plans. Knowing that SHOP takes more

time than G TOHP to find these plans, this shows that even by following the same

decompositions, G TOHP is more efficient than SHOP since it searches in a smaller

search space.

7. Conclusion

We have presented in this paper a grounding approach for HTN planning. It reuses

the grounding and simplification techniques used in classical planning, and proposes

new rules to instantiate HTN methods. We have demonstrated the effectiveness of

our approach on different planning domains, which obtains much shorter search

times than a classical HTN approach.

The future developments and extensions of this work will focus on the following

issues:

• Develop search heuristics for HTN planning: having all the possible actions and

decompositions makes possible to assess task reachability for HTN planning

problem. Task reachability is a necessary step to compute efficient heuristics

guiding the search process.

• Develop new SAT and CSP encodings for HTN planning to exploit the efficiency

of SAT and CSP solvers. These two technologies are very successful in solving

combinatorial and optimization problems. However, they are underused specif-

ically for HTN planning. Having all the possible actions and decompositions

allows to investigate new efficient CSP and/or SAT encodings.

References

1. M. Weser, D. Off and J. Zhang, HTN robot planning in partially observable dynamic
environments, in Proceeding of the International Conference on Robotics and Automa-
tion IEEE 2010, pp. 1505–1510.

2. G. Bevacqua, J. Cacace, A. Finzi and V. Lippiello, Mixed-initiative planning and
execution for multiple drones in search and rescue missions., in Proceeding of the
International Conference on Automated Planning and Scheduling 2015, pp. 315–323.

3. R. Strenzke and A. Schulte, The MMP: A mixed-initiative mission planning system for
the multi-aircraft domain, in Proceeding of the International Conference on Automated
Planning and Scheduling 2011, pp. 74–82.

4. R. E. Fikes and N. J. Nilsson, STRIPS: A new approach to the application of theorem
proving to problem solving, Artificial Intelligence journal 2(3-4) (1971) 189–208.

5. J. Hoffmann and B. Nebel, The FF planning system: Fast plan generation through
heuristic search, Journal of Artificial Intelligence Research (2001) 253–302.



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

22

6. M. Helmert, The Fast Downward planning system, Journal of Artificial Intelligence
Research 26 (2006) 191–246.

7. J. Seipp, S. Sievers and F. Hutter, Fast Downward cedalion, International Planning
Competition Planning and Learning Part: planner abstracts (2014).

8. H. Geffner and P. Haslum, Admissible heuristics for optimal planning, in Proceedings
of the International Conference of AI Planning Systems 2000, pp. 140–149.

9. P. Haslum, B. Bonet and H. Geffner, New admissible heuristics for domain-
independent planning, in Proceedings of the Association for the Advancement of Ar-
tificial Intelligence Conference 5 2005, pp. 9–13.

10. J. Hoffmann, J. Porteous and L. Sebastia, Ordered landmarks in planning, Journal of
Artificial Intelligence Research 22 (2004) 215–278.

11. S. Richter, M. Helmert and M. Westphal, Landmarks revisited, in Proceedings of the
National Conference of the American Association for Artificial Intelligence 8 2008,
pp. 975–982.

12. M. Helmert, P. Haslum, J. Hoffmann and R. Nissim, Merge-and-shrink abstraction:
A method for generating lower bounds in factored state spaces, Journal of the Asso-
ciation for Computing Machinery 61(3) (2014) p. 16.

13. R. Barták, M. A. Salido and F. Rossi, Constraint satisfaction techniques in planning
and scheduling, Journal of Intelligent Manufacturing 21(1) (2010) 5–15.

14. A. Lopez and F. Bacchus, Generalizing graphplan by formulating planning as a CSP,
in Proceedings of the International Joint Conference on Artificial Intelligence 3 2003,
pp. 954–960.

15. H. A. Kautz and B. Selman, Planning as satisfiability, in Proceedings of the European
Conference on Artificial Intelligence 92 1992, pp. 359–363.

16. J. Rintanen, Planning as satisfiability: Heuristics, Artificial Intelligence Journal 193
(2012) 45–86.

17. J. Rintanen, Madagascar: Scalable planning with SAT, in Proceedings of the Interna-
tional Planning Competition 2014.

18. H. Kautz and B. Selman, Unifying SAT-based and graph-based planning, in Pro-
ceedings of the International Joint Conference on Artificial Intelligence 99 1999, pp.
318–325.

19. E. Sacerdoti, The nonlinear nature of plans, in Proceedings of the International Joint
Conference on Artificial Intelligence 1975, pp. 206–214.

20. A. Tate, Project planning using a hierarchic non-linear planner (Department of Arti-
ficial Intelligence, University of Edinburgh, 1976).

21. A. Tate, Generating project networks, in Proceedings of the International Joint Con-
ference on Artificial Intelligence Morgan Kaufmann Publishers Inc. 1977, pp. 888–893.

22. K. Currie and A. Tate, O-Plan: the open planning architecture, Artifical Intelligence
Journal 52(1) (1991) 49–86.

23. A. Tate, B. Drabble and R. Kirby, O-Plan2: an open architecture for command, plan-
ning and control, in Proceedings of the Intelligent Scheduling 1994.

24. D. E. Wilkins, Domain-independent planning representation and plan generation, Ar-
tifical Intelligence Journal 22(3) (1984) 269–301.

25. D. E. Wilkins, Can AI planners solve practical problems?, Computational intelligence
Journal 6(4) (1990) 232–246.

26. K. Erol, J. A. Hendler and D. Nau, UMCP: A sound and complete procedure for hier-
archical task-network planning., in Proceedings of the Artificial Intelligence Planning
Systems 94 1994, pp. 249–254.

27. D. Nau, Y. Cao, A. Lotem and H. Munoz-Avila, SHOP: Simple hierarchical ordered
planner, in Proceedings of the international joint conference on Artificial intelligence



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

23

Morgan Kaufmann Publishers Inc. 1999, pp. 968–973.
28. I. Georgievski and M. Aiello, HTN planning: Overview, comparison, and beyond,

Artifical Intelligence Journal 222 (2015) 124–156.
29. R. Alford, P. Bercher and D. W. Aha, Tight bounds for HTN planning with task

insertion, in Proceedings of the International Joint Conference on Artificial Intelli-
gence 2015, pp. 1502–1508.

30. D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. M. Murdock, D. Wu and F. Yaman, SHOP2:
An htn planning system, Journal of Artificial Intelligence Research 20 (2003) 379–404.

31. M. de la Asunción, L. Castillo, J. Fdez-Olivares, Ó. Garćıa-Pérez, A. González and
F. Palao, SIADEX: An interactive knowledge-based planner for decision support in
forest fire fighting, Artificial Intelligence Communications 18(4) (2005) 257–268.

32. S. Sohrabi, J. A. Baier and S. A. McIlraith, HTN planning with preferences, in Proceed-
ings of the International Joint Conference on Artificial Intelligence 2009, pp. 1790–
1797.

33. D. Pellier and H. Fiorino, A unified framework based on HTN and POP approaches
for multi-agent planning, in Proceedings of the International Conference on Intelligent
Agent Technology 2007, pp. 285–288.

34. B. Marthi, S. J. Russell and J. Wolfe, Angelic hierarchical planning: Optimal and on-
line algorithms, in Proceedings of the International Conference on Automated Planning
and Scheduling 2008, pp. 222–231.

35. U. Kuter, D. S. Nau, M. Pistore and P. Traverso, Task decomposition on abstract
states, for planning under nondeterminism, Artif. Intell. 173(5-6) (2009) 669–695.

36. V. Shivashankar, R. Alford, U. Kuter and D. S. Nau, The GoDeL planning system: A
more perfect union of domain-independent and hierarchical planning, in Proceedings
of the International Joint Conference on Artificial Intelligence 2013, pp. 2380–2386.

37. A. D. M. and S. K., Encoding HTN planning in propositional logic, in Proceedings
of the International Conference on Artificial Intelligence Planning Systems 1998, pp.
190–198.

38. S. Pavel and B. Roman, Encoding HTN planning as a dynamic CSP, in Proceedings
of the International Conference on Principles and Practice of Constraint Program-
ming 2005, p. 868.

39. E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau, HTN planning for web service
composition using SHOP2, Web Semantics: Science, Services and Agents on the World
Wide Web 1(4) (2004) 377–396.

40. D. Wu, B. Parsia, E. Sirin, J. Hendler and D. Nau, Automating DAML-S web services
composition using SHOP2, in International Semantic Web Conference Springer 2003,
pp. 195–210.

41. M. Klusch, A. Gerber and M. Schmidt, Semantic web service composition planning
with owls-xplan, in Proceedings of the Association for the Advancement of Artificial
Intelligence Fall Symposium on Agents and the Semantic Web 2005, pp. 55–62.

42. A. Blum and M. Furst, Fast Planning Through Planning Graph Analysis, Artificial
Intelligence 90(1-2) (1997) 281–300.

43. I. Paik and D. Maruyama, Automatic web services composition using combining HTN
and CSP, in Proceedings of the International Conference on Computer and Informa-
tion Technology IEEE 2007, pp. 206–211.

44. K. Chen, J. Xu and S. Reiff-Marganiec, Markov-htn planning approach to enhance
flexibility of automatic web service composition, in Proceedings of the International
Conference on Web Services IEEE 2009, pp. 9–16.

45. K. L. Myers, W. M. Tyson, M. J. Wolverton, P. A. Jarvis, T. J. Lee and M. desJardins,
Passat: A user-centric planning framework, in Proceedings of the International NASA



July 20, 2017 13:35 WSPC/INSTRUCTION FILE
Grounding˙of˙HTN˙Planning˙Domain

24

Workshop on Planning and Scheduling for Space 2002, pp. 1–10.
46. K. L. Myers, P. Jarvis, M. Tyson and M. Wolverton, A mixed-initiative framework for

robust plan sketching., in Proceedings of the International Conference on Automated
Planning and Scheduling 2003, pp. 256–266.

47. J. Allen and G. Ferguson, Human-machine collaborative planning, in Proceedings of
the International NASA Workshop on Planning and Scheduling for Space 2002, pp.
27–29.

48. D. W. Aha, L. A. Breslow and H. Muñoz-Avila, Conversational case-based reasoning,
Applied Intelligence 14(1) (2001) 9–32.

49. T. Kichkaylo, C. van Buskirk, S. Singh, H. Neema, M. Orosz and R. Neches, Mixed-
initiative planning for space exploration missions, in Proceedings of the International
Conference on Automated Planning and Scheduling Workshop on Moving Planning
and Scheduling Systems into the Real World 2007.

50. G. Bevacqua, J. Cacace, A. Finzi and V. Lippiello, Mixed-initiative planning and
execution for multiple drones in search and rescue missions, in Proceedings of the
International Conference on Automated Planning and Scheduling 2015.

51. R. Lallement, L. De Silva and R. Alami, HATP: An HTN planner for robotics, in In
proceedings of the International Conference on Automated Planning and Scheduling
Workshop on Planning and Robotics 2014.

52. R. Hartanto, Fusing dl reasoning with HTN planning, KI-Künstliche Intelligenz 25(1)
(2011) 81–84.

53. T. Belker, M. Hammel and J. Hertzberg, Learning to optimize mobile robot navigation
based on HTN plans, in Proceedings of the International Conference on Robotics and
Automation 3, IEEE 2003, pp. 4136–4141.

54. M. Weser, D. Off and J. Zhang, HTN robot planning in partially observable dynamic
environments, in Proceedings of the International Conference on Robotics and Au-
tomation IEEE 2010, pp. 1505–1510.

55. M. Ghallab, D. Nau and P. Traverso, Automated planning: theory & practice (Elsevier,
2004).

56. M. Ghallab, A. Howe, G. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld and
D. Wilkins, PDDL: The Planning Domain Definition Language. Artificial Intelligence
Planning Systems, (1998).

57. J. Koehler and J. Hoffmann, Handling of inertia in a planning system, tech. rep.
(1999).

58. D. Pellier, PDDL4J planning library (2016), https://github.com/pellierd/pddl4j.
59. A. Ramoul, D. Pellier, H. Fiorino and S. Pesty, HTN planning approach using fully

instantiated problems, in Proceeding of the International Conference on Tools in Ar-
tificial Intelligence 2016, pp. 113–120.

60. L. L. Carlos, J. C. Sergio and H. Malte, Automating the evaluation of planning sys-
tems, Artificial Intelligence Commun. 26(4) (2013) 331–354.


