N

N

Evaluating the Privacy Implications of Frequent Itemset
Disclosure
Edoardo Serra, Jaideep Vaidya, Haritha Akella, Ashish Sharma

» To cite this version:

Edoardo Serra, Jaideep Vaidya, Haritha Akella, Ashish Sharma. Evaluating the Privacy Implications
of Frequent Itemset Disclosure. 32th IFIP International Conference on ICT Systems Security and
Privacy Protection (SEC), May 2017, Rome, Italy. pp.506-519, 10.1007/978-3-319-58469-0 34 . hal-
01649007

HAL Id: hal-01649007
https://inria.hal.science/hal-01649007
Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01649007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Evaluating the Privacy Implications of Frequent
Itemset Disclosure*

Edoardo Serra!, Jaideep Vaidya?, Haritha Akella!, and Ashish Sharma'

1CS Department, Boise State University, USA
2MSIS Department, Rutgers University, USA

Abstract. Frequent itemset mining is a fundamental data analytics
task. In many cases, due to privacy concerns, only the frequent itemsets
are released instead of the underlying data. However, it is not clear how
to evaluate the privacy implications of the disclosure of the frequent item-
sets. Towards this, in this paper, we define the k-distant-IFM-solutions
problem, which aims to find k transaction datasets whose pair distance is
maximized. The degree of difference between the reconstructed datasets
provides a way to evaluate the privacy risk. Since the problem is NP-
hard, we propose a 2-approximate solution as well as faster heuristics,
and evaluate them on real data.

Keywords: Inverse Frequent itemset mining, column generation

1 Introduction and Related Work

Frequent itemset mining [1] is a crucial data mining task which has numerous
applications in knowledge discovery such as recommendation, classification, etc.
Many efficient implementations exist, [5], all of which assume that the underlying
database is accessible to the data miner. However, often privacy concerns pro-
hibit the direct release of data. Since frequent itemsets can serve as a good proxy
for the underlying data and still enable different kinds of analysis, often they
are released instead. Prior work has examined whether it is possible to find the
original dataset from the frequent itemsets, defined as the Inverse frequent set
mining (IFM) problem and studied from several different perspectives[9,7,6,4].
IFM aims to find a transaction dataset D that satisfies a given set of itemset
support constraints (i.e., the support or frequency of an itemset should be con-
tained within the specified numeric interval). Wang and Wu[13] also introduced
the ApproSUPP problem, where they asked whether it is possible to satisfy the
various support constraints in an approximate fashion and presented an ILP
formulation along with heuristic strategies. Several alternative heuristics have

* This work was supported by Idaho Global Entrepreneurial Mission (IGEM) pro-
gram Grant 131G106011 (Precision Ag - Increasing Crop), the National Science
Foundation Grant CNS-1422501 and the National Institutes of Health Award
RO1GM118574. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the agencies funding the research.

also been proposed[14,10] However, while IFM provides a measure of the degree
of difficulty in inverting a set of support constraints into a dataset producing
these, there is no notion of how different that dataset is from the original that
needs to be protected.

In this paper, we precisely tackle this problem. We formulate a new prob-
lem called the k-distant-IFM-solutions which combines the IFM problem with
elements of K-anonymity [11] and L-diversity [8]. Specifically, the problem con-
sists in finding k TFM solutions (transaction datasets) whose pair distance is
maximized. This ensures that we have at least k different solutions to the IFM
problem that are all potentially quite different. Since any of these could be the
source, and are as different as possible from each other, this gives a minimum
bound on the degree of privacy afforded by the frequent itemsets. We show that
the problem is NP-hard, and give a 2-approximation based on the greedy strat-
egy. However, given the complexity of the underlying problem, we also develop a
heuristic based on an ILP formulation (see [12]) that is quite efficient. Thus, our
work is orthogonal to all of the prior work, since it considers the problem of find-
ing multiple datasets meeting the given set of support constraints, and provides
a better estimate of the risk of disclosure through the frequent itemsets.

2 Problem Statement

Let Z be a set of items. An itemset [is a subset of Z. A transaction Dataset
D is a pair (Tp, #p), where T is a set of transactions (i.e. itemsets) contained
in D and #p : 27 — N is a function assigning to each transaction a number of
duplicates such that if t € Tp then #p(t) > 0, otherwise #p(t) = 0.

Ezample 1. Let T = {a,b,c}. Following is

an example of a transaction database where

#p(t) = 0 for each transaction ¢ that is not D
present in Tp and #p(t) > 0 for transactions {a,b} 7
that are present in Tp. {a} D_|#D

Given an itemset I, the support of I {a,b} | = {al};
w.r.t. Dis support(I,D) =3 cr, ;o #p(t) | {ab} {a{) }
and its frequency is frequency(I,D) = |{ab,c} {abc}
%ﬁ. Given a dataset D, the frequent |{a,b,c}
itemset mining problem aims to find all of
the itemsets whose frequency is greater than
a given threshold.

In our paper, we assume that instead of releasing the actual dataset, only a
set of itemsets is released along with their frequencies due to privacy concerns.
However, in this case, the problem that we study is the extent to which it is
possible to retrieve the original dataset D. This is related to the Inverse Fre-
quent itemset Mining (IFM) problem, which aims to find a dataset such that
the frequencies of a set of given itemsets for that dataset are in a specific range

N W =

interval. IFM is formally defined as follows:

The IFM problem Given a set of items Z, two integer numbers s;, s,,, a set of
support constraints S of the form (1,1, u) where I is an itemset on Z and [, u € N/
with { < u. The IFM problem, denoted as IFM(Z, s;, sy, S), consists in finding
a dataset D such that s; < |D| < s, and V(I,l,u) € S : 1 < support(l,D) < u.

Given a set of support constraints S, IFM provides information about de-
gree of difficulty of generating a dataset that produces those frequent itemsets.
However, note that while the solution to IFM enables malicious users to find a
dataset that also meets the same support constraints, it does not say anything
about whether this is the real dataset or how different it is from the real dataset.
Indeed, given a set of support constraints S, more than one dataset solution can
exist for the IFM problem. While this increases uncertainty in terms of the ac-
tual dataset, it may not significantly increase privacy since all of the datasets
might be quite similar, thus actually reducing privacy.

Thus, to enable evaluation of the privacy risk associated with frequent itemset
disclosure, we formalize a new problem called k-distant-IFM-solutions, i.e. find
k IFM solutions whose pair distance is maximized. If we can find a sufficient
number of solutions that are quite different from each other, then it significantly
increases the degree of uncertainty and thus privacy. We can also take into
consideration the problem of finding subset of support constraints or a perturbed
version that can maximize the pair distance among all of the k& IFM solutions.

2.1 K-distant-IFM-solutions problem

We first define the distance between two datasets, and then formalize the ac-
tual problem. While Jaccard or Hamming distance is a good metric to mea-
sure the distance between two individual transactions, they cannot directly be
used to measure the difference among the collection of transactions. In our
problem, the number of duplicate transactions has a significant meaning and
therefore we chose to define our own metric that extends the Hamming dis-
tance for collection of transactions. Furthermore, we use the edit distance con-
straint to ensure that the different datasets obtained are sufficiently apart from
each other based on our distance metric. Consider a case where the dataset
Dy = {{a,b,c},{a,b,c},{a,b, f}} and Dy = {{a,b,¢c, h},{a,b,c,h}, {a,b, f,h}}.
Since there are no transactions in common, (D, D) = 6 is the maximum dis-
tance that can be obtained.However, these datasets are exactly the same except
for the item h. The edit distance constraint addresses this issue.

Given two datasets Dy and Dy over Z, we define the function dist(Dy, Ds)
between D; and D, as

dist(Dy, Do) = Z |#p, () — #p,(t)]

teTp, UTp,

This distance is a metric, but we omit the proof due to lack of space.

Algorithm 1 Greedy Algorithm

1: procedure GREEDYALGORITHM(Z, S)
2: SD = (;
Choose D* € SOL(Z, S)
while (|SD| < k) do
SD =SDuU{D"};
Choose D* € argmaxpesor (z,s)\sp PairDist(SD U D);
end while
return SD;
end procedure

2.2 k-distant-IFM-solutions

Given a set of items Z, a positive integer number k, two integer numbers s;, s,
a set of support constraints S of the following form (I,l,u) where I is an
itemset on Z and [,u € R. The k-distant-IFM-solutions problem consists of
finding a set of k datasets SD = {Ds,...,Dy} such that for each D € SD,
D is a solution of TFM(Z, sy, sy,S), and the pair distance pairDist(SD) =
ZDwD&SD’iN dist(D;, D;) is maximized.

Theorem 1. The k-distant-IFM-solutions problem is NP-hard.

Since finding even one solution of IF M (Z, s;, s,,S) is NP-hard (as shown in [4]),
finding k solutions is also NP-hard.

3 Proposed Approach

We now discuss how this problem can be solved. Let us assume SOL(Z,S) is
the set of all datasets that are the solution of IFM(Z,S).
Thus, the k-distant-IFM-solutions can be formalized as

SD* € arg max pairDist(SD)
SDCSOL(Z,S),|SD|=k

For this problem, Borodin et al. [3] show that if the function dist is a
metric, then the Greedy Algorithm (Algorithm 1) gives a 2-approximate so-
lution. However, we still need to specify how steps 3 and 6 of Algorithm 1
will be executed, i.e. how to choose D* € SOL(Z,S) (for step 3) and D* €
arg maXpe sor(z,9)\sp PairDist(SD U D) (for step 6). Step 3 simply requires
finding a solution for IFM, which is well understood. For the sake of simplicity
and efficiency, we simply choose the first feasible solution instead of choosing a
solution randomly. We denote the problem in Step 6 as the Mazimum Distant
Dataset and now show how to solve it.

3.1 Maximum Distant Dataset

The goal of maximization is to maximize the difference between the created
dataset and existing datasets. Thus, we would like to find a dataset D that max-
imizes) 1, c gp dist(D’, D), which is equivalent to maximizing pair Dist(SDUD).
In order to solve the Maximum Distant Dataset we provide an ILP formulation.
This formulation is based on three kinds of variables:

— areal variable z;, for each possible transaction ¢ C Z, modeling the number of
duplicates #(t) for each transaction ¢ in the dataset that we have to generate
(we relax the assumption that number of duplicates is an integer number);
Effectively, the variable x; gives the support count of the transaction ¢ in
the newly created dataset.

— areal variable yP, for each D € SD and t € Tp, modeling the values |#p(t)—
x¢|; Note that for all transactions ¢ present in the existing datasets, |#D(t) —
x¢| gives the absolute difference in support for such transactions in each
dataset D. For the transactions ¢ that are not present in the existing datasets,
x; directly gives the support of such transactions in the new dataset.

— a binary variable zP, for each D € SD and t € Tp, that is used to emulate
the absolute value |#p(t) — |-

Now, the formulation is as follows:

marimize Z (Z yr + Z -Tt) (1)

DeSD teTp tCZ,tgTp
Z ze >0 (I,l7,)€S (2)
tCT,ICt
> wm<u (I, ,u)esS (3)
tCZ,ICt
dw>s (4)
tCT
> i < sy (5)
tCT
#p(t)—x <y’ DeSDteTp (6)
—#p(t) + 2 <yl DeSD,teTp (7)
#Hp(t)—zi+ 2%k x(1—20) >yl DeSDteTp (8)
—#p(t)+a + 2%k vz >yl DeSDteTp (9)
z: >0 tC T (10)
yP >0 DeSD,teTp (11)
)

2 €{0,1} DeSD,teTp (12

Where, k; = min(sy, ming,_,yeg,rce v)-

As can be seen, we have two groups of constraints. The first group of con-
straints from 2 to 5 defines the minimum support, the maximum support, the
minimum size and the maximum size, respectively. The second group constraints
from 6 to 9 contribute in modeling the absolute value |#p(t) — x| is equal to yP.
More specifically, constraints 6 and 7 impose that |#p(t) — 2| < yP ensuring
that the variable y7 is an upper bound of the absolute difference between z; and
#p(t). Constraints 8 and 9 impose that only one condition between #p(t) — ¢
and x; — #p(t) has to be greater than or equal to yP. Latter two constraints
ensure that y” is also the lower bound of the absolute difference between x;
and #p(t). The constraints from 6 to 9, together, ensure that y” = #p(t) — ;.
However, note that only one of the constraints between 8 and 9 can be met. z”
is the decision variable activating one of these two constraings, while kP is the
smallest constant that is large enough to ensure that these constraints are met.
Finally, the maximization function (expression 1) maximizes the degree of differ-
ence in support for transactions present, which exactly models the maximization
of distance metric defined in 2.1.

Usually, adding more constraints to an integer linear program reduces the
search space by improving the bound obtained by the linear formulation and
consequently reduces the computation time. Therefore, we define additional con-
straints and variables imposing that the value yP = |#p(t)—x;| is max(#p(t), ¢)—
min(#p(t), z;). The real variables P .. and yP ;. model max(#np(t), ;) and
min(#p(t), z;), respectively. The revised ILP is given below. Note that in this
case, the integer variables and the constraints are polynomial in the description
of SD and S, respectively. The main issue is represented by the exponential
number of real variables xz; due to all the possible transactions ¢ C Z. Thus,
these linear programs cannot really be directly solved. However, we can use an
alternative technique called the branch and price algorithm (see [2]).

#D(t) > Yimin DeSDteTr (13)

Tt Eytt,)mm DeSD,teTp (14)

#0(t) < Ytomao DeSD,teTp (15)

2t < Yiomas DeSD,teTp (16)
#0()(1 = 2) < Ymin DeSD,teTr (17)
we— ket (1=2) <ylmin DeSD,teTr (18)
#p(t) — ki) * 20 + ki > Yiman DeSDteTp (19)
e+ ke % 20 > Yhmas DeSD,teTp (20)
Yimaz — Yomin = Ui DeSDteTr (21)
YPrmas + YPmin = #p(t) + 7. DESDtEeTp (22)
Yomin > 0 DeSDteTp (23)

Yimaz > 0 DeSD,teTp (24)

Algorithm 2 HeuristicSolver

1: procedure HEURISTICSOLVER((SD, S, s, sv.))
2: Generate integer linear program P according SD, S, s; and s, where the set of
variables with prefix z is only equal to {z:|D € SD,t € Tp};
Relax in P the binary constraints the variables with prefix z;
Solve the program P;
Find a new transaction ¢ (if it exists) by solving the price problem;
while (¢ exists) do
Add the variable z; in P;
Solve the program P;
9: Find a new transaction ¢ (if it exists) by solving the price problem;
10: end while
11: Add in P the binary constraints on the the variables with prefix z;
12: Solve the program P;
13: Obtain from the solution of P the dataset D;
14: return D;
15: end procedure

3.2 Heuristic Solver

The branch and price algorithm is a branch and bound algorithm that at each
branch solves the relaxed problem (i.e. the linear one) by using column genera-
tion techniques. Given that the number of variables is huge, column generation
techniques make the problem tractable. Instead of working on the entire set of
variables, the column generation technique starts with a prefixed number (in our
case the variables related to all the transactions in SD) and at each iteration it
generates a new variable or column (a new transaction) whose reduced cost is
negative [4][7]. In order to generate a new variable a new problem called price
problem has to be solved. The price problem consists of finding a new column
with negative reduce cost, which is strictly related to the simplex algorithm [12]
and how it works. Note that the specific price problem changes based on the
underlying LP or ILP formulation. In prior work[7] the problem in Definition 2
has already been formalized as a linear program whose constraints are the con-
straints from 2 to 5. [7] also solves it with a column generation techniques and its
price problem. In our problem we start by considering all the variables referring
to all the transactions in SD. Then the new variables or columns that we have
to generate are those not involved in the constraints from 6 to 22. The main idea
is to use the column generation techniques to solve the relaxation formulation
where all the binary variables are substituted with real variables restricted to
[0,1]. Then, use all the columns generated in the column generation algorithm
to solve the ILP version. Algorithm 2 gives the details.

Price problem The pricing problem consists in finding a new transaction dif-
ferent from all the previous transactions whose reduced cost is negative. It is
known that the reduced cost of a column can be expressed as a linear combi-
nation of the dual variable associated to each constraint of the linear program

(see [6]). Let dsl,dsu,dl; and du; (where (I,_,_) € S) be the dual variables
associated to the constraints of the kinds 4, 5, 2 and 3. The reduced cost of a
transaction ¢ is re(t) = 1+dsl+dsu+3 ;¢ 1 es(dlr +dur). Given the set of
current datasets generated SD, the set of all the different transactions present
in SD is defined as t7(SD) = Jpcgp I'p- Now, we show an integer linear pro-
gram solving the price problem. A generic transaction is a set of items then we
can represent this transaction by using |Z| binary variable {¢;|i € Z} s.t. if the
item ¢ is contained in ¢ then ¢; = 1 or ¢; = 0 otherwise. In order to model
the reduced cost function, it is essential to know which of the itemset in S are
contained in the new transaction. Therefore, we define a set of binary variables
{h1|(I,-,-) € S} s.t. if the itemset I (with (I,_,_) € S) is contained in the new
transaction then Ay = 1 or Ay = 0 otherwise.

The objective function represents the reduced cost of the new transaction.
The first two constraints 26 and 27, impose that whether the transaction rep-
resented by the set of variables {g;|¢ € Z} contains an itemset I, the variable
hr is equal to 1 or O otherwise. The third constraint 28 imposes that the edit
distance between each transaction in ¢r(SD) and the new one has to be greater
than or equal to the constant minED. minED can be one if we only want that
the current transaction should be different by each other, but can be more than
one to enforce that all the transactions in all the K datasets generated are very
different. This parameter is very important in order to produce datasets differ-
ent not only in terms of number of duplicates, but also in terms of transaction
structure. The last constraint 29 imposes that the transaction is not an empty
set. Thus, the following integer linear program finds a new transaction s.t. its
reduced cost is minimized. Note that after solving this ILP program we have to
check if the reduced cost is negative, and only continue to iterate if so. Other-
wise, the heuristic solver stops because there does not exist any transaction with
negative reduced cost.

minimize 1+ dsl+ dsu+ Z hr - (dl; + dur) (25)
(I,-,-)€sS
hr <gq (I,,,)eS,iel (26)
Sa<|Il=1+h (I,,)es (27)
il
>(—a)+ Y ¢ =minED tetr(SD) (28)
i€t i€\t
a1 (29)
€T
q: € {0,1} i€ (30)
h e {0,1} (1,,)es (31)

Table 1: Dataset Description

Dataset Name |Real Dataset|Distinct|Avg. trans.|Max trans.| s; Su
Size Items Size Size
BMS WebViewl 59602 497 2.5 267 49602| 69602
BMS WebView2 77512 3340 4.6 161 67512| 87512
T10I14D100K 100000 870 10 300 90000{110000

4 Experimental Evaluation

We now discuss the experimental evaluation. Three datasets — 2 real datasets
(BMS-Webview-1, BMS-Webview-2) and a synthetic one (T10I4D100K) — were
used to conduct experiments. The dataset parameters are given in Table 1.

[« A=0.00 =P A=0.05 B A=0.10 0-0 A=0.15 ko d A:U,?O] [« A=0.00 =P A=0.05 B A=0.10 0-0 A=0.15 == A:U,ZU]

104 T T T T T T T 10*
ﬁ 103 F g 10°]
w w
£ Z
o L
= =0
o o
= E
= =]
8 10! H 10"
x x
w w
10° 10° L
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11
K K
(a) BMS Webviewl: p = 0.9%, MinED = 1 (b) BMS Webview2: p = 0.9%, MinED =1
[e<2=005 > a-010 B A-015 ©-0 A=0.20]

10*

-
o

-
o

EXECUTION TIME (SEC)

(c) T1014D100K: p = 0.9%, MinED = 1

Fig. 1: Varying k and interval threshold A

10

< p=0.3% BB p=0.5% W= p=0.7% Ak p=0.9% 0@ p=10% 4 p=0.5% B8 p=0.7% ©-0 p=0.8% W= p=0.9% V-V p=1.0%
P> p=0.4% ©-O@ p=0.6% V-V p=0.8% > p=0.6%

10*

10*
() o
w 3 w 3
n 10 n 10
w w
= 2
h 2 h 2
> 10 > 10
<] o
E E
= =
H 10! H 10!
x x
w w
10° 10°
2 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11
K K
(a) BMS WebViewl: A = 0.05, MinED = 1 (b) BMS WebView2: A = 0.15, MinED = 1
[4—4 p=0.8% P=P p=0.9% B0 ;;71.()%1

EXECUTION TIME (SEC)

(¢) T10I4D100K: A = 0.15, MinED = 20

Fig. 2: Varying Support Threshold

Each instance of our problem is represented by several parameters: sizemax (s,,),
sizemin (s;), set of items (Z), set of support constraints S (at different levels of
support), support values (p), k (number of different datasets to be generated),
edit distance (minED). Sizemax and Sizemin were obtained for each dataset by
adding and subtracting 10000 from the size of the original dataset, respectively
(as noted in Table 1). minED was set to 1, 10, 20, 30, and K was varied from
2 to 11 (inclusive).

In order to generate the support constraints, of the form (1,1, u), we compute
the set of the frequent itemsets from each datasets where the minimum support
value § was varied in the the range 0.2%, 0.3%, 0.4%..., 0.9%, 1%. The lower and
the upper bound threshold for each frequent itemset I were obtained by using
the following formulas [= support(I, D)« (1— A) and u = support(I, D) (1+ A)

11

where the interval threshold (A) was set to values 0.0, 0.05, 0.1, 0.15, 0.2 . Thus,
when A = 0.0, we have that | = u = support(I, D).

All experiments were carried out on machines with CentOS7 (x86-64) Oper-
ating System, 2 Xeon Processors (E5-2620 v3 @ 2.40GHz), and 256GB RAM.
We report the execution time as well as the pair Dist calculated for each dataset.

Varying A: We first observe the impact of varying itemset interval threshold
A on execution time. k (the number of datasets to create) has been varied from
2-11. It was observed that the execution time was almost constant with varying
interval threshold A values in the interval {0.0, 0.05, 0.1, 0.15, 0.2} for all the
three datasets except for A = 0.0 for which execution time increased. Figures 1a
through 1lc represent the impact of k-anonymity values and interval threshold
values on execution time for the three datasets. The results show that as we
increase the value of delta, the flexibility allowed to the solver also increases and
it quickly finds a feasible solution.
Varying support threshold values: We next observe the impact of varying
k along with varying support threshold values on the execution time for solving
a k-distant-IFM-solution. Figures 2a through 2c show the impact of varying k
on execution time. It can be noted that while the time required is different for
the three datasets for the different support threshold values, it does not change
much with respect to k. For BMS Webview-2 and T10I14D100K datasets with
varying p%, similar trend is observed. In [7] (which models IFM with linear
programs), increasing p% decreases the execution time. However, for integer
linear formulations with more constraints, search space is decreased and it is
easier to find a solution. Therefore, increase in p%, increases the execution time.
Due to the significant computational resources required and the large number
of experiments to be carried out, we were only able to carry out experiments for
a few values of support for BMS Webview2 dataset. But we did check to make
sure that the overall behavior is the same. For T10I4D100K dataset, lower values
of support lead to a huge number of frequent itemsets. Therefore, we limited the
experiments to higher values of support. Also, the behavior of execution time
with respect to k is clear even when k is limited to 11, which was sufficient reason
not to go beyond 11 for k as these operations are computationally expensive.
Varying edit-distance values: We next observe the impact of varying edit-
distance values in the range [1, 10,20, 30]. Figures 3a - 3¢ show the impact on
execution time for the three datasets. We can generally observe that time does
not significantly change by varying the edit distance.
Pairwise average distance varying k, p and A: Finally, we observe the
effect of varying k, p and A on the pairwise distance. Firstly, for varying sup-
port constraints p and k, figures 4a through 4c show the impact of k& w.r.t.
distance/((k = (k — 1))/2) values for the three datasets. Here, no specific trend
can be observed. However, if we consider that our approach is based on 2-
approximation algorithm, these trends can be considered constant within an
approximation range. Similarly, if we consider the case where we vary p, it can
be observed that as the support increases, the average distance decreases and

12

P> p=0.4% ©-O@ p=0.6% V-V p=0.8%

> p=0.6%

< p)=03% BB p—05% =% p—0.7% Ak p—0.9% o=@ p—l.n%] €4)=0.5% B8 p=0.7% ©-0 p=0.8% W= p=0.9% V- p—l.n%l

EXECUTION TIME (SEC)

10°

10?

10"

10*

10!

»\
[
EXECUTION TIME (SEC)
?

10 20 30 1 10 20

EDIT DISTANCE EDIT DISTANCE
(a) BMS WebViewl: A = 0.05, k=2 (b) BMS WebView2: A = 0.15, k=4

[« p=0.8% P=P p=0.9% B0 ;;4.()%”

EXECUTION TIME (SEC)

1 10 20 30

EDIT DISTANCE
(¢) T10I4D100K: A = 0.15, k=3

Fig. 3: Varying edit-distance for different A and k

vice-versa (of course within the approximation range). This shows that as the
amount of information about the distribution of the itemsets disclosed increases,
the privacy risk increases (several transaction databases nearby each other).

Secondly, for varying interval threshold A, figures 4d through 4f show the
impact of k values w.r.t. distance/((k * (k —1))/2) for the three datasets. We
can observe that as interval A decreases, the average distance also decreases.
Essentially, increasing the support interval size for each itemset increases the
uncertainty of the itemset distribution and thus decreases the privacy risk. Ad-
ditionally, note that in fig 4c and fig 4f, there is a peak in the plots between
k = 2 and k = 3. This is because Algorithm 1 in line 3 initialize the SD with an
arbitrary transaction database which is not chosen in a way that would maximize
the distance of the future transaction database candidates.

DISTANCE/[K(K-1)/2] DISTANCE/[K(K-1)/2]

DISTANCE/[K(K-1)/2]

13

d p=0.4% B8 p=0.6% =% p=0.8% VYV p=09% A=A p=1.0% 4 p=0.4% Bl p=0.6% =% p=0.8% V-V p=0.9% A=A p=1.0%
=P p=0.5% -0 p=0.7% =P p=0.5% =0 p=0.7%
180000
140000 — b < .| < < 1 160000
o 140000
120000 [41 =
0
¥ 120000
=
¥
100000 | — Emoooo
(9]
E 80000
™
80000 |- T wn y
v v. o 60000
v v v) 40000
[v]
60000 v v
. 20000
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11
K K
(a) BMS WebViewl: A = 0.15, MinED = 10 (b) BMS WebView2: A = 0.20, MinED = 30
[eo=05% > p=09% B-E p=1.0%]
250000 <4 A=0.00 PP A=0.05 B0 A=0.10 ©0-0 A=0.15 ¥ A:oAzo]
140.5 - : : : : : - -
245000
240000 N 1400
S~
=
0
233000 5 139.5
X
fe’
~
230000 3
> 1390
225000 ﬁ
]
o 1385
220000
213000 3 7 5 G 7 s 0 10 11 1385 3 a s 6 7 0 g 10 11
K K
(c) T10I14D100K: A = 0.15, MinED =1 (d) BMS WebViewl: p = 0.4%, MinED = 20
[eC2=010 »=p a-015 m-E A=0.2) [2=005 PP A-010 B-EA=0.15 0-0 A=0.20)
180 - T T T T T T - 250 - r r r r r T T

DISTANCE/[K(K-1)/2]

155
2

10 11

(e) BMS WebView2: p = 0.5%, MinED = 1

(f) T10I4D100K: p = 0.8%, MinED

Fig.4: Average Distance w.r.t varying p and A

14

5

Conclusion

In this paper we define the K-distant-IFM-solutions problem, that enables eval-
uation of the frequent itemset disclosure risk and propose a solution for it. The
experimental evaluation shows that the proposed approach is effective. In our fu-
ture work, we plan to develop methodologies that are able to perturb the support
of the itemsets disclosed in order to minimize the disclosure risk. In addition, we
plan to extend these techniques to work with sequence mining as well — where
we consider sequences rather than itemsets.

References

1.

2.

10.

11.

12.

13.

14.

Agrawal, R., Imieliriski, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Record 22(2), 207-216 (1993)

Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch-and-price: Column generation for solving huge integer programs. Opera-
tions Research 46, 316-329 (1996)

Borodin, A., Lee, H.C., Ye, Y.: Max-sum diversification, monotone submodular
functions and dynamic updates. In: Proceedings of the 31st Symposium on Prin-
ciples of Database Systems. pp. 155-166. PODS 12, ACM, New York, NY, USA
(2012)7 http://doi.acm.org/10.1145/2213556.2213580

Calders, T.: Itemset frequency satisfiability: Complexity and axiomatization.
Theor. Comput. Sci. 394(1-2), 84-111 (2008)

Goethals, B., Zaki, M.J.: Fimi03: Workshop on frequent itemset mining implemen-
tations. In: Third IEEE International Conference on Data Mining Workshop on
Frequent Itemset Mining Implementations. pp. 1-13 (2003)

Guzzo, A., Moccia, L., Sacca, D., Serra, E.: Solving inverse frequent itemset min-
ing with infrequency constraints via large-scale linear programs. TKDD 7(4), 18
(2013), http://doi.acm.org/10.1145/2541268.2541271

Guzzo, A., Sacca, D., Serra, E.: An effective approach to inverse frequent set min-
ing. In: Data Mining, 2009. ICDM ’09. Ninth IEEE International Conference on.
pp. 806-811 (Dec 2009)

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: I-diversity:
Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from
Data (TKDD) 1(1), 3 (2007)

Mielikainen, T.: On inverse frequent set mining. In: Society, I.C. (ed.) Proc. of 2nd
Workshop on Privacy Preserving Data Mining (PPDM). pp. 18-23 (2003)
Ramesh, G., Maniatty, W., Zaki, M.: Feasible itemeset distributions in data mining;:
theory and application. In: Proc. 28th International Conference on Very Large Data
Bases. pp. 682-693 (2002)

Samarati, P.: Protecting respondents identities in microdata release. Knowledge
and Data Engineering, IEEE Transactions on 13(6), 1010-1027 (2001)

Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., New York, NY, USA (1986)

Wang, Y., Wu, X.: Approximate inverse frequent itemset mining: Privacy, com-
plexity, and approximation. In: ICDM. pp. 482-489 (2005)

Wu, X., Wu, Y., Wang, Y., Li, Y.: Privacy-aware market basket data set gener-
ation: An feasible approach for inverse frequent set mining. In: Proc. 5th SIAM
International Conference on Data Mining (2005)

