Secure and Efficient k-NN Queries

Abstract : Given the morass of available data, ranking and best match queries are often used to find records of interest. As such, k-NN queries, which give the k closest matches to a query point, are of particular interest, and have many applications. We study this problem in the context of the financial sector, wherein an investment portfolio database is queried for matching portfolios. Given the sensitivity of the information involved, our key contribution is to develop a secure k-NN computation protocol that can enable the computation k-NN queries in a distributed multi-party environment while taking domain semantics into account. The experimental results show that the proposed protocols are extremely efficient.
Type de document :
Communication dans un congrès
Sabrina De Capitani di Vimercati; Fabio Martinelli. 32th IFIP International Conference on ICT Systems Security and Privacy Protection (SEC), May 2017, Rome, Italy. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-502, pp.155-170, 2017, ICT Systems Security and Privacy Protection. 〈10.1007/978-3-319-58469-0_11〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01649018
Contributeur : Hal Ifip <>
Soumis le : lundi 27 novembre 2017 - 10:32:21
Dernière modification le : lundi 27 novembre 2017 - 10:34:00

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Hafiz Asif, Jaideep Vaidya, Basit Shafiq, Nabil Adam. Secure and Efficient k-NN Queries. Sabrina De Capitani di Vimercati; Fabio Martinelli. 32th IFIP International Conference on ICT Systems Security and Privacy Protection (SEC), May 2017, Rome, Italy. Springer International Publishing, IFIP Advances in Information and Communication Technology, AICT-502, pp.155-170, 2017, ICT Systems Security and Privacy Protection. 〈10.1007/978-3-319-58469-0_11〉. 〈hal-01649018〉

Partager

Métriques

Consultations de la notice

12