M. Abadi, A. Chu, I. Goodfellow, H. B. Mcmahan, I. Mironov et al., Deep Learning with Differential Privacy, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS'16, 2016.
DOI : 10.1109/CVPR.2015.7298594

S. Ahn, A. Korattikara, N. Liu, S. Rajan, and M. Welling, Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.9-18, 2015.
DOI : 10.1145/2507157.2507164

URL : http://arxiv.org/abs/1503.01596

A. Beimel, H. Brenner, S. P. Kasiviswanathan, and K. Nissim, Bounds on the sample complexity for private learning and private data release, Machine Learning, vol.16, issue.4, pp.401-437, 2014.
DOI : 10.1137/1116025

URL : http://www.cs.bgu.ac.il/~beimel/Papers/BKN.pdf

A. Berlioz, A. Friedman, M. A. Kaafar, R. Boreli, and S. Berkovsky, Applying Differential Privacy to Matrix Factorization, Proceedings of the 9th ACM Conference on Recommender Systems, RecSys '15, pp.107-114, 2015.
DOI : 10.1145/2365952.2365989

J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov, "You Might Also Like:" Privacy Risks of Collaborative Filtering, 2011 IEEE Symposium on Security and Privacy, pp.231-246, 2011.
DOI : 10.1109/SP.2011.40

URL : http://www.cs.utexas.edu/%7Eshmat/shmat_oak11ymal.pdf

T. Chen, E. B. Fox, and C. Guestrin, Stochastic gradient hamiltonian monte carlo, ICML, pp.1683-1691, 2014.

C. Desrosiers and G. Karypis, A Comprehensive Survey of Neighborhood-based Recommendation Methods, Recommender systems handbook, 2011.
DOI : 10.1007/978-0-387-85820-3_4

C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, Calibrating Noise to Sensitivity in Private Data Analysis, Theory of Cryptography Conference, 2006.
DOI : 10.1007/11681878_14

C. Dwork and A. Roth, The Algorithmic Foundations of Differential Privacy, Foundations and Trends?? in Theoretical Computer Science, vol.9, issue.3-4, pp.211-407, 2014.
DOI : 10.1561/0400000042

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, What Can We Learn Privately?, SIAM Journal on Computing, vol.40, issue.3, pp.793-826, 2011.
DOI : 10.1137/090756090

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, issue.8, pp.30-37, 2009.
DOI : 10.1109/MC.2009.263

URL : http://research.yahoo.com/files/ieeecomputer.pdf

Z. Liu, Y. Wang, and A. Smola, Fast Differentially Private Matrix Factorization, Proceedings of the 9th ACM Conference on Recommender Systems, RecSys '15, 2015.
DOI : 10.1145/1273496.1273596

F. Mcsherry and I. Mironov, Differentially private recommender systems, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, 2009.
DOI : 10.1145/1557019.1557090

F. Mcsherry and K. Talwar, Mechanism Design via Differential Privacy, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pp.94-103, 2007.
DOI : 10.1109/FOCS.2007.66

B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, Toward trustworthy recommender systems, ACM Transactions on Internet Technology, vol.7, issue.4, p.23, 2007.
DOI : 10.1145/1278366.1278372

. Movielens, MovieLens Datasets

A. Narayanan and V. Shmatikov, Robust De-anonymization of Large Sparse Datasets, 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008.
DOI : 10.1109/SP.2008.33

V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft et al., Privacy-preserving matrix factorization, Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, CCS '13, pp.801-812, 2013.
DOI : 10.1145/2508859.2516751

URL : http://paloalto.thlab.net/uploads/papers/paper_2.pdf

H. Polat and W. Du, Privacy-preserving collaborative filtering using randomized perturbation techniques, Third IEEE International Conference on Data Mining, pp.625-628, 2003.
DOI : 10.1109/ICDM.2003.1250993

URL : http://www.cis.syr.edu/~wedu/Research/./paper/icdm2003.pdf

H. Polat and W. Du, Achieving Private Recommendations Using Randomized Response Techniques, Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.637-646, 2006.
DOI : 10.1007/11731139_73

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-thieme, Bpr: Bayesian personalized ranking from implicit feedback, Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, 2009.

P. Rossky, J. Doll, and H. Friedman, Brownian dynamics as smart Monte Carlo simulation, The Journal of Chemical Physics, vol.69, issue.10, pp.4628-4633, 1978.
DOI : 10.1063/1.435856

I. Sato and H. Nakagawa, Approximation analysis of stochastic gradient langevin dynamics by using fokker-planck equation and ito process, ICML, 2014.

X. Su and T. M. Khoshgoftaar, A survey of collaborative filtering techniques Advances in artificial intelligence, 2009.

Q. Tang and J. Wang, Privacy-Preserving Context-Aware Recommender Systems: Analysis and New Solutions, European Symposium on Research in Computer Security, pp.101-119, 2015.
DOI : 10.1109/TSMCC.2010.2040275

A. Töscher, M. Jahrer, and R. Legenstein, Improved neighborhood-based algorithms for large-scale recommender systems, Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, NETFLIX '08, p.4, 2008.
DOI : 10.1145/1722149.1722153

S. J. Vollmer and K. C. Zygalakis, non-) asymptotic properties of stochastic gradient langevin dynamics, 2015.

J. Wang and Q. Tang, A probabilistic view of neighborhood-based recommendation methods. https://arxiv.org/abs, 1250.

Y. Wang, S. E. Fienberg, and A. Smola, Privacy for free: Posterior sampling and stochastic gradient monte carlo, pp.951-2015

U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft, BlurMe, Proceedings of the sixth ACM conference on Recommender systems, RecSys '12, pp.195-202, 2012.
DOI : 10.1145/2365952.2365989

M. Welling and Y. W. Teh, Bayesian learning via stochastic gradient langevin dynamics, Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp.681-688, 2011.

T. Zhu, Y. Ren, W. Zhou, J. Rong, and P. Xiong, An effective privacy preserving algorithm for neighborhood-based collaborative filtering, Future Generation Computer Systems, vol.36, pp.142-155, 2014.
DOI : 10.1016/j.future.2013.07.019