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Abstract

Abstract. Will write it after writing the rest of the paper. 300 words

Author Summary

Same than above. 150-200 words 1

Introduction 2

The nature and importance of correlations for the neural coding, has been debated since 3

long time, including the role of weak pairwise correlations [14,15]; for error supression, 4

enhancing channel capacity [?]; or to capture the statistical properties of the network 5

activity [1, 2]. 6

The introduction of maximum entropy models (MEM) to the analysis of neural 7

networks started to gain popularity recently. MEM have been proposed to capture and 8

predict the collective spatio-temporal pattern activity from a vertebrate retina 9

network [4–6,14, 15] or from a cortex cultures cells [7]. However, most of the studies has 10

been limited to capture spatial correlations by using an Ising model [4–6], where events 11

occurring at different times are independent. Thus, these approaches have neglected 12

spatio-temporal correlations, memory and causality, which, presumably, play a central 13

role on the nervous system. More recently, an extension of MEM that includes 14

spatio-temporal correlations has been proposed at the theoretical [8, 9]; 15

numerical [10,11]; and experimental level [12]. 16

In all cases, a MEM is characterized by a function (”energy” or ”Hamiltonian”) 17

containing functional and/or effective interactions between spiking neurons. In its 18

simplest form this energy contains only self-interactions and the corresponding MEM is 19

similar to a Bernoulli model, where spikes are independent, that well fits the dominant 20

terms in the statistics. However adding interactions, e.g. pairwise or higher, allows in 21

principle to handle higher and higher order statistics. In its simplest form we can 22
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assume that a neural population is coding solely by means of firing rates, while 23

including pairwise spatio-temporal interactions we assumes the neural coding include 24

also the temporal co-activation of the neurons [?,?]. However, in terms of a 25

computational model, the overwhelming explosion of parameters has corrolary effects: 26

over-fitting and bad reliability in parameters estimations. 27

This proliferation of parameters (i.e. increase of model dimensionality), especially 28

whith a growing number of neurons, is a major criticism of MEM. Would be it possible 29

to lower the dimensionality of the space where a MEM can be mapped, given the 30

redundancies of the code? [?,?,?, 3] If so, we are facing a compressible MEM that 31

reflects the compressibility of the neural code. So, in analogy with signal compression, 32

where the presence of statistical redundancy can be exploited to map the signal onto a 33

subset of independent channels (i.e. non redundant). In this paper, we propose to 34

exploit the redundancies of the neural code to find an optimal set of independent MEM 35

dimensions that captures the information about the neural code. 36

Here, we propose a method based on information geometry and MEM that allow us 37

to detect the optimal set of MEM independent dimensions capturing the information 38

contained on neural spiking data. Specifically, we propose a method that is general 39

enough to consider spatio-temporal interactions at several lags between neurons. The 40

core of this approach is a matrix capturing the effect of the change of one parameter of 41

the MEM on the second-order statistics of the network activity. This matrix is known 42

under the name ”Fisher metric” in statistics and information geometry [?] and 43

Susceptibility Matrix (χ) in statistical physics. Even when this matrix is related to the 44

effect of varying one parameter on the network activity, it can be analytically computed 45

without actually fitting a MEM model being then possible to perform this computation 46

in large set of neurons (∼100 neurons). Based on the spectral properties of this matrix, 47

we can find the optimal number of independent channels that better represent the 48

neural activity. 49

The method would be first validated in synthetic data, where data would be 50

generated with a known underlying statistics. So, using χ to propose a MEM with more 51

parameters than the underlying data statistics, our method would helps to detect the 52

dimensionality of the underlying statistics, even in the presence of unobserved events. 53

Nevertheless, if the activity is too dense, the underlying statistics hides under the noisy 54

activity, hindering the estimation of the underlying dimensionality. 55

Additionally, the method was tested in a neural population of retinal ganglion cells 56

(RGC) in vitro Octodon degus recorded with 252-MEA (multi electrode array), an 57

experimental set-up that allow to stimulate and record a population of ∼ 200-300 of 58

RGC. These cells are part of the retina processing and sent it output trough the optic 59

nerve to the brain. Our method was applied to three different set of neural response 60

obtained after applying three type of visual stimuli: i) spontaneous photopic activity; ii) 61

white-noise checkerboard and iii) a short natural movie. Based on our experimental 62

observations, under i) we shows the activity is sparser: small correlations and silent cells. 63

During ii) and iii) responses are denser, exhibiting highly correlated activity mainly 64

driven by common inputs coming from overlapped receptive fields. As expected, we 65

found that RGC activity is highly compressible (∼ 50% of the imposed model 66

dimensionality) and that the stimuli spatio-temporal modulation increases the number 67

of independent dimensions required to optimally represent the neural activity. This 68

suggest that RGC population activity is able to adapts to a stimuli conditis changing 69

the number of coding channels according to stimuli correlations. 70

I 71
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Results 72

Context. We give here the main elements to understand the results described in this 73

section. Technical details are given in the section ”Methods”. Spike trains are denoted 74

by ω and the state of neuron i in the time bin t is denoted by ωi(t) ∈ {0, 1} (= 1 when 75

spiking). MEMs are probability distributions assigning an exponential weight to spike 76

trains. This weight (also called ”energy”) is a linear combination of specific terms called 77

in the sequel ”interactions” or ”monomials”. 78

A paradigmatic example is the Ising model where the energy at time t reads 79

φ(t) =
∑
i biωi(t) +

∑
i,j Jijωi(t)ωj(t). The terms bi and Jij are parameters tuning the 80

probability, whereas the terms ωi(t) and ωi(t)ωj(t) depend on the spike configuration 81

and are called ”interactions” (self-interaction for the term ωi(t), and pairwise 82

interactions ωi(t)ωj(t)). In Ising model, there is no coupling of spikes at different times 83

so that the probability of observing a raster of length T factorizes into probabilities of 84

spike states at each time: successive time events are therefore independent. More 85

generally, we can extend energy to a general form: 86

φ =

L∑
l=1

hlml. (1)

The terms hl are parameters tuning the probability. There are L such terms where L 87

depends on the number of neurons. They correspond to bi, Jij in Ising model but they 88

tune more general spikes interactions. The main difference with Ising model is that now 89

interactions involve spikes at different times. They correspond to the terms ml(ω), with 90

the general form ωi1(t1) . . . ωin(tn), i.e. it involves spike events occurring at different 91

times. As an immediate consequence, successive time events are not independent 92

anymore. As one can show the Gibbs distribution is in this case the invariant 93

probability of a Markov chain [?]. Thus, statistics involves memory and has non 94

vanishing time correlations. The interactions correspond thus to the conjunction of 95

events in the raster, varying the space and time. Although interactions can have a very 96

general form (pairwise, triplets of neurons and so on) we shall restrict in this paper to a 97

generalization of Ising model which contains, in addition to Ising terms, pairwise 98

interactions occurring at two successive times (e.g. ωi(t)ωj(t+ 1)). 99

All what preceeds is illustrated in Fig 1A. It shows a raster representing neuron 100

population response of four neurons over time, represented as a raster plot. The neuron 101

activity is considered as 1 (or 0) if it generated (or not) spiking activity inside a time 102

window of width equal to the bin size. In this binary representation, we equally call 103

interactions to either self-interaction or spatio-temporal pairwise-interactions between a 104

pair of neurons. 105

The form of the energy, i.,e. the arbitrary choice of interactions, defines a MEM with 106

which one is attempting to ”explain” data, by a suitable tuning of parameters hl. This 107

is actually achieved by maximizing the statistical entropy under the constraints that, for 108

each l, the average value of ml predicted by the model (noted µ [ml ]) is equal to the 109

average observed in the experimental raster, (π(ml)). Hence the terminology Maximum 110

Entropy Model (MEM). Considering each parameter hl as spanning a direction in a L 111

dimensional space, a MEM is a point in this space which can be very huge. Indeed, the 112

number of parameters increases with the number of neurons leading rapidly to a 113

plethora. 114

Our method proposes an analytic way to find the optimal set of linearly independent 115

dimensions that represents more accurately the inner structure of the neural code. It is 116

based on measuring the interdependence between the MEM parameters and re-mapping 117

those parameters on a different coordinate systems where each dimension is a linear 118

combinations of them and different dimensions are linearly independent. Once we are 119
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on this new coordinate system, we can find an optimal set of dimensions based on the 120

geometric properties of the MEM (see eq. 13). Thus, finding the optimal number of 121

dimensions is equivalent to finding the optimal number of independent coding channels 122

of the neural code under this MEM assumptions: coding is based on firing rates, spatial 123

and temporal correlations. 124

We have applied the method to two types of data: synthetic and retinal, where the 125

synthetic was defined using different MEM: 126

1. Independent model: Neurons are independent, i.e. there are only self-interactions 127

(firing rates) of a neuron to itself and the parameter associated to this interaction 128

controls the firing rate of the neuron. A rate model with N neurons has therefore 129

L = N parameters. We call this model Indep., because neurons are independent. 130

2. Spatio-temporal pairwise interactions model with one time-step delay (R = 2 in 131

Eq. 3): two neurons firing at the same time (spatial) and also with one time-step 132

delay between them (temporal). We will call this model PWR2 to alleviate 133

notations. A PWR2 model with N neurons has L = N(3N−1)
2 parameters 134

(temporal self-interactions are not considered. 135

3. Scaled PWR2: 5 modifications of the PWR2 raster were generated multiplying all 136

the model parameters by a given factor fac = {0.4, 0.6, 0.8, 1.2, 1.4}. 137

Retinal ganglion cells (RGC) of 4 different Octodon degus in vitro retinas were 138

recorded using multi-electrode arrays under 3 different stimuli conditions: photopic 139

spontaneous activity (PSA, also called spatio-temporal uniform full field); white-noise 140

checkerboard (WN) and natural image sequence (NM); yielding a total of 151, 200, 246 141

and 270 neurons for each recording. We also generated shuffled versions of these rasters, 142

where the neurons firing rates were maintained, but the dependence between them were 143

disrupted by randomizing the individual spike trains. 144

General Method Description and Applications to Synthetic 145

Data 146

Our analysis relies on a matrix χ, called Susceptibility matrix in the sequel, using here 147

the statistical physics terminology. Its detailed definition and computation is presented 148

in the Methods. Here it is sufficient to know that it is numerically computed from the 149

empirical time correlations between monomials (see eq. 12) without needing to fit a 150

MEM on the observable data. Susceptibility matrix has the following properties: 151

(i) In the MEM each interaction (monomial ml) has a weight hl. The set of all 152

weights fixes the statistics predicted by the model. In particular it fixes the 153

predicted average value of ml, µ[ml]. A slight variation δhl of the sole weight hl 154

induces both a variation δµ[ml] and δµ[ml′ ] of µ[ml] and µ[ml′ ], respectively, i.e. 155

a change on the parameter controlling a given monomial average also affects other 156

monomial average. One can show that δµ[ml] = χll′δhl′ . Thus, χ is a square 157

matrix whose dimension, L, is the number of parameters fixing the model. 158

(ii) χ is symmetric and positive, as a consequence, it has real positive eigenvalues1 159

λ1 ≥ λ2 ≥ . . . λk ≥ λL > 0. An example of spectra obtained for synthetic data is 160

presented in Fig 1B. 161

1Note that the positivity holds true for the susceptibility defined exactly by (12), but its estimation
from a finite raster can have small negative eigenvalues. When this happened, negative eigenvalues were
removed from the spectrum.
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(iii) The eigenvectors vk of χ constitute an orthogonal basis, i.e. linear combinations of 162

model parameters having the following interpretation. Once the set of interactions 163

defining the model has been fixed, each set of parameters (hl )
L
l=1 defines a 164

probability i.e. assigns a definite value to the predicted probability of events. The 165

set of (hl )
L
l=1 is a vector of L dimensions, i.e., a point in RL. Obviously, the 166

closest two points are in the space, the closest are the statistics they predict. As a 167

corollary, trying to fit empirical statistics, two models corresponding to ”close” 168

points might be indistinguishable i.e. they describe equally well the empirical 169

statistics. The notion of closeness is however ambiguous here and requires to 170

define a proper metric. This is precisely what χ does: it defines a metric (called 171

Fisher metric). 172

(iv) From the spectrum of χ one can define an ellipsoid with principal axes the 173

eigenvectors vk and with extension 1√
λk

on the principal axis k (Fig 1C). Clearly, 174

the smaller λk the longer the ellipsoid in the direction k. As elaborated in the 175

methods section, this ellipsoid delimitates a volume, called confidence volume. 176

Points inside the confidence volume correspond to indistinguishable models 177

reproducing equally well the empirical observations (Fig 1C) within an accuracy ε 178

(see eq. 13 for more details). As a consequence, the inverse of the eigenvalues tells 179

us how much a small variation in the estimation of the parameters affects the 180

statistics. For a large eigenvalue λk, a tiny variation in the direction vk has a 181

dramatic impact on statistics. On the opposite, small eigenvalues correspond to 182

sloppy dimension where a big change in the corresponding direction has small 183

impact. The notion of stiff and sloppy dimension in statistics is not new and has 184

been used by several authors, including for the analysis of spike trains [?], but the 185

treatment we propose, for MEM with spatio-temporal interactions (in contrast to 186

previous papers dealing with Ising model) is, to our best knowledge, a novelty. 187

kc: a parameter representing the structure of the spike train interactions 188

Independent on the nature of the synthetic data, we computed the χ matrix for a 189

PWR2 statistics, i.e., overfitting the data generated from an independent model. From 190

the χ matrix we obtained their eigenvalues spectrum, which is shown in Fig 1B. 191

The eigenvalue spectrum presents a particular shape which analysis is the core of our 192

method. Moving along the spectrum from left to right (increasing index k, decreasing 193

eigenvalue λk) we observe a first sharp decrease (cut-off ) at k = N , for the Indep. raster 194

(Fig 1B, black) and a corresponding minima on the volume (Fig ??A, black square). We 195

also observe a second cut-off further in the spectrum. The k first eigenvalues and 196

associated eigenvectors define a k-dimensional ellipsoid with volume V(k, ε) depending 197

on k and ε (eq. 14). The relation between the volume of the ellipsoid and the number of 198

the MEM dimensions given by k, for a given accuracy ε, is shown in Fig 1D. The 199

presence of two cut-offs means that there are two values of k where the confidence 200

volume is minimal (Fig 1D), i.e. the model is more accurately determined. The first 201

cut-off occurs at k = N and it is a trivial solution representing only the statistics given 202

by the neuron firing rates and not capturing the spatio-temporal interactions. The 203

second cut-off, from now on called kc represents a second minimal point of interest, 204

capturing the spatio-temporal interactions, and which value is proposed in this article. 205

According to our results, the volume of indistinguishable models depends on the 206

number of dimensions considered in the χ matrix (k) and the imposed accuracy ε (Eq. 207

13). A large volume indicates sloppy directions that could be neglected, while a small 208

volume is a straight-forward dimensionality reduction framework. To illustrate this idea 209

Fig 1C shows a system that lives in a 3D space represented as an ellipsoid, whose 210

principal axes (dimensions) are linear combinations of the original axes (x, y, z ) and the 211
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amplitude of these dimensions is given by the inverse of the corresponding eigenvalues, 212

representing the degrees of freedom that the system has on each dimension. 213

Finally, kc is conditioned to the accuracy value ε as shown on Fig 1D. Increasing or 214

decreasing ε one order of magnitude yields no convex functions, where the minima 215

would be at k = 1 in the former and k = L in the later. This constrains the search of 216

the minima to a subset of ε values. Extending the results for different values of ε shows 217

that the number of dimensions related to the minima decays monotonically with the 218

accuracy (ε) until it reaches an inflection point; this inflection point is the kc that we 219

use as the number of relevant dimensions (Fig S1). 220

kc depending on the the network size and recording length 221

As we just described, kc is a global parameter measuring the number of dimensions at a 222

given accuracy that minimizes the confidence volume, representing the minimal set of 223

models that are equally good explaining the observed data. Each of this dimensions, i.e. 224

eigenvectors, are a linear combination of model parameters, as expected from the 225

eigendecomposition process of a symmetric and positive matrix (recall that the 226

dimensionality of the matrix is given by the number of model parameters). So, if the 227

underlying statistics is random (no linear dependences between model parameters) and 228

has the same dimensionality than the imposed model, kc approximates L for an infinite 229

raster (Fig S2A-B). Otherwise, if there is too much noise or if there are linear 230

relationships on the underlying statistics, we expect to see kc < L. Formally, we can 231

decompose the full MEM dimensionality as L = kc + κ+N.O., where κ is the 232

compressibility of the code and N.O. are the Not Observed events. 233

[MJ: What about the recording length?, Fig S2A and S2B?] 234

However, increasing the network size, as stated before, increases the number of 235

possible patterns rapidly, requiring longer and longer rasters in order to observe all the 236

possible patterns. So, for a finite raster, kc and L will diverge as the network size grows, 237

given that some patterns will never occur in that time. Nevertheless, despite the 238

unavoidable finiteness of the rasters, at N ≤ 80 and T = 106 kc and L are still very 239

close to each other (Fig S2D). [MJ: missing to talk about Fig S2C] 240

[MJ: I also suggest include Fig S2 as a main figure of the article] 241

kc values on the independent and spatio-temporal correlated cases 242

Using the MEM described above (Indep. and PWR2), we generated 100 different rasters 243

(N = 20, T = 106) for each MEM, looked for the minimal volume and corresponding kc 244

(Fig ??A). For Indep. we see two minima, where the global one is the first, showing that 245

we can capture the second-order statistics in a raster without this kind of underlying 246

statistics, but would not correspond to the global minima (i.e. overfitting). In the 247

PWR2 case we see just one minima, beyond which the volume explodes. Thus, we 248

found for Indep. case kc = 19± 0 and for PWR2 kc = 447± 7.00 (mean ± s.d.) (Fig 249

??B). In the Indep. case we found that kc corresponds almost to the full dimensionality 250

of the underlying model (L = 20), while in PWR2 kc corresponds to approximately 75% 251

of the full underlying model dimensionality (Fig ??C). In the first case the divergence 252

between kc and L (just one dimension) is explained by the presence of one low firing 253

rate neuron (data not shown), which according to our framework, is a neglectable 254

dimension. In the second case the divergence between kc and L is given mainly by the 255

unobserved events, which will be shown in more detail in the next section. 256
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kc as a measure of code compression 257

As we previously remarked, the network size does not affect the shape of the spectrum 258

for random PWR2 rasters (Fig S2C), but just its length, i.e. the number of eigenvalues 259

(trivially explained by the increased dimensionality of the MEM). This shape invariant 260

property comes from the fact that the underlying statistics lacks of linear dependencies 261

by construction, so there should be approximately one dimension per parameter. Thus, 262

finding kc � L comes mainly from two facts: (i) unobserved events and (ii) linear 263

dependencies between model parameters. The first case can be easily overcame by 264

adding to kc the number of unobserved events, making rasters of different recording 265

length comparable. On the second case we are facing compression, where given the 266

linear dependencies between model parameters many of them are mapped onto the same 267

dimensions, i.e. the model can be described by less dimensions than the number of 268

parameters. So, for an experimental recording with no unobserved events, the value of 269

kc shows how much all the variables of the MEM (i.e. our assumptions about the neural 270

code) can be compressed on a lower dimensional space. 271

Scaling the Underlying Statistics 272

Five different versions of the PWR2 underlying statistics were generated by scaling the 273

parameters of the MEM by a factor fac = {0.4, 0.6, 0.8, 1.2, 1.4}. The resulting 274

parameters distributions (split by firing rates and pairwise interactions) and the 275

generated monomials probabilities are shown in Fig ??A and Fig ??B, respectively. 276

Recall that very negative parameters defines very unlikely monomials, while very 277

positive the opposite. Parameters very close to zero define events which occurrence 278

probability is near to 0.5. 279

Values of fac < 1 reduce the magnitude of the MEM parameters, but it increases 280

both the firing rates and the pairwise interactions probabilities with negative associated 281

parameters, compared to the original PWR2 raster, i.e. denser activity (density as the 282

total number of spikes in a raster respect to the recording length) (Fig ??B). 283

Multiplying the MEM parameter by values of fac > 1 generates a sparser activity with 284

low firing rates probabilities, as expected from very negative rates parameters, and many 285

pairwise interactions vanish (the reduced width of the plot, see Fig ??B), given the low 286

firing rates and the big amount of negative pairwise interactions parameters (Fig ??A). 287

The eigenvalue spectrum of the χ matrix, for all the cases obtained through fac, 288

were computed (Fig ??C). Increasing fac has 3 main effects on the spectrum: (i) the 289

first eigenvalue is decreased, (ii) the offset spectrum is decreased, and (iii) the number 290

of eigenvalues above the minimal observed probability is reduced (1/T, the lower limit 291

of the ordinate on the plot). The first 2 effects come from χ computation based on 292

monomials correlations at different time lags, so the higher the probability of the 293

monomials (density of the raster), the denser χ is and the higher the entries of it, 294

yielding as a consequence bigger eigenvalues. The third fact comes from the unobserved 295

events, that will be related to vanishing eigenvalues. 296

Differences on the spectra reflect differences on the raster second order statistics: (i) 297

dense rasters are dominated by high-firing rates where almost any kind of interaction is 298

highly probable, (ii) an intermediate situation with moderate firing rates where some 299

interactions are highly probable and some others are not, and (iii) a very sparse activity 300

with low firing rates where many pairwise interactions are unlikely to be observed. 301

Regarding kc, we see that none of the modified rasters yields a kc comparable to the 302

original PWR2 (Fig ??D). In the case of fac < 1 there are no unobserved events (Fig 303

??D), so the reduction of dimensionality should come from a different fact. The high 304

density of the raster makes almost any kind of pattern highly probably, hiding the 305

defined underlying statistics under all the other (not defined) observed patterns, 306
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resulting in a kc = N , like an independent case. Increasing fac, but keeping it below 1, 307

increases kc given that the activity become sparser, but still there are many pairwise 308

interactions that are hiding under the increased raster density. In the case of fac > 1, 309

there are many unobserved events, consequence of the very negative underlying rates 310

parameters, yielding smaller kc values, compared to the original PWR2. However, if we 311

add the number of unobserved events to kc, PWR2 and the fac > 1 versions become 312

comparable, showing that the dimensionality reduction observed for those raster comes 313

mainly from the unobserved events. 314

Then, dealing with random underlying statistics the dimensionality reduction will 315

depend on the density of the raster: on one side, very dense rasters are dominated by 316

the firing rates, hiding the underlying second-order statistics on the noisy activity. 317

Under this situation we are not able to recover the original underlying statistics 318

dimensionality. On the other side, very sparse rasters will show many unobserved 319

events, reducing the observed dimensionality. However, this situation can be easily 320

overcame adding the number of unobserved events to kc, recovering the original 321

underlying statistics dimensionality. 322

Fig 1. Dimensionality reduction framework overview. A: shows a raster
representing the binary activity of N = 4 neurons (rows) over time (T ). Green square
shows a slice of this raster, which is considered as 1 (or 0) if it generated (or not)
activity inside a time window of width equal to the bin size. For this raster 2 types of
pairwise interactions are defined: spatial interactions (blue) and temporal interactions
with R = 2, i.e. one time-step between spikes (red). Spatial interaction is exemplified as
w3(0)w4(0) (both neurons firing at the same time) and w3(1)w4(0) (neuron 3 firing one
bin after neuron 4). B: Susceptibility matrix eigenvalue spectrum in log-log scale for
Independent (black) and Pairwise Range=2 (PWR2, red). Black vertical dashed line
denotes the network size (N = 20). Indep. raster shows a sharp cut-off close to the
network size, while PWR2 shows a monotonic decay of the eigenvalues magnitude,
without a clear cut-off. C: Illustrates a 3D system representing a volume of
indistinguishable models living in x, y, z dimensions which is rotated into a new
coordinate system x’, y’, z’, that are linear combinations of the original coordinate
system (original coordinate system denoted as dashed lines). Bottom shows the 2D
projections, where the amplitude of the ellipsoid on each dimension is the inverse of the
corresponding eigenvalue. In this case x’ and y’ are the stiff directions, while z’ is a
sloppy direction. D: Shows the value of the volume of indistinguishable models, V(k, ε)
as the degrees of freedom (k) increases. The volume reaches a minimum (orange dot)
for certain k named kc. Increasing k upon kc makes the volume explode.
Increasing/decreasing one order of magnitude the imposed accuracy (ε) yields no convex
functions, i.e. no minimization.

Dimensionality reduction on retina data 323

We also tested the dimensionality reduction method (finding kc) on in vitro retina data 324

recorded with multi-electrode arrays under 3 stimuli conditions: photopic spontaneous 325

activity (PSA), white noise (WN) and natural movie (NM), sorted in increasing level of 326

stimuli high-order correlations. The stimuli high-order correlations increases the 327

probabilities both of the firing rates and the pairwise interactions, i.e. increases the 328

raster density. However, the distribution of the pairwise interactions probabilities of the 329

empirical recordings and their shuffled version for all stimuli are not significantly 330

different (bin 10ms, Mann-Whitney test P > 0.05, Fig S3), showing that the 331

distributions of the pairwise interactions probabilities are given by the independent 332

neuron firing rates. However, we are not interested in the magnitude of the pairwise 333
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Fig 2. Dimensionality reduction by minimization of the volume of
indistinguishable models. A: shows the log of volume of indistinguishable models
(logV) as function of the number of dimensions (k) at fixed accuracy (ε). Thick solid
lines are averages, shaded area is ±1 s.d. of the 100 temporal subsamples (of a time
width equal to half of the recording length) and black vertical dashed line is the network
size (N = 20). The minimum of this function (squares) is the optimal number of
dimensions capturing the raster statistics at the given accuracy, i.e. kc. Inset shows a
zoom-in on the first 100 dimensions, focusing on the Indep. minima. B: Summary of the
number of dimensions for both rasters. We found a close relationship between the
underlying model dimensionality and the more dimensions required for an optimal
model. kc is 19± 0, and 447± 7.00 (mean ± std) for Indep. and PWR2, respectively. C:
Is the same than (B), showing kc as a percentage of the underlying model
dimensionality. Indep case show almost 100%, while PWR2 shows ± 75% which is due
to the unobserved events.

Fig 3. Dimensionality reduction on scaled PWR2 statistics. A: shows the
underlying parameters distribution, split by firing rates (blue) and pairwise interactions
(red). The bigger the scaling factor fac, the more negative the rates parameters and the
more wide the interactions parameters distribution. B: shows the corresponding
monomials probabilities for the scaled rasters, split as firing rates and interactions, as A.
We see that increasing fac has the effect of decreasing both rates and pairwise
interactions probabilities, reaching the point where many pairwise interactions vanish
(fac > 1). C: are the corresponding χ eigenvalue spectra (average out of 10 rasters) for
the scaled rasters. Increasing fac decreases the first eigenvalue, the spectrum offset and
the number of eigenvalues above the minimal observed probability (1/T). D: kc values
for the scaled rasters. None of the scaled rasters shows kc value as the one obtained for
the original PWR2 raster. Dost are averages and errorbars 1 s.d. of 10 different rasters
with the same underlying parameters. E: kc values plus the number of unobserved
events. For fac > 1 adding the unobserved events yields values close to the original
PWR2 raster, showing that the dimensionality reduction obtained for those rasters is
given mainly by the unobserved effects. For fac < 1 we see no unobserved events, so
the dimensionality reduction obtained for those cases is given mainly by the increased
density of the raster hiding the underlying statistics.

interactions, but instead, we are interested on the inner structure of the neural code, its 334

dimensionality and compressibility, which is captured by χ and kc. 335

To this end, we computed the χ eigenvalue spectrum of 30 random sub-networks of 336

N = 50 from the total number of neurons recorded in each of the four experiments, 337

under the 3 stimuli conditions. According to our synthetic rasters experiments, for 338

N = 50 and T ∼ 106 we can get good kc estimates (Fig S2B and S2B), which fits with 339

our experimental recordings. We applied the same procedure to the shuffled version of 340

the rasters, to compare with rasters having exactly the same firing rates distribution, 341

but with no dependency between neurons. 342

Experimental versus shuffled spectrum 343

Similar to what we obtained for scaled synthetic rasters (Fig ??C), we see that the first 344

eigenvalue, the offset and the vanishing eigenvalues (below 1/T) of χ spectrum increases 345

with the raster density, which in this case is driven by the stimuli (Fig ??A). In 346

addition, we only see a clear cut-off close to N for WN, while the other two conditions 347

the cut-off is not clear. Counter wise, all the shuffled rasters show a cut-off close to N , 348

suggesting that in the experimental recordings there are significant linear dependences 349
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between monomials that are not present in the shuffled version. Specially, NM shows a 350

smooth decay of the spectrum, similar to the observed for PWR2, which is highly 351

modified when the raster is shuffled, having a sharp cut-off close to N . 352

kc for empirical data 353

Following our work flow, we minimized the volume and computed kc for all the rasters 354

(experimental and shuffled) at 2 different time scales (bin size): fast (1 and 5 ms) and 355

medium (10 and 20 ms. Larger values of bin sizes were discarded because they 356

significantly reduced the total bin number biasing the kc estimation). As a global 357

picture, the stimuli spatio-temporal modulation increases kc for all bin sizes (i.e. 358

comparing PSA with the other two stimuli) (Fig ??C). 359

The kc analysis on retinal data revealed that RGC activity is not random, showing 360

almost the half of dimensionality compared to a random PWR2 with the same network 361

size. Furthermore, kc corrected by the number of unobserved events (Fig ??D) 362

decreases with the bin size as a consequence of a larger window in which spikes can be 363

correlated, increasing the interdependence of RGC population activity (both for 364

empirical and shuffled data). 365

Specifically, we see that kc increases with the stimuli high-order correlation for fast 366

time scales (Mann-Whitney test, P < 10−5 for all comparisons). This suggests that for 367

fast time scales the retina increases the number of coding channels as the stimuli 368

high-order correlation increases. However, for medium time scales the pictures changes, 369

showing no significant differences between WN and NM for 10ms (Mann-Whitney test, 370

P > 0.1) and showing higher kc values for WN than NM for 20ms (Mann-Whitney test, 371

P < 10−5). This suggest that at larger time scales the RGC activity under NM becomes 372

more interdependent than for WN. 373

On the other hand, the shuffled rasters show higher kc values for all the bin sizes and 374

conditions (Mann-Whitney test, P < 10−4), except for 1ms where is significantly small 375

(Mann-Whitney test, P < 10−4) and for PSA at 5ms, where they are not significantly 376

different (Mann-Whitney test, P > 0.1). However, when corrected by the number of 377

unobserved events (Fig ??D), the picture is the same for all bin sizes: shuffled rasters 378

have always higher kc values than the empirical ones (Mann-Whitney test, P < 10−6 379

and P < 0.01 for WN at 1ms). This confirms that the RGC neural code has 380

interdependences that can be mapped onto a lower dimensional space (i.e. compressed), 381

compared to the shuffled version, that lacks of interdependences by construction. Yet, 382

the kc obtained for the shuffled raster is still very small (almost a half) compared to the 383

random PWR2 raster, which suggests that just the firing rates distribution introduces 384

some non-random interdependences in the neural code, allowing compression. 385

In sum, RGC neural code is highly compressible compared to a random raster of 386

same network size. Even compared to rasters with exactly the same firing rates 387

distribution, that also reproduces the pairwise interactions probability distribution (Fig 388

S3), the RGC neural code is more compressible. Nevertheless, a significant compression 389

can be achieved considering just the firing rates distribution. Besides, stimuli high-order 390

correlations increases the raster density and the number of independent coding channels 391

increases with the stimuli spatio-temporal modulation. For fast time scales, kc increases 392

with the stimuli high-order correlations. Finally, at medium time scales the code for NM 393

becomes more compressible than WN, suggesting higher redundancy on the code under 394

NM. 395
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Fig 4. Dimensionality reduction on RGC data. A: shows the average eigenvalue
spectrum (solid line) of RGC data (N = 50) under 3 different stimuli conditions, with
10ms bin size. Stimuli high-.order statistics increases the first eigenvalue, the spectra
offset and the number of eigenvalues above 1/T. Except from WN, there is no clear
cut-off close to N . Shaded area is 1 s.d. out of 30 sub networks. Black line is a random
PWR2 rasters of the same network size than the RGC raster. B: shows the same than
A, but for the shuffled version of the empirical rasters. We see that all of them show a
clear cut-off close to N and that they preserve effects induced by stimuli high-order
correlations, i.e. change on the first eigenvalue, offset and number of eigenvalues above
1/T. The differences on the cut-off suggests that experimental data has an inner
structures that is not merely explained by firing rates. C: show box plots for kc values
for empirical and shuffled rasters. Except from 1ms, kc is higher for shuffled data in all
bin sizes, under all conditions. Stimuli spatio-temporal modulation significantly
increases kc. Also, neither of both type of rasters reaches the kc values obtained for a
PWR2 rasters, which shows almost no dimensionality reduction. Note that kc decreases
as the bin size increases, showing that for bigger bin sizes the inner structure of the
code becomes more interdependent. For fast time scales (1 and 5ms), kc increases with
the stimuli-high order correlations, but at 10ms WN and Nm are not significantly
different and for 20 ms WN is larger than NM, suggesting that bigger bin sizes capture
more redundancies on the code. D: shows box plots kc values corrected by the number
of unobserved events. Now for all bin sizes the shuffled data has bigger values than the
empirical one, showing that the RGC data has an inner structure with interdependences
between variables that is not present on a shuffled raster. However, shuffled data has
values almost a half than a PWR2 raster of the same size, suggesting that the firing
rates distribution only is enough to perform compression on the neural code. The effect
of stimuli spatio-temporal modulation and stimuli high-order statistics remain.

Discussion 396

In this paper we have proposed a method to reduce the dimensionality of MEM on 397

artificial and biological spiking networks. It is grounded on information geometry of the 398

matrix χ, which characterizes how a small variation of parameters impacts the 399

statistical estimations. The χ matrix captures the interdependences between the neural 400

code variables. After an eigendecomposition process, the eigenvalue spectrum of χ 401

exhibit two cut-offs. The first one shows that, both in synthetic as well as in retina 402

data, large part of statistics is ”explained” by the neurons firing rates. On the opposite, 403

the second cut-off (here called kc) reflects a non trivial effect associated with higher 404

order statistics. As the eigendirections on the right part of the cut-off correspond to 405

noise, the spectrum lying between the two cut-off contains a relevant information 406

associated to statistics of second order. 407

The reduction of the MEM dimensionality is directly linked with data compression, 408

obtained from the linear dependencies between variables of the MEM, i.e., higher order 409

interactions between neurons. For example our analysis in the case of synthetic rasters, 410

where both the firing rates and the pairwise interactions are defined randomly, show a 411

kc value very close to L (maximal dimensionality). This demonstrates that if there are 412

no linear relationships between the parameters by construction, the code is not 413

compressible and we have almost one dimension per parameter. Counter wise, retina 414

data show a significant compression of ∼ 50%, as expected from a neural tissue where 415

cells are driven by common inputs and cells are electrically coupled [?], increasing the 416

level of dependency between them. This compression reduces the dimensionality of the 417

MEM to a lower dimensional space, where each dimension is a linear combination of 418

model parameters, characterizing the population activity by a set of independent 419
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dimensions representing the inner structure of the network activity. 420

Limits of the method 421

[MJ: BRUNO: from where this method comes from? or this manner to compute the 422

susceptibility matrix is a result of this work?] The first limitation of our method comes 423

from the numerical approximation used to compute χ matrix, which is obtained by 424

summing monomials correlations at different time lags (Eq. 12). In general, this 425

function decays exponentially with time, but adding more time lags on this sum adds 426

more noise to the matrix, reaching a point where the matrix is highly dominated by 427

noise. To truncate this approximation we need to consider a trade-off between temporal 428

resolution and reduction of noise. To this end we use 4 time lags (i.e. 4 terms of the 429

sum), which is equivalent to the double memory depth used in the model (R = 2). This 430

numerical estimation of χ also imposes limits on the method, given that considering the 431

infinite memory case (R→∞) will generate a χ matrix that is governed by noise. 432

On the other hand, it is possible to compute χ from the model parameters, requiring 433

a previous model fitting step, as done by [?]. However, for N > 20 and R > 1 this 434

computation becomes more and more prohibitive as the network size and the memory 435

depth of the model increases. So, despite the numerical approximation and its intrinsic 436

errors, computing χ from the empirical monomials time correlations is the best 437

approach we found to work with medium size networks and spatio-temporal constrains. 438

Furthermore, computing χ this way, instead of fitting the MEM in advance, give us 439

geometrical information about the model and, ultimately, about the linear dependences 440

of the neural code. So, it is possible to have insights about how a neural population 441

modulates its activity given the stimuli, increasing or decreasing the number of 442

independent coding channels, without a fiting procedure. Not less important, fitting the 443

model will give information about the sign (positive or negative) and the magnitude of 444

the interactions (weak or strong), giving detailed information about the network 445

topology. Nevertheless, the scope of this work was not to fit different models on data 446

and test its performance (e.g. Bayesian or Akaike information criterion that takes into 447

account the model parameters and likelihood [?]) neither study changes in network 448

topology under different stimuli. Instead, we focus on exploring the geometrical 449

properties of the MEM and its meaning in terms of the neural code redundancy and 450

compressibility. 451

kc is not one value, but a set of values 452

The main challenge this methodology introduces is the selection of kc. The selection of 453

kc is related to the minimization of the so-called confidence volume, which not only 454

depends on the number of dimensions given by kc, but also on the imposed accuracy ε. 455

As shown on Fig S1, the confidence volume (logV(kc, ε)) decays monotonically as kc 456

increases and ε decreases, reaching an inflection point where even if we decrease the 457

accuracy by orders of magnitude kc remains almost unchanged, so adding more 458

dimensions only reduces the accuracy. It could be also possible to choose the first 459

cut-off as kc (or any other k), based on the difference between consecutive eigenvalues 460

(another criteria to find the cut-off on eigenvalue spectra), but from our observations on 461

synthetic data we know that the first cut-off is related mainly to the firing rates, so it 462

misses the raster high-order statistics. We also know that even when the underlying 463

statistics defines pairwise interactions but the firing rates are too high, the density of 464

the raster hides the higher order statistics, yielding kc = N , considering the dimensions 465

related to higher order moments as noise. 466

Even though we found two minima on the volume function, the global minima for 467

experimental and shuffled data was always at the second minima. The only case where 468
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the first minima was the global minima was for the Indep. synthetic raster (Fig ??A, 469

black trace), which is in agreement with the underlying statistics. 470

Comparison with similar analysis 471

To our knowledge, there is no previous work related to the analysis of the χ matrix 472

considering spatio-temporal pairwise interactions applied to neuronal networks. The 473

authors in [?] proposed a similar analysis considering only spatial interactions, i.e. the 474

Fisher Information Matrix (FIM) for the Ising model on in vitro, in vivo and in silico 475

networks. The work of [?] studies small neural networks (10 neurons), they looked for 476

stiff neurons, which are related to stiff dimensions (the largest FIM eigenvalues), 477

proposing that those neurons are the ones giving stability to the network, while the 478

neurons involved on the sloppy dimensions (dimensions where the parameters can have 479

significant changes without affecting the model) are the ones involved on plasticity, 480

allowing the network to remodel its connections. On our approach, which involves larger 481

networks (N = 50), we deal with neurons and their spatio-temporal interactions, 482

exploiting the linear dependences between them to find a minimal set of dimensions 483

that better represents the neural code. To this end, we found analytically two set of stiff 484

dimensions: the ones before the first cut-off, related mainly to neuron firing rates and 485

the second set, after the first cut-off, related to spatio-temporal interactions. According 486

to our framework, the sloppy dimension would be the ones beyond kc, but we could also 487

interpret the first N dimensions as the stiff dimensions, the ones between N and kc as 488

the sloppy dimensions and the ones beyond kc just noisy dimensions. This 489

re-interpretation arises from the large magnitude difference between the first and second 490

set of dimensions (at least one order of magnitude). 491

In our case, the analysis was extended to spatio-temporal interactions in larger 492

neural networks, and more importantly, we used χ as a tool for finding linear 493

dependences between the neural code variables, compressing the observed data and 494

characterizing the neural activity on the basis of independent dimensions. 495

Comparing the inner structure of the relevant dimensions between different stimuli 496

conditions could give us insights about which channels are invariant between stimuli and 497

which ones are adaptive/plastic. However, this is not the scope of this article and the 498

analysis of invariant or adaptive channels will be kept for a future work. 499

Recently, Battaglia et al [?], studying large scale networks between brain areas, 500

proposed a concept called Meta Connectivity, which instead of analysing the correlation 501

between nodes of a network (the usual functional/effective connectivity analysis), they 502

focus on the correlations between the network interaction along time. This means 503

focusing not on the coupling wi(0)wj(0) between neurons wi and wj , but focusing on 504

the interactions between the couplings wi(0)wj(0) and wk(0)wl(0). This provides 505

information about high-order correlation for at least 3 nodes of the network (e.g. case of 506

i = k) and captures the relationships between modules of network activity. Thus, χ 507

matrix is both a functional/effective connectivity matrix (the matrix entries related to 508

the correlations between firing rates) and also a meta connectivity matrix (the matrix 509

entries related to correlations between pairwise interactions), providing information 510

about the spatio-temporal interaction between network nodes and network modules. 511

The extension of our analysis towards the understanding of the meta connectivity has 512

never been applied to networks of neurons and we proposed it as a future research 513

direction, where the focus is on the variability and dependence of the interactions. 514

Stimuli-induced changes on RGC population activity 515

Retina data has significant high-order correlations, including pairwise spatial [14, 15], 516

temporal [12] interactions, triplets [5] and groups of neurons [6]. This correlations have 517
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been widely studied under MEM, which can accurately reproduce the raster 518

spatio-temporal patterns. Nevertheless, there has been no work devoted to reduce the 519

MEM dimensionality considering the inner dependences between the population activity 520

variables. 521

Here, as a proof of concept, we used retina data of a diurnal rodent under 3 different 522

stimuli with different statistics, from photopic spontaneous activity (spatio-temporal 523

uniform full field, no second order statistics), a spatio-temporal white noise (gaussian 524

statistics) to a repeated natural movie (high-order correlations both on time and space). 525

From our analysis, we know that this stimuli high-order correlations increases the 526

magnitude of both the firing rates and the raster high-order correlations, even making 527

silent cells to fire. This could be related to recruitment of specific cell types by the 528

stimuli features (e.g. local contrast [?], optic flow, color [?], among others). 529

In general, most of the correlated activity observed in the retina could be attributed 530

to the receptive field overlap between recorded RGCs and to shared common noise [?]. 531

Additionally, electrical coupling are highly present in the O. degus retina [?] inducing 532

fast correlations between close cells. These three effects modifies the pairwise 533

spatio-temporal interactions observed in real data. We explored the presence of these 534

correlated activity in the neural code. To do this we compared the results of recorded 535

data with a suffled version of it, which preserves the firing rates distribution. 536

Interestingly, both data sets share the pairwise interactions probability distribution 537

suggesting that statistics up to the second order are preserved. Nevertheless, our 538

method exhibits significant differences in the compression capability of each data set. 539

RGC presents a maximal compression compared to the shuffled data, suggesting that 540

statistics of higher order are needed to fully characterize the response of RGCs. 541

Compressibility of the RGC code 542

Then, in order to study the compressibility of the RGC code, we studied χ spectrum 543

and kc for RGC under three stimuli conditions, finding that RGC population code 544

adapts to stimuli conditions by changing the number of independent channels. 545

The first difference we found between stimuli was on χ spectrum, which in 546

correspondence with the stimulus-induced increase of the monomials probability (Fig 547

S3), shows an increase on the offset, i.e. the eigenvalues increases their magnitude as the 548

stimuli high-order correlation increases. But given the way χ is computed (see Eq. 11), 549

the shape of the spectrum comes not only from the increased monomials probabilities, 550

but also from the dependence between firing rates and spatio-temporal interactions and 551

the dependence between spatial and temporal interactions, all of them captured by the 552

matrix. On the other hand, shuffled data, where there are no dependences between the 553

neural code variables, exhibits these differences on the eigenvalue magnitudes (Fig ??B), 554

but changing the first cut-off, showing that eigenvalues magnitude are closely related to 555

the raster density (also shown for synthetic data on fig ??C), while the cut-off is related 556

with the linear dependences between the monomials. 557

The second difference we found between stimuli is on kc, i.e. our approximation to 558

the dimensionality of the neural code. As expected from the stimuli statistics, kc (and 559

also its corrected version by the unobserved events) is always lower for PSA than for the 560

dynamic stimuli, suggesting that the network optimizes the number of dimensions 561

required for coding the stimuli depending on the stimuli statistics. In terms of 562

metabolic cost, a very redundant stimulus as PSA (which has the same spatial and 563

temporal information all over the stimuli space), should be coded with less dimensions 564

than a stimuli with more independent components (less redundant), thus, optimizing 565

the metabolic resources. 566

However, for bin sizes of 1 and 5ms we observe that kc is higher for NM than for 567

WN. This relation varies for larger values of bin sizes, such as 10 or 20ms. For bin sizes 568
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of 10ms WN has the same number of relevant dimensions than NM, while for 20ms WN 569

has more dimensions than NM. So, for fast time scales, we face a non-optimal situation, 570

because NM has more redundancies than the WN. It could be possible that at this time 571

scales we are not capturing the inter-dependences of the neural code that are relevant 572

for the brain, given that at 20 ms bin size we see the expected effect: the system 573

exploits the stimuli redundancies and exhibit more compression for NM than for WN. 574

Coincidently, many MEM on retina have been done using 20 ms as bin size [14,15], 575

which in our case is the bin that allow the highest compression. In addition, synthetic 576

data shows that if the raster is too dense the underlying statistics hides under the noisy 577

activity, which could also be possible at large values of bin sizes. To control this 578

situation we used shuffled rasters, which preserves the same raster density. In the 579

shuffled rasters we see that kc increases with the raster density, discarding the effect of 580

density on the changes of dimensionality at higher bin sizes. Thus, at large bin sizes the 581

interdependences of the neural code are responsible for the compression effect and not 582

the raster density hiding some events. Nevertheless, we do not know in advance what 583

time scale(s) is(are) actually relevant for the brain and neither if our assumptions about 584

the neural code (firing rate and spatio-temporal interactions) are right, so the choice of 585

the bin size and code variables is still an open question and somewhat arbitrary. 586

Finally, our work is related to the idea that a stimuli-dependent network of in silico 587

noisy spiking neurons adapts its code according to noise and stimuli correlations [?], 588

instead of using just one way of coding. On our case, the stimili-dependent network is a 589

biological one, so we don’t have access to modify the noise of each neurons nor the 590

network noise. Instead, we can just modify the stimuli correlations, which changes the 591

dimensionality of the code. This change in dimensionality could reflect the smooth 592

interpolation between encoding strategies: highly redundant stimuli evokes less code 593

dimensions than stimuli which presents high-order correlations, suggesting that the 594

MEM dimensionality is also a measure of the code redundancies. However, the analytic 595

relationship between dimensionality reduction and the coding strategies requires an 596

extensive mathematical and computational research that is not developed here, but we 597

give an indirect way of studying the interdependences of the neural code as the stimuli 598

conditions changes. 599

Materials and Methods 600

Model Definition 601

A spike train, ω, is a discrete-time sequence of events that represent the activity of a 602

neural network of size N over a time period T time-steps. The spiking activity of 603

neuron i at discrete time t is mathematically defined by a variable: 604

ωi(t) =

{
1, if neuron i fires at time t,
0, otherwise.

(2)

A spike pattern {ω(t)}i=1...N , represents the activity of the whole network at a given 605

time t. Finally, a spike block, ωt2t1 = {ω(t)t1≤t≤t2}, represents the activity of the whole 606

network between two instants t1 and t2. The range of a spike block is the number of 607

time steps t2 − t1 + 1; the degree is its number of spike-events. 608

A monomial is a function which associates to a raster a real value: 609

ml(ω) =

m∏
k=1

ωik(tk), 0 ≤ ik < N, 0 ≤ tk < R. (3)

One fixes a set of pairs (ik, tk) (neuron, time), and ml(ω) = 1 if and only if neuron ik 610

spikes at time tk in the raster block ω, and ml(ω) = 0 otherwise. The simplest example 611
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is ωi(t) which is 1 if and only if neuron i fires at time t in spike train ω. In (3), the 612

monomial value depends in fact on the R− 1 first time steps in the raster, i.e. on the 613

block ωR−10 , instead of the whole raster. R is called the range of the monomial. From 614

now on we note D = R− 1. 615

We note π
(T )
ω the empirical probability constructed from the raster ω, where the 616

average is performed by time average over a time interval of length T . This way of 617

averaging is relevant only if one assumes that the underlying process that generated the 618

raster is stationary. Thus, the empirical average of a monomial ml is noted π
(T )
ω [ml ]. 619

We want to construct a stationary Markov chain (i.e. where transition probabilities are 620

time-translation invariant) whose invariant distribution µ ”approaches at best” the 621

empirical data. Approaching at best means here minimizing Kullback-Leibler divergence 622

dKL

[
π
(T )
ω | µ

]
between the empirical probability of the spike train ω of size, π

(T )
ω , and 623

the invariant probability distribution of the estimated Markov chain, µ. For this, we use 624

the Maximum Entropy Principle (MEM). 625

As opposite to most existing MEM, like Ising model [14–18] or extensions with 626

triplets and quadruplets interactions [5], we consider here models having a memory so 627

as to treat time correlations. The main developments of the method and application to 628

retina data have been published in [10,11,19,20]. The Maximum Entropy Principle 629

corresponds to finding a stationary probability distribution µ which maximizes the 630

statistical entropy S(µ) given the constraints: 631

µ [ml ] = π(T )
ω [ml ] , l ∈ S. (4)

This means the average µ [ml ] of monomial ml predicted by the model, equals the 632

raster empirical average π
(T )
ω [ml ], where ml belongs to a prescribed list of monomials 633

S, where S defines the model-type. If S contains only monomials of the form ωi(0) the 634

model is Bernoulli. If S contains monomials of the form ωi(0) and ωi(0)ωj(0), i 6= j the 635

model is Ising. If S contains monomials of the form ωi(0); ωi(0)ωj(r), i 6= j, r = 0 . . . R 636

the model is pairwise with range R. Here, a model with range R = 2 is used. 637

It can be shown that there is a unique probability distribution µS , depending on the 638

set of constraints S, maximizing the statistical entropy under the constraints (4). µS 639

has the following properties: 640

φ =
∑
l∈S

hlml. (5)

is called ”potential” such that µS is a Gibbs distribution for φ. Being a Gibbs 641

distribution means that the probability of a spike block ωn0 obeys: 642

µS
[
ωn−10

]
∼ e−(n−D)P eφω

n−1
0 (6)

where: 643

P = lim
n→∞

1

n
logZn, (7)

is called free energy density and 644

Zn =
∑
ωn−1

0

eφω
n−1
0 . (8)

is called n time steps partition function 645
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Susceptibility Matrix, χ 646

P is a function of hls. One can show that the average of ml predicted by the Gibbs 647

distribution µS is given by the derivative of the free energy with respect to hl [21] : 648

µS [ml ] =
∂P
∂hl

. (9)

Therefore, the second derivative: 649

χll′ =
∂2P

∂hl ∂hl′
, (10)

tells us how much the average of the monomial ml is modified when we slightly modify 650

the coefficient of monomial ml′ . We call the matrix χ with entries χll′ the susceptibility 651

matrix. 652

χ is numerically computed without the need of fit the model. This is achieved by 653

computing the correlations between monomial ml at time 0 and monomial l′ at time n 654

is: 655

Cl,l′ (n ) = µ[ml(0)ml′(n)]− µ[ml]µ[ml′ ]. (11)

In the case where ml = ωi(0),ml′ = ωj(0), this gives the time pairwise correlations 656

between neurons i,j at time n. Cl,l′ (n ) depends on the model S. 657

One can show that: 658

χll′ = Cl,l′ (0 ) + 2

+∞∑
n=1

Cl,l′ (n ) . (12)

Thus, χll′ integrates all time correlations between monomial ml and ml′ . χ is
symmetric positive thus it has real positive eigenvalues, but given its numerical
computation, as more terms are considered on the sum of (12) more noise is captured
by χ, yielding several negative eigenvalues (data not shown). For that reason, n was
constrained to 4, being the double of the range of the model. When the potential φ only
contains range 1 monomials successive time steps are uncorrelated and (12) reduces to

χll′ = Cl,l′ (0 )

the so-called fluctuation-dissipation theorem in physics. 659

Volume of indistinguishable models 660

Functions of the form (5), parametrized by the coefficients hl, live in a L dimensional 661

space E . Since each set of hl defines a maximum entropy (Gibbs) probability 662

distribution, each point of E represents such a probability. This space is very huge, and 663

a generic probability in this space have all hls different from 0. Depending on the 664

dynamics and specific properties of the studied system, the hls are typically distributed 665

onto a sub-manifold W in E , corresponding to functional relations between the hls 666

parameters, [9]. The right object to study both the geometric structure (metric) of the 667

manifold W and the second order statistical fluctuations associated with the central 668

limit theorem is the Fisher matrix or Susceptibility matrix [22–25]. Given χ properties, 669

it has eigenvalues λk, k = 1 . . . L ordered by decreasing value (i.e. the spectrum) 670

without loss of generality and corresponding eigenvector ~vk associated with λk. The ~vks 671

define an orthogonal eigenbasis composed of a linear combinations of model parameters. 672

From the statistical perspective, 1√
λk

gives the amplitude of second-order fluctuations in 673

the estimation of coefficients hl projected on direction ~vk. The smaller the eigenvalue, 674

the larger the amplitude. When projecting back to the original basis, these errors 675
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propagate to hls estimation. From the geometrical perspective, as χ is a metric, i.e. the 676

inverse of a square distance, 1√
λk

is a distance on the manifold W . This distance can be 677

interpreted as a scale where, in direction k, W is essentially flat. This is also a 678

characteristic distance on which models (projected on direction k) are indistinguishable. 679

From the linear response perspective, 1
λk

tells us how much a small variation in the 680

estimation of average of monomials (a linear combination of these variations parallel to 681

~vk) affects the estimation of hl. Thus, following Mastromateo [23] two distributions µ(1), 682

µ(2) are indistinguishable with accuracy ε if − logµ∗
[
h(1) = h(2)

]
≤ ε. If T is large 683

enough, the set of indistinguishable distributions defines an ellipsoid s in E with a 684

volume V: 685

V =
1√

detχ

[
1

Γ(L2 + 1)

(
2πε

T

)L
2

]
. (13)

Thus, when the sample size T , the model dimension L and the accuracy ε are fixed the 686

log of the volume is proportional to logV ∝ − 1
2

∑L
k=1 log λk. Thus, model estimation is 687

better if λhs are larger, which implies that there exists a set of eigenvalues that can be 688

neglected given their small magnitude, i.e. huge fluctuations impairing the model 689

estimation. Then, instead of considering the volume of s in the space of all parameters, 690

let us consider the volume V(k) of the projection of s in the subspace spanned by the k 691

first eigenvectors of χ. We have: 692

logV(k) =
1

2
Sφ(k)− log Γ(

k

2
+ 1) +

k

2
log

(
2πε

T

)
, (14)

with: 693

Sφ(k) = −
k∑
i=1

log λi, (15)

where λis are ordered by decreasing values. In eq. (14), The second term, log Γ(k2 + 1) 694

is purely combinatory, whereas the third term, log
(
2πε
T

)
characterizes the effect of 695

precision accuracy and finite sampling. Therefore, the only term which depends on the 696

statistical model (here the potential H) is SH(k). In particular, it depends on the 697

number of neurons N and memory depth R. 698

Finding the cut-off, kc 699

As eigenvalues k increases, there will be one or more ks at which Sφ(k) is expected to 700

become bigger than the sum of the other two terms of (14), which are both negative. 701

This means that, for increasing k, logV(k) will first decrease then it will increase, 702

yielding at least one minima on the function. There is therefore a k, kc ≡ kc(ε, T ), 703

which characterizes the number of eigenvectors (i.e. dimension) for which the volume is 704

minimal. Precisely, as we observed, ε belongs to some interval; outside this interval 705

logV(k) is not convex any more. On this range over ε we obtain a set of kc ≡ kc(T ) 706

minimizing the volume, which characterize the number of eigenvectors ensuring an 707

optimal fit with the model: the model indeterminacy is minimized. Among the set of 708

possible kc, we chose the smallest one, representing the minimum set of dimensions 709

necessary to reliable fit the model given data. The corresponding eigenvectors span a 710

subspace Er of E , embedded in the tangent space of W at the point corresponding to 711

the empirical measure. This subspace corresponds to linear combination of hls giving 712

the most reliable model. Getting outside this space, by adding/subtracting degree of 713

freedom/eigenvectors leads to a worse approximation of the empirical distribution. 714
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Synthetic Raster Generation 715

Synthetic rasters (T = 2 ∗ 106 time-points, N = 20 neurons) were generated using 716

different underlying statistics: Independent, where only firing rates are defined, 717

L = N ; Pairwise R=2 (PWR2), with firing rates and spatio-temporal correlations, 718

L = N(3N − 1)/2. Using the underlying potential of the PWR2, 5 more rasters were 719

generated scaling the magnitude of the model parameters by a factor 720

fac = [0.4 0.6 0.8 1.2 1.4]. This scaling mimics the effect of the stimuli high-order 721

statistics, which increases both the firing rate and the spatio-temporal correlations. In 722

addition, 6 more random PWR2 rasters were generated with N = [30 40 50 60 70 80] to 723

study the dependence between kc estimation and the network size. Each raster was 724

generated using the ENAS software (https://enas.inria.fr/). For the first 3 rasters, 100 725

random subsamples with half duration of the whole recording were taken for each raster 726

and the χ matrix associated with a Pairwise R=2 model was computed. Then, kc was 727

found by volume minimization, yielding 100 kc values per raster. For the scales rasters, 728

the same procedure was applied, but using 10 temporal subsamples. 729

Shuffling 730

In order to destroy the dependencies between the empirical raster monomials, we 731

generated random raster where the number of neurons and firing rates was exactly the 732

same than observed on the recordings (i.e. on each retina under each condition), but the 733

spikes times were otherwise random, avoiding violations of the refractory period (2ms). 734

Recordings and Stimuli 735

Animals and Recordings 736

4 Adult male and female Octodon degus (3-6 months) were maintained in the animal 737

facility of the Universidad de Valparaiso, at 20–25°C on a 12-h light-dark cycle, with 738

access to food and water ad-libitum. The methods of MEA recording has previouslly 739

been described [?]. In brief, experiments were approved by the bioethics committee of 740

the Universidad de Valparaiso, in accordance with the bioethics regulation of the 741

Chilean Research Council (CONICYT) and international protocols. Animals were 742

euthanized under deep isofluorano or halothane anesthesia and both eyes were extracted. 743

Then, one of the extracted retinas was diced into quarters while the other was stored in 744

oxygenated in oxygenated (O2 95% CO2 5%) AMES medium at 32°C in the dark for 745

further experiments. The same AMES media was used for continuous perfusion during 746

extracellular recordings. For MEA recordings (MEA USB-256, 20kHz sample, 747

Multichannel Systems GmbH, Germany), one piece of retina was mounted onto a 748

dialysis membrane placed into a ring device mounted in a traveling (up/down) cylinder, 749

which was moved to contact the electrode surface of the MEA recording array. Data 750

were processed off-line using Plexon Offline Sorter (Plexon Instruments). Further, spikes 751

were detected using a threshold of -4.5 to -5.5 S.D. from the mean voltage value and 752

then were manually classified using the 2D space of the first two principal components 753

on each electrode. Only somatic spikes were kept. Refractory period violations were 754

detected and discarded if two or more spikes of the same neuron occur in a 2ms period. 755

We recorded on 3 stimuli conditions (see next section): i) Photopic Spontaneous 756

Activity (PSA), ii) Spatio-temporal white Noise (WN) and iii) Natural Movie (NM), 757

obtaining 151, 200, 246 and 270 RGC for each of the 4 experiments, respectively. For 758

each experiment 30 random subsamples of 50 neurons were taken and χ matrix 759

corresponding to a Pairwise R=2 model were computed considering 4 bin sizes (1, 5, 10 760

and 20 ms) for each subsample, yielding 30 kc values per experiment, per condition and 761

per bin size. The shuffled version of these rasters were submitted to the same analysis. 762
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Visual Stimuli 763

Visual stimuli were generated by a custom software created with PsychoToolbox 764

(Matlab) on a MiniMac Apple computer and projected onto the retina with a LED 765

projector (PLED-W500, Viewsonic, USA) equipped with an electronic shutter (Vincent 766

Associates, Rochester, USA) and connected to an inverted microscope (Lens 4x, Eclipse 767

TE2000, NIKON, Japan). The image was conformed by 380 x 380 pixels, each covering 768

5µm2. Since rodents are dichromatic (green and blue/UV cones), in our experiments 769

only the B (blue) and G (green) beams of the projector were used, while the R (red) 770

channel was used for signal synchronization. Dark spontaneous activity where recorded 771

in order to monitor the stabilization of the activity. The, stimuli where applied. For 772

PSA a space-time invariant stimuli with G and B intensities equal to the mean intensity 773

of the NM stimulus were presented for 15 mins. WN stimulus with a block size of 50µm 774

was used at rate of 60 fps and presented for 20 mins, with each block taking 775

independently 0 or 255 (max value) in the pixel value scale. NM consisted on a 1800 776

frames movie recorded on the natural habitat of the rodent using a robotic solution to 777

capture the natural visual environment of degus, including grass, trees, optic flow, 778

head-like movements. This short movie were presented 40 times at a refresh rate of 779

60fps, yielding a total duration of 20 mins. Optical density filters in the optical path 780

were used to control final light intensity. A CCD camera (Pixelfly, PCO, USA) attached 781

to the microscope was used for online visualization and calibration of the light stimuli 782

projected onto the recording array. 783

Supporting Information 784

S1 Fig. Finding kc on the set of convex volume functions. 785

S2 Fig. Most of the pairwise interactions are both spatial and temporal. 786

S3 Fig. Logistic fit to porcentage of remaining pairwise parameters. 787
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