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Abstract—Big Data applications are rapidly moving from a
batch-oriented execution model to a streaming execution model
in order to extract value from the data in real-time. However,
processing live data alone is often not enough: in many cases,
such applications need to combine the live data with previously
archived data to increase the quality of the extracted insights.
Current streaming-oriented runtimes and middlewares are not
flexible enough to deal with this trend, as they address ingestion
(collection and pre-processing of data streams) and persistent
storage (archival of intermediate results) using separate services.
This separation often leads to I/O redundancy (e.g., write data
twice to disk or transfer data twice over the network) and
interference (e.g., I/O bottlenecks when collecting data streams
and writing archival data simultaneously). In this position paper,
we argue for a unified ingestion and storage architecture for
streaming data that addresses the aforementioned challenge. We
identify a set of constraints and benefits for such a unified model,
while highlighting the important architectural aspects required to
implement it in real life. Based on these aspects, we briefly sketch
our plan for future work that develops the position defended in
this paper.

Index Terms—Big Data, Streaming, Storage, Ingestion, Unified
Architecture

I. INTRODUCTION

Under the pressure of increasing data velocity, Big Data
analytics shifts towards stream computing: it needs to deliver
insights and results as soon as possible, with minimal latency
and high throughput that keeps up with the rate of new data. In
this context, online and interactive Big Data runtimes designed
for stream computing are rapidly evolving to complement
traditional, batch-oriented runtimes (such as MapReduce [1])
that are insufficient to meet the need for low latency and high
processing throughput [2].

This online dimension [3], [4] of data processing was
recognized in both industry and academia and led to the
design and development of an entire family of online Big
Data analytics runtimes: Apache Flink [5], Apache Spark
Streaming [6], Streamscope [7], etc.

As depicted in Figure 1, a typical state-of-art online big data
analytics runtime is built on top of a three layers stack:

o Ingestion: this layer serves to acquire, buffer and op-
tionally pre-process data streams (e.g., filter) before they
are consumed by the analytics application. The ingestion
layer does not guarantee persistence: it buffers the data
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Fig. 1: The usual streaming architecture: data is first ingested and then it
flows through the processing layer which relies on the storage layer for storing
aggregated data or for archiving streams for later usage.
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only temporarily and enables limited access semantics to
it (e.g., it assumes a producer-consumer pattern that is
not optimized for random access).

« Storage: unlike the ingestion layer, this layer is responsi-
ble for persistent storage of data. This typically involves
either the archival of the buffered data streams from the
ingestion layer or the storage of the intermediate stream
analytics results, both of which are crucial to enable
fault tolerance or deeper, batch-oriented analytics that
complement the online analytics.

o Processing: this layer consumes the streaming data
buffered by the ingestion layer and sends the output and
intermediate results to the storage or ingestion layers.

In practice, each layer is implemented as a dedicated
solution that is independent from the other layers, under the
assumption that specialization for a particular role enables
better optimization opportunities. Such an architecture can be
found in [8] where the data collection and stream database
(storage) are handled separately.

However, as the need for more complex online data ma-
nipulations arises, so does the need to enable better coupling
between these three layers. Emerging scenarios (Section IV)
emphasize complex data pre-processing, tight fault tolerance
and archival of streaming data for deeper analytics based on
batch processing. Under these circumstances, data is often



written twice to disk or sent twice over the network (e.g., as
part of a fault tolerance strategy of the ingestion layer and the
persistency requirement of the storage layer). Second, the lack
of coordination between the layers can lead to I/O interference
(e.g., the ingestion layer and the storage layer compete for
the same I/O resources when these layers are collocated).
Third, the processing layer often implements custom advanced
data management (e.g., operator state persistence, checkpoint-
restart) on top of inappropriate basic ingestion/storage APIs,
which results in significant performance overhead.

In this paper, we argue that the aforementioned challenges
are significant enough to offset the benefits of specializing
each layer independently of the other layers. To this end, we
discuss the potential benefits of a unified storage and ingestion
architecture. Specifically, we contribute with a study on the
general characteristics of data streams and the requirements
for the ingestion and storage layer (Section II), an overview
of state-of-art and its limitations and missing features (Sec-
tion IIT) and a proposal for a unified solution based on a series
of design principles and an architecture (Section V).

II. REQUIREMENTS OF INGESTION AND STORAGE FOR
DATA STREAMS

In this section we focus on the characteristics of data
streams and discuss the main requirements and constraints of
the ingestion and storage layers.

A. Characteristics of Data Streams

Data Size. Stream data takes various forms and most
systems do not target a certain size of the stream event,
although this is an important characteristic for performance
optimizations [9]. However, a few of the analyzed systems are
sensitive to the data size, with records defined by the message
length (from tens or hundreds of bytes up to a few megabytes).

Data Access Pattern. Stream-based applications dictate the
way data is accessed, with most of them (e.g., [3]) requiring
fine-grained access. Stream operators may leverage multi-key-
value interfaces, in order to optimize the number of accesses
to the data store or may access data items sequentially (scan
based), randomly or even clustered (queries). When coupled
with offline analytics, the data access pattern plays a crucial
role in the scalability of wide transformations [10].

Data Model. This describes the representation and orga-
nization of single information items flowing from sources
to sinks [11]. Streams are modeled as simple records (op-
tional key, blob value for attributes, optional timestamp) or
row/column sets in a table. Data model together with data
size influence the data rate (i.e., throughput), an important
performance metric related to stream processing.

Data Compression. In order to improve the consumer
throughput (e.g., due to scarce network bandwidth), or to
reduce storage size, a set of compression techniques (e.g.,
GZIP, Snappy, LZ4, data encodings, serialization) can be
implemented and supported by stream systems.

Data Layout. The way data is stored or accessed influences
the representation of stream data in memory or on disk. The

need to query (archived) stream data (reads or updates) forces
the data layout to be represented in a columnar oriented ap-
proach [12] or a hybrid row-column layout may be necessary.

B. Functional Requirements

Adequate Support for Data Stream Partitioning. A
stream partition is a (possibly) ordered sequence of records
that represent a unit of a data stream. Partitioning for streaming
is a recognized technique used in order to increase processing
throughput and scalability, e.g., [13], [14]. We differentiate
between data partitioning techniques implemented by inges-
tion/storage and application-level (user-defined) partitioning
[15], [16], as it is not always straightforward to reconcile these
two aspects.

Support for Versatile Stream Metadata. Streaming meta-
data is small data (e.g., record’s key or attributes) that de-
scribes stream data and it is used to easily find particular in-
stances of data (e.g., to index data by certain stream attributes
that are later used in a query).

Support for Search. The search capability is a big chal-
lenge: this is more appropriate to specialized storage systems.
Ingestion frameworks usually do not support such feature. A
large number of stream applications [17] need APIs able to
scan (random or sequential) the stream datasets and support
to execute real-time queries.

Advanced Support for Message Routing. Routing defines
the flow of a message (record) through a system in order to
ensure it is processed and eventually stored. Applications may
need to define necessary dynamic routing schemes or can rely
on predefined static routing allocations. Readers can refer to
[18] for a characterization of message transport and routing.

Backpressure Support. Backpressure refers to the situation
where a system cannot sustain any more the rate at which the
stream data is received. It is advisable for streaming systems
to durably buffer data in case of temporary load spikes, and
provide a mechanism to later replay this data (e.g., by offsets
in Kafka). For example, one approach for handling fast data
stream arrivals is by artificially restricting the rate at which
tuples are delivered to the system (i.e., rate throttling), this
technique could be implemented either by data stream sources
or by stream processing engines.

C. Non-functional Requirements

High Availability. Failures can disrupt or even halt stream
processing components, can cause the loss of potentially large
amounts of stream processed data or prevent downstream
nodes to further progress: stream processing systems should
incorporate high-availability mechanisms that allow to operate
continuously for a long time in spite of failures [19], [20].

Temporal Persistence versus Stream Durability. Tem-
poral persistence refers to the ability of a system to tem-
porarily store a stream of events in memory or on disk (e.g.,
configurable data retention period of a short period of time
after which data is automatically discarded). For example,
windowing [21] is an important stream primitive and its main
characteristic is the window’s state (i.e., a set of recent tuples)



Requirement Kafka Redis Hyperion Druid Kudu

Size Configurable message | Up to 512 MB. Opti- | KBs Dimension and metric | Typed columns (up to
length mized data types columns (KBs, MBs) 64KB)

Access Record, logical offsets | Fine-grained; multi- | Queries Queries (search, time- | Fine-grained, scans,

group queries series) queries (time-series)

Model Records as key, pay- | Key-Value, data struc- | Immutable stream | Data tables (time- | Tables
load, opt. timestamp tures records stamped events)

Compression Relative offsets; LZ4, | Data encodings Non-goal Dictionary  encoding | Pattern-based on
GZIP, Snappy; log for strings, LZF for | typed columns, LZ4,
compaction numeric Snappy, zlib

Layout On disk logs of or- | In-memory backed by | On-disk log- | Segments stored as | Columnar  (memory
dered, immutable se- | disk (custom check- | structured, fixed | columns and disk row sets)
quence of records points) blocks of IMB

TABLE I: Data characteristics. (Non-goal means the characteristic/requirement is not considered for implementation.)

that needs to be temporarily persisted. Stream records may
also need to be durably stored: it is of utmost importance to
be able to configure a diverse set of retention policies in order
to give the ability to replay historical stream events or to derive
later insights by running continuous queries over both old and
new stream data.

Scalability. Scalability is the ability of the stream storage to
handle increasing amounts of data, while remaining stable in
front of peaks moments when high rates of bursting data arrive.
Scalable stream storage should scale either vertically (increase
the number of a clients that are supported by a single-node
broker/data node) or horizontally (distribute clients among a
number of interconnected nodes).

Latency versus Throughput. Recognizing that it is not
easy to offer both low latency and high throughput, especially
in front of acknowledgment requirements imposed in some
cases, a unified ingestion and storage system for streaming
needs to be designed to allow for a trade-off between latency
and throughput.

III. STATE-OF-ART OVERVIEW AND LIMITATIONS

In this section, we briefly introduce a series of state-of-art
ingestion and storage systems for data streams and discuss
their limitations.

A. Overview

Apache Kafka [22] is a distributed stream platform that
provides durability and publish/subscribe functionality for data
streams (making streaming data available to multiple con-
sumers), being the de facto open-source solution (for temporal
data persistence and availability) used in end-to-end pipelines
with streaming engines.

Redis [23] is an in-memory data structure store that is used
as a database, cache and message broker. Redis also imple-
ments the pub/sub messaging paradigm and groups messages
into channels with subscribers expressing interest into one or
more channels.

Hyperion [24] is a system for archiving, indexing, and on-
line retrieval of high-volume packet header data streams. Data
archiving for network monitoring systems is complicated by
data arrival rates and the need for online indexing of this data
to support retrospective queries.

Druid [25] is a distributed, columnar-oriented data store
designed for real-time exploratory analytics on big data sets.

Its motivation is straightforward: although Hadoop (HDFS)
is a highly available system, its performance degrades under
heavy concurrent load and is not optimized for ingesting data
and making data immediately available for processing.

Apache Kudu [26] is a columnar data store that integrates
with Apache Impala, HDFS and HBase. It can be seen as an
alternative to Avro/Parquet over HDFS (not suitable for updat-
ing individual records or for efficient random reads/writes) or
an alternative to semi-structured stores like HBase/Cassandra
(not efficient for sequential read throughput).

B. Limitations

In Table I we comment on how ingestion and storage
systems handle the characteristics of data streams introduced
in Section II-A. Although these systems are designed to
handle records of different sizes, no tuning parameters are
exposed to efficiently process small or medium sizes; users
should evaluate the impact of the data model and record sizes
on throughput. Compression is another important goal, well
supported by selected systems. When evaluating their stream
use case, users should first assess the data size and access
characteristics in order to understand whether the selected
system is able to handle optimally such data. Users should
make an evaluation study to validate the performance of the
required access patterns when considering the stream data
uncompressed and also with different compression methods.

In Table II we discuss how the ingestion and storage sys-
tems relate to the functional and non-functional requirements
introduced in Section II-B and, respectively, Section II-C. We
observe that some systems handle data as being immutable in
order to optimize the write throughput and offer sometimes-
specialized API for querying data. Storage systems implement
different strategies for data partitioning (time-based, key-
based, or custom solutions); what is missing is the support
for certain application-level partitioning: it is not clear if these
systems can easily adapt to particular user strategies for stream
partitioning (e.g., partition by secondary attributes, partition by
broker/node for ensuring data locality, etc.).

One important observation for performance aspects is that,
although in some cases systems offer a static way of configur-
ing a trade-off between latency and throughput, this important
requirement remains a challenge.



Requirement Kafka Redis Hyperion Druid Kudu
Fartitioning Topics and partitions Hash Slots (Cluster | Streams  partitioned | Segments (shards data | Range, hash, and mul-
mode) into time intervals by time) tilevel partitioning
Metadata Message header’s at- | Keys Record and headers, | Segments and configu- | Catalog tables, tablets
tributes block maps ration
Search KSQL Multi-get queries Specific queries JSON over HTTP, | SQL
SQL
Routing Kafka Connect | Key hashtag Non-goal I0Config, Push/pull | Non-goal
(Timestamp and ingestion
Regex Routers)
Backpressure Replay by consumer | Non-goal Non-goal Non-goal Non-goal
offsets; Quotas
Availability Replicated partitions Sentinel HA Non-goal Historical nodes HA with Raft consen-
sus
Scalability Multi-Broker horizon- | Multiple Server | Multi monitors Coordinator, broker, | Tablet servers and
tal scalability instances or Cluster indexing, real-time | masters
mode nodes
Persistence Temporal on-disk (re- | Durable, in-memory | Durable, on-disk In memory and per- | Durable, on-disk
tention policies) backed on disk sisted indexes on real
time nodes
Latency Depends on acknowl- | Lower if used as cache | Dominated by per- | Depends on data di- | Efficient random ac-
edgements record overhead mensions cess
Throughput Batching size on pro- | Pipelining  multiple | Sequential, immutable | Throttle ingestion Lazy materialization,
ducer commands writes delta compaction

TABLE II: Requirements for ingestion and storage systems.

C. Missing Features

Next, we identify a set of features that are currently missing
or insufficiently addressed by state-of-art, yet crucial for the
efficient processing of emerging online analytics scenarios.

Streaming SQL. Streaming queries or SQL on streams has
recently emerged as a convenient abstraction to process flows
of incoming data, inspired by the deceptively simple decades-
old SQL approach. However, they extend beyond time-based
or tuple-based stream models [27]. Given the complexity
of stream SQL semantics and the support they require for
handling state for such operations, it is important to understand
how a stream storage system can sustain and optimize such
applications.

Access Pattern Detection. Ingestion/storage for streaming
would both benefit from detecting and then dynamically
adapting to the observed stream access patterns [28], [29],
ranging from fine-grained per record/tuple access to group
queries (multi get/put) or scan-based.

Windowing. A basic primitive in streaming is windowing
[21] with its many forms (e.g., sliding, session). Streaming
runtimes develop internal mechanisms to support the window’s
state (exactly once processing requires fault tolerant state).
This complexity could be avoided at the processing level if
the required support for keeping the windowing state was
developed within a unified ingestion/storage layer.

User-Defined Aggregates. A popular technique to avoid
moving large amounts of data over the network and avoid
serialization and de-serialization overhead is to push data pre-
processing routines close to where the data is stored, especially
when considering modern storage equipped with processing
capability. Also known as near-data processing [30], this
feature would greatly benefit stream processing yet current
ingestion/storage solutions do not offer native support for it.

IV. USE CASES EXHIBITING LIMITATIONS AND MISSING
FEATURES

Stream processing can solve a large set of business and
scientific problems, including network monitoring, real-time
fraud detection, e-commerce, etc. In this section, we present
two scenarios that exhibit the characteristics, requirements and
missing features discussed above.

Monetizing streaming video content. This use case mo-
tivates the Dataflow [3] model proposed by Google for
stream processing. Streaming video providers display video
advertisements and are interested in efficiently billing their
advertisers. Both video providers and advertisers need statistics
about their videos (e.g., how long a video is watched and
by which demographic groups); they need this information
as fast as possible (i.e., in real-time) in order to optimize
their strategy (e.g., adjust advertisers budgets). We identify a
set of requirements associated to these applications: 1) events
are ingested as fast as possible and consumed by processing
engines that are updating statistics in real-time; 2) events and
aggregated results are stored for future usage (e.g., offline
experiments); 3) users interrogate streams (SQL queries on
streams) to validate quality agreements.

Decision Support for Smart Cities applications. Future
cities will leverage smart devices and sensors installed in
the public infrastructure to improve the citizen’s life. In this
context, several aspects are important: 1) data from sensors
may be initially ingested and pre-processed before they are
delivered to the streaming engines; 2) massive quantities
of data are received over short time intervals; 3) ingestion
components have to support a high throughput of stream
events.

Moreover, large web companies such as Twitter, LinkedIn,
Facebook, Google, Alibaba need to ingest and log tens of
millions of events per second. This trend is projected to grow
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Fig. 2: Approaches for handling stream data ingestion and storage.

by 40% year over year (e.g., due to IoT, mobile games, etc.)
[31]. However, only a small part of this data is ever accessed
for processing (i.e., to extract value) after ingestion (less than
6%) [32]. Most of untouched data is usually archived (e.g.,
Facebook users are interested to maintain an archive of their
actions and messages) and may be later queried. To sum
up, stream-based applications strongly rely on the following
features, not well supported by current streaming architectures:

1) Fast ingestion, doubled by simultaneous indexing (often,
through a single pass on data) for real-time processing;

2) Low-latency storage with fine-grained query support for
efficient filtering and aggregation of data records;

3) Storage coping with events accumulating in large volumes
over a short period of time.

V. A UNIFIED STREAM INGESTION AND STORAGE
PROPOSAL

In this section, we introduce our proposal for a unified
stream ingestion and storage layer that is capable to address the
limitations of the corresponding separated state-of-art layers
and the missing features discussed in Section III. First, we
introduce a set of design principles for stream processing that
guide the design of a unified ingestion and storage layer. Then,
we present our unified proposal that can handle unbounded
streams while cooperating closer with processing engines,
e.g., sharing the stream partitioning strategy with processing
engines through DIPS interfaces and allowing pushing pro-
cessing functions next to stream data. We think that current
hardware trends (i.e., multi-core nodes, near data processing
enabled storage devices, etc.) encourage the implementation
of such unified model, allowing co-location of processing and
data management.

A. Design Principles

Stream processing should focus on computations: how to
transform data through a workflow composed of stateful and
stateless operators. The main focus should be how to define
the computation, when to trigger the computation and how to
combine the computation with offline analytics.

Unified ingestion/storage should focus on high-level data
management: both ingestion and storage are exposed through
a common engine that is capable of leveraging synergies to

avoid I/O redundancy and I/O interference arising when using
independent solutions for the two aspects. This engine handles
caching hierarchy, de-duplication, concurrency control, etc.
Furthermore, all high-level data management currently imple-
mented in the processing engine (fault tolerance, persistence of
operator states, etc.) should be handled natively by the unified
layer.

Common abstractions for the interactions between pro-
cessing engines and storage systems should be designed.
Storage systems and processing engines should understand
DIPS interfaces (i.e., for data ingestion, processing, and stor-
age for streams of records): they offer APIs to read, write,
process and store streams of records.

B. Architecture

As illustrated in Figure 1, traditional Big Data streaming
architectures typically span over three layers: ingestion, pro-
cessing, storage. To better illustrate the I/O redundancy present
in traditional approaches, note the life-cycle of data in Figure 2
(left hand side): each record is written twice to disk (once by
the ingestion framework and then by the storage system) and it
also traverses twice the network (for processing and storage).

Guided by the design principles presented in the previous
section, we introduce a unified architecture illustrated in
Figure 2 (right hand side). In this case, the network and
disk overhead associated with I/O redundancy are dramatically
reduced, as data is already replicated in the memory of the co-
located storage and processing nodes, which can be leveraged
when archiving streams. Moreover, stream records do not need
to pass through the processing layer before they are sent for
archiving (the Store action is handled internally by the unified
layer based on additional stream metadata that flags stream
records for archiving).

This unified proposal not only implements the high-level
data management mentioned in the design principles, but also
exposes the DIPS interfaces necessary for efficient cooperation
between stream storage and processing engine:

1) The Data Ingest interface (e.g., multi-write stream) is
leveraged by stream producers that write input streams
but also by processing engine’ workers that store pro-
cessing state to local storage instances;



2) The Data Store interface (e.g., multi-store stream) is
handled internally by the storage system, being used to
permanently store streams when needed: this action can
be done asynchronously based on stream metadata and
hints sent by the processing engine;

3) The Data Process interface (e.g., multi-read stream and/or
push UDF) is bidirectionally exposed: first, it can be
leveraged by processing engine to pull data from the
stream storage (stateful operators); second, we envision
future processing workflows sending process functions to
storage whenever possible (stateless operators).

To optimally leverage this proposal, processing engines
should be co-located with the storage nodes, leveraging multi-
core (fat) nodes that are built with tens of cores and hun-
dreds of GBs of DRAM. Moreover, we envision to build
our proposal on top of robust low-level key-value stores that
are capable of efficient fine-grain access (e.g., put/get, multi-
write/multi-read) to the stream records.

Another interesting side-effect of our proposal is the capa-
bility to develop complex high-level stream-based workflows
where different applications can easily communicate with each
other by sharing a unified ingestion and storage layer. In this
case, the benefit of avoiding I/O redundancy and interference
is preserved across multiple application instances by simply
sharing the unified layer among them.

VI. CONCLUSION

In this paper we discuss the main challenges (i.e, character-
istics, requirements, limitations and missing features) of data
management for stream computing. Specifically, we identify
not only limitations of state-of-art in form of limited control
over I/O redundancy and interference due to separation of
ingestion and storage into independent layers, but also a series
of (missing) features that are insufficiently addressed by state-
of-art but critical for modern online analytics applications.
To this end, we propose a series of design principles and
architecture towards a unified stream ingestion and storage
solution that addresses these limitations and missing features.
We are working towards the Kera prototype to demonstrate
our position in future work.
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