
HAL Id: hal-01649244
https://inria.hal.science/hal-01649244v2

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Exploiting Sparsity of Multiple Right-Hand Sides in
Sparse Direct Solvers

Patrick Amestoy, Jean-Yves L’Excellent, Gilles Moreau

To cite this version:
Patrick Amestoy, Jean-Yves L’Excellent, Gilles Moreau. On Exploiting Sparsity of Multiple Right-
Hand Sides in Sparse Direct Solvers. [Research Report] RR-9122, ENS de Lyon; INRIA Grenoble -
Rhone-Alpes. 2017, pp.1-28. �hal-01649244v2�

https://inria.hal.science/hal-01649244v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
91

22
--

FR
+E

N
G

RESEARCH
REPORT
N° 9122
Décembre 2017

Project-Team ROMA

On Exploiting Sparsity of
Multiple Right-Hand
Sides in Sparse Direct
Solvers
Patrick Amestoy, Jean-Yves L’Excellent, Gilles Moreau

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

On Exploiting Sparsity of Multiple
Right-Hand Sides in Sparse Direct Solvers

Patrick Amestoy∗, Jean-Yves L’Excellent†, Gilles Moreau†

Project-Team ROMA

Research Report n° 9122 — Décembre 2017 — 28 pages

Abstract: The cost of the solution phase in sparse direct methods is sometimes critical. It
can be larger than the one of the factorization in applications where systems of linear equations
with thousands of right-hand sides (RHS) must be solved. In this paper, we focus on the case
of multiple sparse RHS with different nonzero structures in each column. Given a factorization
A = LU of a sparse matrix A and the system AX = B (or LY = B when focusing on the forward
elimination), the sparsity of B can be exploited in two ways. First, vertical sparsity is exploited by
pruning unnecessary nodes from the elimination tree, which represents the dependencies between
computations in a direct method. Second, we explain how horizontal sparsity can be exploited by
working on a subset of RHS columns at each node of the tree. A combinatorial problem must then
be solved in order to permute the columns of B and minimize the number of operations. We propose
a new algorithm to build such a permutation, based on the tree and on the sparsity structure of
B. We then propose an original approach to split the columns of B into a minimal number of
blocks (to preserve flexibility in the implementation or maintain high arithmetic intensity, for
example), while reducing the number of operations down to a given threshold. Both algorithms
are motivated by geometric intuitions and designed using an algebraic approach, and they can be
applied to general systems of linear equations. We demonstrate the effectiveness of our algorithms
on systems coming from real applications and compare them to other standard approaches. Finally,
we give some perspectives and possible applications for this work.

Key-words: sparse linear algebra, sparse matrices, direct method, multiple sparse right-hand
sides

∗ University of Toulouse, INPT and IRIT laboratory, France
† University of Lyon, Inria and LIP laboratory, France

Exploitation de seconds-membres creux et multiples dans les
solveurs creux directs

Résumé : Le coût des résolutions triangulaires des solveurs creux directs est parfois critique.
Ce coût peut dépasser celui de la factorisation dans les applications qui nécessitent la résolution de
plusieurs milliers de seconds membres. Cette étude se concentre sur les cas où les seconds membres
sont multiples, creux et n’ont pas tous la même structure.

Étant donnée la factorisation A = LU d’une matrice creuse A, l’étude met surtout l’accent sur la
résolution du premier système triangulaire LY = B, où L est triangulaire inférieure. Dans ce type
de problèmes, le creux dans la matrice B peut être exploité de deux manières. Premièrement, on
évite le calcul de certaines lignes, ce qui correspond à élaguer certains nœuds de l’arbre d’élimination
(qui représente les dépendances entre les calculs de la résolution). Deuxièmement, on réduit, pour
chaque nœud, le calcul sur des sous-ensembles de colonnes de B plutôt que sur la matrice complète.
Dans ce cas, un problème combinatoire doit être résolu afin de trouver une permutation des colonnes
de B.

S’appuyant d’abord sur l’algorithme de dissection emboitée appliqué à un domaine régulier, un
premier algorithme est proposé pour contruire une permutation des colonnes deB. Puis une nouvelle
approche permet de poursuivre la réduction du nombre d’opérations grâce à la création de blocs.
Pour préserver la flexibilité de l’implémentation ainsi que l’efficacité des opérations de type BLAS 3,
un nombre minimal de groupe est créé. Inspirés d’abord par des observations géométriques, ces nou-
veaux algorithmes ont été étendus algébriquement pour n’utiliser que des informations provenant
de la structure des seconds membres et des arbres d’élimination. Ils permettent ainsi une conver-
gence rapide vers le nombre minimal d’opérations. Les résultats expérimentaux démontrent le gain
obtenu par rapport à d’autres approches classiques. Enfin, les applications et extensions possibles
de ce travail sont présentées.

Mots-clés : Algèbre linéaire creuse, matrices creuses, méthode directe, seconds membres creux
et multiples

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 3

Introduction
We consider the direct solution of sparse systems of linear equations

AX = B, (1)

where A is an n× n sparse matrix with a symmetric structure and B is an n×m matrix of right-
hand sides (RHS). When A is decomposed under the form A = LU with a sparse direct method [7],
e.g., the multifrontal method [8], the solution can be obtained by forward and backward triangular
solves involving L and U . In this study, we are interested in the situation where not only A is
sparse, but also B, with the columns of B possibly having different structures, and we focus on the
efficient solution of the forward system

LY = B, (2)

where the unknown Y and the right-hand side B are n × m matrices. We will see in this study
that the ideas developed for Equation (2) are indeed more general and can be applied in a broader
context. In particular, they can be applied to the backward substitution phase, in situations where
the system UX = Y must be solved for a subset of the entries in X [3, 17, 19, 20]. In direct methods,
the dependencies of the computations for factorization and solve operations can be represented by
a tree [13], which plays a central role and expresses parallelism between tasks. The factorization
phase is usually the most costly phase but, depending on the number of columns m in B or on
the number of systems to solve with identical A and different B, the cost of the solve phase may
also be significant. As an example, electromagnetism, geophysics or imaging applications can lead
to systems with sparse multiple right-hand sides for which the solution phase is significantly more
costly than the factorization phase [1, 16]. Such applications motivate the algorithms presented in
this study.

A sparse RHS is characterized by its set of nonzeros and it is worth considering a RHS as sparse
when doing so improves performance or storage compared to the dense case. The exploitation
of RHS sparsity (later extended to reduce computations when only a subset of the solution is
needed [17, 19]) was formalised by Gilbert [10] and Gilbert and Liu [11], who showed that the
structure of the solution Y from Equation (2) can be predicted from the structures of L and B.
From this structure prediction, one can design mechanisms to reduce computation. In particular,
tree pruning suppresses nodes in the elimination tree involving only computations on zeros. When
solving a problem with multiple RHS, the preferred technique is usually to process all the RHS
in one shot. The subset of the elimination tree to be traversed is then the union of the different
pruned trees (see Section 2.1). However, when the RHS have different structures, this means that
extra operations on zeros have to be performed. In order to limit these extra operations, several
approaches may be applied. The one that minimizes the number of operations consists in processing
the RHS columns one by one, each time with a different pruned tree. However, such an approach
is not practical and leads to a poor arithmetic intensity (e.g., it will not exploit level 3 BLAS [6]).
Another approach, in the context of blocks of RHS with a predetermined number of columns in each
block, consists in applying heuristics to determine which columns to include within which block.
The objective function to minimize might be the volume of accesses to the factor matrices [3], or
the number of operations [18]. When possible, large sets of columns, possibly the whole set of m
columns, may be processed in one shot. Thanks to the different sparsity structure of each column
of B, it is then possible to work on less than m columns at most nodes in the tree, as explained in
Section 2.2. Such a mechanism has been introduced in the context of the parallel computation of

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 4

entries of the inverse [4], where at each node, computations are performed on a contiguous interval
of RHS columns.

After a description of these mechanisms with illustrative examples, one contribution of this
work is to propose algorithms that improve the exploitation of column intervals at each node. A
geometrical intuition motivates a new approach to obtain a permutation of the columns of B that
significantly reduces computation during (2) with respect to previous work. The algorithm is first
introduced for a nested dissection ordering and for a regular mesh, then generalized to arbitrary
elimination trees. Computation can then be further reduced by dividing the RHS into blocks.
However, instead of enforcing a constant number of columns per block, our objective is to minimize
the number of blocks created. If ∆min(B) represents the number of operations to solve (2) when
processing the RHS columns one by one, we show on real applications that our blocking algorithm
can approach ∆min(B) within a tolerance of 1% while creating a small number of blocks. Please
note that RHS sparsity limits the amount of tree parallelism because only a few branches are
traversed in the elimination tree. Therefore, whenever possible, our heuristics also aim at choosing
the approach that maximizes tree parallelism.

This paper is organized as follows. Section 1 presents the general context of our study and
Section 2 exposes the classical tree pruning technique together with the notion of node intervals
where different intervals of columns may be processed at each node of the tree. In Section 3,
we introduce a new permutation to reduce the size of such intervals and thus limit the number
of operations, first using geometrical considerations for a regular nested dissection ordering, then
with a pure algebraic approach that can then be applied in a general case and for arbitrary right-
hand sides. We call it the Flat Tree algorithm because of the analogy with the ordering that
one would obtain when “flattening” the tree. In Section 4, an original blocking algorithm is then
introduced to further improve the flat tree ordering. It aims at defining a limited number of blocks
of right-hand sides to minimize the number of operations while preserving parallelism. Section 5
gives experimental results on a set of systems coming from two geophysics applications relying on
Helmholtz or Maxwell equations. Section 6 discusses adaptations of the nested dissection algorithm
to further decrease computation and Section 7 shows why this work has a broader scope than solving
Equation (2) and presents possible applications.

1 Nested dissection, sparse direct solvers and triangular solve
In sparse direct methods, the order of the variables of a sparse matrix A strongly impacts the
number of operations for the factorization, the size of the factor matrices, and the cost of the solve
phase. We illustrate in Figure 1 the use of nested dissection on a regular mesh [9].

The nested dissection algorithm consists in dividing domains with separators. The regular
3×3×3 domain shown in Figure 1(a) is first divided by a 3×3 constant-x plane separator (variables
{19, . . . , 27} forming separator u0) into two even subdomains. Each subdomain is then divided
recursively (constant-y plane separators {16, 17, 18} and {7, 8, 9}, etc.). By ordering the separators
after the subdomains, large blocks of zeros limit the amount of computation (Figure 1(b)). Although
it could be different, the order inside each separator is similar to [9, Appendix].

The elimination tree [13] represents dependencies between computations: it is processed from
bottom to top in the factorization and forward elimination, and from top to bottom in the backward
substitution. The elimination tree may be compressed thanks to the use of supernodes, leading to
a tree identical to the separator tree of Figure 1(c) when choosing supernodes identical to the sepa-

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 5

xz

y

1

4

2

5

10

11

13

14
3

6

12

15

7

9

8

16

18

17

19

20

21

22
23

24

25

26

27

(a) 3× 3× 3 regular mesh.

1

5

10

15

20

25

×××××××××××××××××××××××××××

×

×

×

×

×

×

×

×

×

×

×
×
×

×

×

×
×

××

×
×

×

×

×

×

×

×

×

×
×

×

××
×

×

×

××

×

×

×
×

××××××××××××

f

f f

f

f f

f

f

f

f

f

f
f

f

f

f

f f

f

f ff

f

f f
f

f f

f f
f

f

f

f

f

f

f
f

f

f

f f

f

f

f f
f f
f f

f f f
f f
f f
f

f f f

f
f

f
f
f

f
f

f

f
f

f
f

f

f

f
f

f

f
f
f
f
f f

u0

u2

u21

u211
u212

u22

u221
u222

u1

u11

u111
u112

u12

u121
u122

(b) Structures of A and L.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

{19, . . . ,27}

{16,17,18}

{15}

{14}{13}

{12}

{11}{10}

{7,8,9}

{6}

{5}{4}

{3}

{2}{1}

(c) Separator tree T .

Figure 1: (a) A 3D mesh with a 7-point stencil. Mesh nodes are numbered according to a nested
dissection ordering. (b) Corresponding matrix with initial nonzeros (×) in the lower triangular part
of a symmetric matrix A and fill-in (f) in the L factor. (c) Separator tree, also showing the sets of
variables to be eliminated at each node.

rators resulting from the nested dissection algorithm1. We note that the order in which tree nodes
are processed (u111, u112, u11, . . . , u0), represented on the right of the matrix, is a postordering:
nodes in any subtree are processed consecutively.

L11

U11

L21

U12

βu

αu

Figure 2: Structure of the factors associated to a node u of the tree.

Considering a single RHS b and the decomposition A = LU , the solution of the triangular system
Ly = b (and Ux = y) relies on block operations at each node of the tree T . Figure 2 represents the
L and U factors restricted to a given node u of T , where the diagonal block is formed of the two
lower and upper triangular matrices L11 and U11, and the update matrices are L21 and U12. The
αu variables are the ones of node (or separator) u, and the βu variables correspond to the nonzero
rows in the off-diagonal parts of the L factor restricted to node u (Figure 1(b)), that have been
gathered together. For example, node u1 from Figure 1 corresponds to separator {7, 8, 9}, so that
L11 and U11 are of order αu1 = 3 and there are βu1 = 9 update variables {19, . . . , 27}, so that L21 is
of size 9×3 (and U12 is of size 3×9). Starting with y ← b, the active components of y are gathered
into two temporary dense vectors y1 of size αu and y2 of size βu at each node u of T , where the
triangular solve

y1 ← L−1
11 y1, (3)

1Note that in this example, identifying supernodes to separators leads to relaxed supernodes: although some
sparsity exists in the interaction of u7 and u0 (and u112 and u0), the interaction is considered dense and few
computations on zeros are performed to benefit from larger blocks.

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 6

is performed, followed by the update operation

y2 ← y2 − L21y1. (4)

y1 and y2 can then be scattered back into y, and y2 will be used at higher levels of T . When the
root is processed, y contains the solution of Ly = b. Because the matrix blocks in Figure 2 are
considered dense, there are αu(αu − 1) arithmetic operations for the triangular solution (3) and
2αuβu operations for the update operation (4), leading to a total number of operations

∆ =
∑
u∈T

δu, (5)

where δu = αu × (αu − 1 + 2βu) is the number of arithmetic operations at node u.

2 Exploitation of sparsity in right-hand sides
In this section, we review two approaches to exploit sparsity in B when solving the triangular
system (2). The first one, called tree pruning [11, 17] and explained in Section 2.1, consists in
pruning the nodes at which only computations on zeros are performed. The second one, presented
in Section 2.2, goes further by working on different sets of RHS columns at each node of the tree [4].

2.1 Tree pruning
Consider a non-singular n × n matrix A with a nonzero diagonal, and its directed graph G(A),
with an edge from vertex i to vertex j if aij 6= 0. Given a vector b, let us define struct(b) =
{i, bi 6= 0} as its nonzero structure, and closureA(b) as the smallest subset of vertices of G(A)
including struct(b) without incoming edges. Gilbert [10, Theorem 5.1] characterizes the structure
of the solution of Ax = b by the relation struct(A−1b) ⊆ closureA(b), with equality in case there
is no numerical cancellation. In our context of triangular systems, ignoring such cancellation,
struct(L−1b) = closureL(b) is also the set of vertices reachable from struct(b) in G(LT), where
edges have been reversed [11, Theorem 2.1]. Finding these reachable vertices can be done using
the transitive reduction of G(LT), which is a tree (the elimination tree) when L results from the
factorization of a matrix with symmetric (or symmetrized) structure.

Since we work with a tree T with possibly more than one variable to eliminate at each node,
let us define Vb as the set of nodes in T including at least one element of struct(b). The structure
of L−1b can be obtained by following paths from the nodes of Vb upto the root and these will be
the only nodes needed to compute L−1b. The tree consisting of this subset of nodes is what we call
the pruned tree for b, and we note it Tp(b). Thanks to this pruned tree, the number of operations
∆ from Equation (5) now depends on b:

∆(b) =
∑

u∈Tp(b)

δu. (6)

Example 2.1. Let b be a vector with nonzeros at positions 4, 13, and 21. The corresponding tree
nodes are given by Vb = {u121, u221, u0}, see Figures 1 and 3. Following the paths in T from nodes
in Vb to the root results in the pruned tree of Figure 3(b). Compared to ∆ = 288 in the case of a
dense right-hand side, ∆(b) = 228 (δu121 = δu221 = 6, δu12 = δu22 = 12, δu2 = δu1 = 60, δu0 = 72).

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

×

×

×

f

f

f
f
f

f
f
f
f
f

f
f
f
f
f
f

u0

u2

u21

u211u212

u22

u221u222

u1

u11

u111u112

u12

u121u122
×

f

f

×

f

f

×u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

×

f

f

×

f

f

×u0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

(a) Structure of L−1b.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

(b) Pruned tree Tp(b).

Figure 3: Illustration of Example 2.1. (a) Structure of L−1b with respect to matrix variables
(left) and to tree nodes (middle and right). × corresponds to original nonzeros and f to fill-in.
In the dense case (middle) and the sparse case (right), gray parts of L−1b are the ones involving
computation. (b) Pruned tree Tp(b): pruned nodes and edges are represented with dotted lines and
nodes in Vb are filled.

We now consider the case of multiple RHS (Equation (2)), where RHS columns may have
different structures and denote by Bi the columns of B, for 1 ≤ i ≤ m. Instead of solving m linear
systems with each pruned tree Tp(Bi), one generally prefers to favor matrix-matrix computations
for performance reasons. For that, a first approach consists in considering VB =

⋃
1≤i≤m VBi , the

union of all nodes in T with at least one nonzero from matrix B, and the pruned tree Tp(B) =⋃
1≤i≤m Tp(Bi) containing all nodes in T reachable from nodes in VB . In that case, triangular and

update operations (3) and (4) become Y1 ← L−1
11 Y1 and Y2 ← Y2 −L21Y1, at each node of the tree.

The number of operations can then be defined as:

∆(B) = m×
∑

u∈Tp(B)

δu. (7)

Example 2.2. Figure 4(a) shows a RHS matrix B = [{B11,1}, {B6,2}, {B13,3},{B10,4}, {B2,5}] in
terms of original variables (1 to 27) and in terms of tree nodes (VB = {u212, u12, u221, u211, u112}).
In Figure 4(a), × corresponds to an initial nonzero in B and f corresponds to “fill-in” that appears
in L−1B during the forward elimination on the nodes that are on the paths from nodes in VB to the
root (see Figure 4(b)). We have ∆(B) = 5× 264 = 1320 and ∆(B1) + ∆(B2) + . . .+ ∆(B5) = 744.

At this point, we exploit tree pruning but perform extra operations by considering globally
Tp(B) instead of each individual pruned tree Tp(Bi). In other words, we only exploit the vertical
sparsity of B. Processing B by smaller blocks of columns would further reduce the number of
operations at the cost of more traversals of the tree and a smaller arithmetic intensity, with a
minimal number of operations ∆min(B) =

∑
i=1,m ∆(Bi) reached when B is processed column by

column, as in Figure 4(a)(right). We note that performing this minimal number of operations while
traversing the tree only once (and thus accessing the L factor only once) from leaves to root would
require performing complex and costly data manipulations at each node u with copies and indirect
accesses to work only on the active columns of B at u. We present in the next section a simpler
approach which consists in exploiting the notion of intervals of columns at each node u ∈ Tp(B).
This approach to exploit what we call horizontal sparsity in B was introduced in another context [4].

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

×

×

×

×

×

f

f
f
f
f
f
f
f
f
f
f
f
f

f
f
f

f
f
f
f
f
f
f
f
f

f
f
f
f
f
f
f
f
f
f
f
f
f

f

f
f
f
f
f
f
f
f
f
f
f
f

f

f
f
f

f
f
f
f
f
f
f
f
f

u0

u2

u21

u211u212

u22

u221u222

u1

u11

u111u112

u12

u121u122

×
f

f

f

×
f

f

×

f

f

f

×

f

f

f

×
f

f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 2 3 4 5 1

×
f

f

f

2

×
f

f

3

×

f

f

f

4

×

f

f

f

5

×
f

f

f

(a) Structures of L−1B, L−1B1, . . . , L−1B5.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

(b) Pruned tree Tp(B) = Tp(B1) ∪ . . . ∪ Tp(B5).

Figure 4: Illustration of multiple RHS and tree pruning corresponding to Example 2.2. Gray parts
of L−1B (resp. of L−1Bi) are the ones involving computations when RHS are processed in one shot
(resp. one by one).

2.2 Working with column intervals at each node
Given a matrix B, we associate to a node u ∈ Tp(B) its set of active columns

Zu = {j ∈ {1, . . . ,m} | u ∈ Tp(Bj)} . (8)

The interval Jmin(Zu),max(Zu)K includes all active columns, and its length is

θ(Zu) = max(Zu)−min(Zu) + 1.

Zu is sometimes defined for an ordered or partially ordered subset R of the columns of B, in
which case we use the notations Zu|R, and θ(Zu|R). For u in Tp(B), Zu is non-empty and θ(Zu)
is different from 0. The main idea is then to perform the operations (3) and (4) on the θ(Zu)
contiguous columns Jmin(Zu),max(Zu)K instead of the m columns of B, leading to

∆(B) =
∑

u∈Tp(B)

δu × θ(Zu). (9)

Example 2.3. In Example 2.2, there are nonzeros in columns 1 and 4 at node u21 so that Zu21 =
{1, 4} (see Figure 5). Instead of performing the solve operations on all 5 columns at node u21, we
limit the computations to the θ(Zu21) = 4 columns of interval J1, 4K (and to a single column at,
e.g., node u221). Overall, ∆(B) is reduced from 1320 to 948 (while ∆min(B) = 744).

It is clear from Example 2.3 that θ(Zu) and ∆(B) strongly depend on the order of the columns
in B. In Section 3, we formalize the problem of permuting the columns of B and propose a new
heuristic to find such a permutation. In Section 4, we further decrease the number of operations
by identifying and extracting “problematic” columns.

3 Permuting RHS columns
We showed in Section 2.2 that horizontal sparsity can be exploited thanks to column intervals. The
number of operations to solve (2) then depends on the permutation of the columns of B and we

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 9

×
f

f

f

×
f

f

×

f

f

f

×

f

f

f

×
f

f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 2 3 4 5

(a) Structure of L−1B.

u0

u2

u22

u222u221

u21

u212u211

u1

u12

u122u121

u11

u112u111

J1, 5K

J1, 4K

J3, 3K

∅J3, 3K

J1, 4K

J1, 1KJ4, 4K

J2, 5K

J2, 2K

∅∅

J5, 5K

J5, 5K∅

(b) Pruned tree Tp(B) with intervals.

Figure 5: Column intervals corresponding to Example 2.3: in gray (a) and above/below each
node (b).

express the corresponding minimization problem as:

Find a permutation σ of {1, . . . ,m} that minimizes ∆(B, σ) =
∑
u∈Tp(B) δu × θ(σ(Zu)),

where σ(Zu) = {σ(i) | i ∈ Zu} , and
θ(σ(Zu)) is the length of the permuted interval Jmin(σ(Zu)),max(σ(Zu))K.

(10)

Rather than trying to solve the global problem with linear optimization techniques, we will propose
a cheap heuristic based on the tree structure. We first define the notion of node optimality.

Definition 3.1. Given a node u in Tp(B), and a permutation σ of {1, . . . ,m}, we say that we have
node optimality at u, or that σ is u−optimal if and only if θ(σ(Zu)) = #Zu, where #Zu is the
cardinal of Zu. Said differently, σ(Zu) is a set of contiguous elements.

Remark that θ(σ(Zu))−#Zu is the number of extra columns (or padded zeros) on which extra
computation is performed and is equal to 0 in case σ is u−optimal.

Example 3.1. Consider the RHS structure of Figure 5(a) and the identity permutation. We
have node optimality at u0 because #Zu0 = #{1, 2, 3, 4, 5} = 5 = θ(Zu0). We do not have
node optimality at u1 and u2 because the numbers of padded zeros are θ(Zu1) − #Zu1 = 2 and
θ(Zu2)−#Zu2 = 1, respectively. Our aim is thus to find a permutation σ that reduces the difference
θ(σ(Zu))−#Zu.

In the following, we first present a permutation based on a postordering of Tp(B), then expose
our new heuristic, which targets node optimality in priority at the nodes near the top of the tree.

3.1 The Postorder permutation
In Figure 1, the sequence [u111, u112, u11, u121, u122, u12, u1, u211, u212, u21, u221, u222, u22, u2,
u0] used to order the matrix follows a postordering: any subtree contains a set of consecutive nodes
in that sequence. This postordering is also the basis to permute the columns of B:

Definition 3.2. Consider a postordering of the tree nodes u ∈ T , and a RHS matrix B = [Bj]j=1...m
where each column Bj is represented by one of its associated nodes u(Bj) ∈ VBj (see below). B is

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 10

said to be postordered if and only if: ∀j1, j2, 1 ≤ j1 < j2 ≤ m, we have either u(Bj1) = u(Bj2), or
u(Bj1) appears before u(Bj2) in the postordering. In other words, the order of the columns Bj is
compatible with the order of their representative nodes u(Bj).

The postordering has been applied [3, 17, 18] to group together in regular chunks RHS columns
with “nearby” pruned trees, thereby limiting the accesses to the factors or the amount of compu-
tation. It was also experimented together with node intervals [4] to RHS with a single nonzero per
column, although it was then combined with an interleaving mechanism for parallel issues.

Remark that the RHS B of Figure 5(a) only has one initial nonzero per column. The represen-
tative nodes for each column are u212, u12, u221, u211, and u112, respectively. The initial natural
order of the columns (INI) induces computation on explicit zeros represented by gray empty cells
and we had ∆(B) = ∆(B, σINI) = 948 and ∆min(B) = 744 (see Example 2.3). On the other hand,
the postorder permutation, σPO, reorders the columns of B so that the order of their representative
nodes u112, u12, u211, u212, u221 is compatible with the postordering and avoids computations on ex-
plicit zeros. In this case, there are no gray empty cells (see Figure 6(a)) and ∆(B, σPO) = ∆min(B).
More generally, it can be shown that the postordering induces no extra computations for RHS with
a single nonzero per column [4].

For applications with multiple nonzeros per RHS, each column Bj may correspond to a set VBj
with more than one node, among which a representative node should be chosen. We describe two
strategies. The first one, called PO_1, chooses as representative node the one corresponding to the
first nonzero found in Bj (in the natural order associated to the physical problem). The second
one, called PO_2, chooses as representative node in VBj the one that appears first in the sequence of
postordered nodes of the tree. A comparison of the two postorders with the initial natural order is
provided in Table 1, for four problems presented in Table 2 of Section 5. Note that the initial order
depends on the physical context of the application and has some geometrical properties. Table 1

Table 1: Comparison of the number of operations (×1013) between postorder strategies PO_1 and
PO_2.

∆ INI PO_1 PO_2 ∆min

H0 .086 .076 .070 .050
H3 2.48 1.69 1.47 .95
5Hz .44 .44 .36 .22
7Hz 1.46 1.48 1.21 .69

shows that the choice of the representative node has a significant impact. The superiority of PO_2
over PO_1 is clear and is larger when the number of nonzeros per RHS column is large (problems
5Hz and 7Hz). Indeed, PO_1 is even worse than the initial order on problem 7Hz.

Example 3.2. LetB = [B1, B2, B3, B4, B5, B6] = [{B1,1, B10,1, B19,1}, {B4,2}, {B13,3, B15,3},{B2,3},
{B5,4, B14,4, B22,4}, {B10,5}] be the RHS represented in Figure 6(b). In terms of tree nodes, we
have: VB1 = {u111, u211, u0}, VB2 = {u121}, etc. Because the rows of B have already been
permuted according to the postordering of the tree, the representative nodes for strategies PO_1
and PO_2 are in both cases the nodes u111, u121, u221, u112, u122, u211 (cells with a bold con-
tour), for columns B1, B2, B3, B4, B5, B6, respectively. The postorder permutation yields σPO(B) =
[B1, B4, B2, B5, B6, B3], which reduces the number of gray cells and the volume of computation with
respect to the original column ordering: ∆(B) = 1368 becomes ∆(B, σPO) = 1242. Computations on
padded zeros still occur, for example at nodes u211 and u21 where θ(σPO(Zu211)) = θ(σPO(Zu21)) = 5

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 11

×
f

f

f

×
f

f

×

f

f

f

×

f

f

f

×
f

f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 2 3 4 5

→
σPO

×
f

f

f

×
f

f

×

f

f

f

×

f

f

f

×
f

f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

5 2 4 1 3

(a) RHS structure with a single
nonzero per column.

×

f

f

×

f

f

×

×

f

f

f

×

×
f

f

×
f

f

f

×
f

f

×
f

f

×

×

f

f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 2 3 4 5 6

→
σPO

×

f

f

×

f

f

×

×

f

f

f

×

×
f

f

×
f

f

f

×
f

f

×
f

f

×

×

f

f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

1 4 2 5 6 3

→
σFT

×
f

f

f

×

f

f

f

×

f

f

×

f

f

×

×
f

f

×
f

f

×

×

f

f

f

×

×
f

fu0

u2

u22

u222

u221

u21

u212

u211

u1

u12

u122

u121

u11

u112

u111

4 2 1 5 6 3

(b) RHS structure with multiple nonzeros per column.

Figure 6: Illustration of the permutation σPO based on a postordering strategy on two RHS with (a)
a single initial nonzero per column (Example 2.2), and (b) multiple nonzeros per column (Example
3.2).

whereas #Zu211 = #Zu21 = 2. In Figure 6(b), we represented another permutation σFT that will be
discussed in the next section and that yields ∆(B, σFT) = 1140.

Remark that the quality of σPO depends on the original postordering. In Example 3.2, if u111
and u112 were exchanged in the original tree postordering, B1 and B4 would be swapped, and ∆
would be further improved. A possible drawback of the postorder permutation is also that, since the
position of a column is based a single representative node, some information on the RHS structure
is unused. We now present a more general and powerful heuristic.

3.2 The Flat Tree permutation
With the aim of satisfying node optimality (see Definition 3.1), we present another algorithm to
compute the permutation σ by first illustrating its geometrical properties and then extending it to
only rely on algebraic properties.

3.2.1 Geometrical illustration

In the example of Section 1, the variables of a separator u are the ones of the corresponding node u in
the tree T . We use the same approach to represent a domain: for u ∈ T , the domain associated with
u is defined by the subtree rooted at u and is noted T [u]. The set of variables in T [u] corresponds to
a subdomain created during the nested dissection algorithm. As an example, the initial 2D domain
in Figure 7(a) (left) is T [u0] and its subdomains created by dividing it with u0 are T [u1] and T [u2].
In the following, T [u] will equally refer to a subdomain or a subtree. Figure 7 shows several types
of RHS with different positions and nonzero structures. For the sake of simplicity, we assume here
that the nonzeros in an RHS column correspond to geometrically contiguous nodes in the domain,
as represented in Figure 7(a)(left). We also assume a regular domain for which a perfect nested
dissection has been performed. For instance, all separators are in the same direction at each level
of the tree.

The Flat Tree algorithm relies on the evaluation of the position of each RHS column compared
to separators of the nested dissection algorithm. The name Flat Tree comes from the fact that,

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 12

u0

u1 u2a

a

a

a

b

b

b

c

c

c

c

a b c

T [u1]

u1

T [u2]

u2
u0

×

f

×

×

×

×

f

(a) Flat Tree step 1.

u0

u1 u2

u12

u11

u22

u21

e

d

d

f

h

g

i

k

j

l

l

d e f g h i j k l

T [u11]

T [u12]
u1

T [u21]

T [u22]
u2
u0

×

f

f

×

×
×

f

×
f

f

×

f

×

f

×

×

×
×
×

×
×
×

×
f

×
f

×

×

f

f

×

×
×
f

×
f

f

(b) Flat Tree step 2.

Figure 7: A first illustration of the “flat tree” permutation on a 2D domain. In (a) and (b), the
figure on the left represents a partitioned 2D domain with different types of RHS, and the one on
the right the partial structures of the permuted matrix of RHS. × or f in a rectangle indicate the
presence of nonzeros in the corresponding submatrix, parts of the matrix filled in grey are fully
dense and blank parts only contain zeros.

given a parent node with two child subtrees in the separator tree T , the algorithm orders first RHS
columns included in the left subtree, then RHS columns associated to the parent (because they
intersect both subtrees), and finally, RHS columns included in the right subtree. Figure 7(a) shows
the first step of the algorithm: it starts with the root separator u0 which divides T = T [u0] into
T [u1] and T [u2]. The initial RHS columns may be identified by three different types noted a, b
and c according to their positions and nonzero structures. An RHS column is of type a when its
nonzero structure is included in T [u1], c when it is included in T [u2], and b when it is divided by
u0. First, we group the RHS according to their type (a, b, or c) with respect to u0 which leads to
the creation of submatrices/subsets of RHS columns noted a, b and c. Second, we make sure to
place b between a and c. We thus achieve operation reduction by guaranteeing node optimality at
u1 and u2: since all RHS in a and b have at least one nonzero in T [u1], u1 belongs to the pruned
tree of all of them, hence the dense area filled in gray in the RHS structure. The same is true for b
and c and u2. By permuting B as [a, b, c] ([c, b,a] would also be possible), a and b, and b and c,
are contiguous. Thus, θ(Zu1) = #Zu1 , θ(Zu2) = #Zu2 and we have u1− and u2−optimality. The
algorithm proceeds recursively on each newly created submatrix (see Figure 7(b)) to obtain local
node optimality. First, d, e,f (resp. j, k, l) form subsets of the RHS of a (resp. c) based on their
position/type with respect to u1 (resp. u2). Second, thanks to the fact that u1 and u2 are perfectly
aligned, they can be combined to form a single separator that subdivides the RHS of b into three
subsets g, h and i, see Figure 7(b). During this second step, B is permuted as [d, e,f , g,h, i, j,k, l].
The complete permutation is then obtained by applying the algorithm recursively on each subset
until the tree is fully processed or the RHS sets contain a single RHS.

This draws the outline of the algorithm introduced with geometrical considerations. The per-
mutation fully results from the position of each RHS with respect to separators. However, the
algorithm relies on strong assumptions regarding the ordering algorithm and the RHS structure.
Without them, it is difficult or impossible to discriminate RHS columns in many cases (for example,
when they are separated by several separators). In order to overcome these limitations and enlarge
the application field, we now extend these geometrical considerations with a more general approach.

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 13

3.2.2 Algebraic approach

Let us consider the columns of B = [B1, B2, . . . , Bm] as an initially unordered set of RHS columns
that we note RB = {B1, B2, . . . , Bm}. A subset of the columns of B is denoted by R ⊂ RB and
a generic element of R (one of the columns Bj ∈ R) is noted r. A permuted submatrix of B can
be expressed as an ordered sequence of RHS columns with square brackets. For two subsets of
columns R and R′, [R, R′] denotes a sequence of RHS columns in which the RHS from the subset
R are ordered before those from R′, without the order of the RHS inside R or R′ to be necessarily
defined. We found this framework of RHS sets and subsets simpler and better adapted to formalize
our algebraic algorithm than matrix notations with complex index permutations. We recall that T
is the tree and that, for r ∈ RB , Tp(r) is the pruned tree of r, as defined in Section 2.1. We now
characterize the geometrical position of a RHS using the notion of pruned layer : for a given depth
d in the tree, and for a given RHS r, we define the pruned layer Ld(r) as the set of nodes at depth
d in the pruned tree Tp(r). In the example of Figure 7(a), L1(r) = {u1} for all r ∈ a, L1(r) = {u2}
for all r ∈ c, and L1(r) = {u1, u2} for all r ∈ b. The notion of pruned layers allows to formally
identify sets of RHS with common characteristics in the tree without any geometrical information.
This is formalized and generalized by Definition 3.3.

Definition 3.3. Let R ⊂ RB be a set of RHS, and let U be a set of nodes at depth d of the tree
T . We defined R[U] = {r ∈ R | Ld(r) = U} as the subset of RHS with pruned layer U .

We have for example, see Figure 7: R[{u1}] = a, R[{u2}] = c and R[{u1, u2}] = b at depth
d = 1.

The algebraic recursive algorithm is depicted in Algorithm 1. Its arguments are R, a set of RHS
and d, the current depth. Initially, d = 0 and R = RB = R[u0], where u0 is the root of the tree T .
At each step of the recursion, the algorithm builds the distinct pruned layers Ui = Ld+1(r) for the
RHS r in R. Then, instead of looking for a permutation σ to minimize

∑
u∈Tp(RB) δu × θ(σ(Zu))

(10), it orders the R[Ui] by considering the restriction of problem (10) to R and to nodes at depth
d+ 1 of Tp(R). Furthermore, with the assumption that T is balanced, all nodes at a given level of
Tp(R) are of comparable size. δu may thus be assumed constant per level and needs not be taken
into account in our minimization problem. The algorithm is thus a greedy top-down algorithm,
where at each step a local optimization problem is solved. This way, priority is given to the top
layers of the tree, which are in general more critical because factor matrices are larger.

Algorithm 1 Flat Tree
procedure Flattree(R, d)

1) Build the set of children C(R)
1.1) Identify the distinct pruned layers (pruned layer = set of nodes)
U ← ∅
for all r ∈ R do
U ← U ∪ {Ld+1(r)}

end for
1.2) C(R) = {R[U] | U ∈ U}
2) Order children C(R) as [R[U1], . . . , R[U#C(R)]]:
return [Flattree(R[U1], d+ 1),. . .,Flattree(R[U#C(R)], d+ 1)]

end procedure

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 14

The recursive structure of the algorithm can be represented by a recursion tree Trec defined as
follows: each node R of Trec represents a set of RHS, C(R) denotes the set of children of R and the
root is RB . By construction of Algorithm 1, C(R) is a partition of R, i.e., R =

⋃̇
R′∈C(R)R

′ (disjoint
union). Note that all r ∈ R such that Ld+1(r) = ∅ belong to R[∅], which is also included in C(R). In
this special case, R[∅] can be added at either extremity of the current sequence without introducing
extra computation and the recursion stops for those RHS, as will be illustrated in Example 3.3.

With this construction, each leaf of Trec contains RHS with indistinguishable nonzero structures,
and keeping them contiguous in the final permutation avoids introducing extra computations. As-
suming that for each R ∈ Trec the children C(R) are ordered, this induces an ordering of all the
leaves of the tree, which defines the final RHS sequence. We now explain how the set of children
C(R) is built and ordered at each step:

1) Building the set of children The set of children of R in the recursion tree is built by first
identifying the pruned layers U of all RHS r ∈ R. The different pruned layers are stored in U
and we have for example (Figure 7, first step of the algorithm), U = {{u1}, {u2}, {u1, u2}}. Using
Definition 3.3, we then define C(R) = {R[U] | U ∈ U}, which forms a partition of R. One important
property is that all r ∈ R[U] have the same nonzero structure at the corresponding layer so that
numbering them contiguously prevent the introduction of extra computation.

2) Ordering the children At each depth d of the recursion, the ordering of the children
results from the resolution of the local optimization problem consisting in finding a sequence
[R[U1], . . . , R[U#C(R)]] such that the size of the intervals is minimized for all nodes u at depth
d+1 of the pruned tree Tp(R). As mentioned earlier, when solving this local optimization problem,
the RHS order inside each R[Ui] has no impact on the size of the intervals (it will only impact lower
levels). For any node u in Tp(R) such that depth(u) = d+ 1, the size of the interval is then:

θ(Zu|R) = max(Zu|R)−min(Zu|R) + 1 =
imax(u)∑
i=imin(u)

#R[Ui],

where Zu|R is the set of permuted indices representing the active columns restricted to R, and
imin(u) = min{i ∈ {1, . . . ,#C(R)} | u ∈ Ui} (resp. imax(u) = max{i ∈ {1, . . . ,#C(R)} | u ∈ Ui})
is the first (resp. last) index i such that u ∈ Ui.

Proof. In the sequence [R[U1], . . . , R[U#C(R)]], min(Zu|R) (resp. max(Zu|R)) corresponds to the
index of the first (resp. last) column in R[Uimin] (resp. R[Uimax]). Since all columns from R[Uimin]
to R[Uimax] are numbered consecutively, we have the desired result.

Finally, our local problem consists in minimizing the local cost function (sum of the interval
sizes for each node at depth d+ 1):

cost([R[U1], . . . , R[U#C(R)]]) =
∑

u∈Tp(R)
depth(u)=d+1

imax(u)∑
i=imin(u)

#R[Ui] (11)

To build the ordered sequence [R[U1], . . . , R[U#C(R)]], we use a greedy algorithm that starts
with an empty sequence, then, at each step k ∈ {1, . . . ,#C(R)}, we insert a RHS set R[U] picked

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 15

randomly in C(R) at the position that minimizes (11) on the current sequence. To do so, we simply
start from one extremity of the sequence of size k − 1 and compute (11) for the new sequence
of size k for each possible position 0 . . . k; if several positions lead to the same minimal cost, the
first one encountered is chosen. In case u−optimality is obtained for each node u considered, then
the permutation is said to be perfect and the cost function is minimal, locally inducing no extra
operations on those nodes.

R[u0]
d = 0

R[u1] R[u1u2] R[u2]
d = 1

R[u11] R[u11u12] R[u12] ∗ R[u21] R[u21u22] R[u22]
d = 2

Figure 8: Representation of a layered sequence built by the Flat Tree algorithm on a binary tree.
Sets with empty pruned layers have not been represented but could be added at the extremity
of the concerned sequence (e.g., right after R[u2] for a RHS included in u0). With the geometric
assumptions corresponding to Figure 7, one would have * = R[u11u21], R[u11u12u21u22], R[u12u22].
Without such assumptions, the sequence * is more complex.

Figure 8 shows the recursive structure of the RHS sequence after applying the algorithm on a
binary tree. We refer to this representation as the layered sequence. For simplicity, the notation for
pruned layers has been reduced from, e.g., {u1} to u1, and from {u1, u2} to u1u2. From the recursion
tree point of view, R[u1], R[u1u2], R[u2] are the children of R[u0] in Trec, R[u11], R[u11u12], R[u12]
the ones of R[u1], etc.

×
×
×
f

f

f

f

×
×
×

×
××

×
f

f

×
f

×

f

f

×

f

×
f

fu0

u2

u22

u21

u1

u12

u11

1 2 3 4 5 6 7

σFT

f

f

×
×
×

×
×

×
f

×

f

f

×
×
×
f

f

×

f

×
f

f

×
f

f ×

2 3 6 1 7 5 4

(a) RHS structure.

u0

u2

u22u21

u1

u12u11

(b) Separator tree T .

R[u0]
B1, . . . , B7

R[u1u2]
B1B3B6B7

R[u11u22]
B7

R[u21u22]
B1

R[u12u21]
B6

R[u12]
B3

R[u1]
B2

R[u2]
B5

R[∅]
B4

(c) Recursion tree Trec.

Figure 9: Illustration of the algebraic Flat Tree algorithm on a set of 7 RHS.

Example 3.3. Let B = [B1, B2, B3, B4, B5, B6, B7] be a RHS matrix with the structure presented
in Figure 9(a). Although we still use a binary tree, we make no assumption on the RHS structure,
on the domain, or on the ordering. We have RB = R[u0] = {B1, B2, B3, B4, B5, B6, B7}. At depth
1, the set of pruned layers corresponding to R[u0] is U = {u1, u1u2, u2, ∅}, with the RHS partition
composed of the sets R[u1], R[u2], R[u1u2] and R[∅]. Then, C(R[u0]) = {R[u1], R[u1u2], R[u2], R[∅]}
and the recursion tree shown in Figure 9(c) is built from top to bottom. As can be seen in the
non-permuted RHS structure, R[∅] = B4 at depth 1 induces extra operations at nodes descen-
dant of u0, which disappear when placing R[∅] at one extremity of the sequence. We choose to

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 16

place it last, and the ordered sequence obtained by the algorithm is [R[u1], R[u1u2], R[u2], R[∅]]
([R[u2], R[u1u2], R[u1], R[∅]] is also possible). A recursive call is done on each of the identified sets.
We only focus on R = R[u1u2] since R[u1], R[u2] and R[∅] contain a single RHS which needs not
be further ordered. At this stage, the set of pruned layers is U = {u21u22, u12, u12u21, u11u22}. It
appears that the sequence [R[U1], R[U2], R[U3], R[U4]], where U1 = u12, U2 = u12u21, U3 = u21u22,
and U4 = u11u22 is a perfect sequence which gives local optimality. However, taking the problem
globally, we see that θ(Zu11) 6= #Zu11 with the final sequence [B2, B3, B6, B1, B7, B5, B4].

The algebraic algorithm simplifies the assumptions that were made in the geometrical one. The
nonzeros of each RHS no longer need to be geometrically localized, and we can address irregular
problems and orderings that yield non binary trees. We compared both approaches on problems H0,
H3, 5Hz and 7Hz from Table 2 and observed, even with nested dissection, an average 7% gain on ∆
with the algebraic approach, which we will use in all our experiments. Nevertheless, computations
on explicit zeros (for example zero rows in column f and subdomain T [u11] in Figure 7(b)), may
still occur. This will also be illustrated in Section 5, where ∆(B, σFT) is 39% larger than ∆min(B),
in the worst case. A Blocking algorithm is now introduced to further reduce ∆(B, σFT).

4 Toward a minimal number of operations using blocks
In this section, we identify the causes of the remaining extra operations and provide an efficient
blocking algorithm to reduce them efficiently while creating a small number of blocks. The algorithm
relies on a property of independence of right-hand sides that is first illustrated, and then formalized.

4.1 Objectives and first illustration of independence property
The use of blocking techniques may fulfill different objectives. In terms of operation count, op-
timality (∆min(B)) is obtained when processing the columns of B one by one, which implies the
creation of m blocks. However, this requires processing the tree m times and will typically lead to
a poor arithmetic intensity (and likely a poor performance). On the other hand, the algorithms
of Section 3 only use one block, which allows a higher arithmetic intensity but leads to extra op-
erations. In the dense case, blocks are also often used to improve the arithmetic intensity. In the
sparse RHS case, blocking techniques with regular blocks of columns have been associated to tree
pruning to either limit the access to the factors [3], or limit the number of operations [18]. They
were either based on a preordering of the columns or on hypergraph models. In this section, to
give as much flexibility as possible to the underlying algorithms and avoid unnecessary constraints,
our objective is to create a minimal number of (possibly large) blocks while reducing the number
of extra operations by a given amount. In particular, we allow blocks to be irregular and assume
node intervals are exploited within each block.

On the one hand, in the same way as variables in two different domains are independent, two
RHS or two sets of RHS included in two different domains exhibit interesting properties, as can be
observed for sets a ∈ T [u1] and c ∈ T [u2] from Figure 7(a). It implies that no extra operations
are introduced between them: ∆([a, c]) = ∆(a) + ∆(c). We say that a and c are independent sets
and can thus be associated together. On the other hand, a set of RHS intersecting a separator
(such as set b) exhibits some zeros and nonzeros in rows common to their adjacent RHS sets (a
and c) which will likely introduce extra computation. For example, one can see in Figure 7(b) that
∆([a, b]) = ∆([d, e,f , g,h, i]) > ∆([d, e,f]) + ∆([g,h, i]) = ∆(a) + ∆(b) and that ∆([a, b, c]) >

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 17

∆(a) + ∆(b) + ∆(c). We say that b is a set of problematic RHS. Another example is the one of
Figure 6 (right), where extracting the problematic RHS B1 and B5 from [B4, B2, B1, B5, B6, B3]
suppresses all extra operations: ∆([B4, B2, B6, B3]) + ∆([B1, B5]) = ∆min = 1056.

To give further intuition on the Blocking algorithm, consider the RHS structure of Figure 7(b).
Problematic RHS e and k in [d, e,f , j,k, l] can be extracted to form two blocks, or groups, [e,k]
and [d,f , j, l]. The situation is slightly more complicated for [g,h, i], where h indeed intersects two
separators, u1 and u2. In this case, h should be extracted to form the groups [g, i] and [h]. We note
that the amount of extra operations will likely be much larger when the separator intersected is high
in the tree. Situations where no assumption on the RHS structure is made are more complicated
and require a more general approach. For this, we formalize the notion of independence, which will
be the basis for our blocking algorithm.

4.2 Algebraic formalization and first blocking algorithm
In this section, we give a first version of the Blocking algorithm. It is based on a sufficient condition
allowing to group together sets of RHS without introducing extra computation. We assume the
matrix B to be flat tree ordered and the recursion tree Trec to be built and ordered. Using the
notations of Definition 3.3, we first give an algebraic definition of the independence property between
two sets of RHS:

Definition 4.1. Let U1, U2 be two sets of nodes at a given depth of a tree T , and let R[U1], R[U2]
be the corresponding sets of RHS. R[U1], R[U2] are said to be independent if and only if U1∩U2 = ∅.

With Definition 4.1, we are able to formally identify independent sets and we will show formally
why they can be associated together. For example, take a = R[u1] and c = R[u2] from Figure 7(a),
R[u1] and R[u2] are independent and ∆([R[u1], R[u2]]) = ∆(R[u1]) + ∆(R[u2]). On the contrary,
when R[U1], . . . , R[Un] are not pairwise independent, the objective is to group together independent
sets of RHS, while forming as few groups as possible. In terms of graphs, this problem is equivalent
to a classical coloring problem, where R[U1], . . . , R[Un] are the vertices and an edge exists between
R[Ui] and R[Uj] if and only if Ui ∩ Uj 6= ∅. Several heuristics exist for this problem, and each
color will correspond to one group. The Blocking algorithm as depicted in Figure 10 consists of a

Algorithm 2 Blocking algorithm
for d = 0 to dmax do

j ← 0 /* #groups at depth d+ 1 */
for all groups gdi at detph d do

(gd+1
j+1 . . . g

d+1
j+k)← BuildGroups(gdi , d+1)

/* k new groups have been created */
j ← j + k

end for
end for

R[u0]

g01d = 0

R[u1] R[u2] R[u1u2]

g11 g12d = 1

R[u11] R[u12] R[u21] R[u22]

g21

R[u11u12] R[u21u22]

g22

∗1 ∗2

g23

∗3

g24d = 2

Figure 10: A first version of the Blocking algorithm (left). It is illustrated (right) on the layered
sequence of Figure 8. With the geometric assumptions of Figure 7, ∗1 = R[u11u21], ∗2 = R[u12u22],
and ∗3 = R[u11u12u21u22].

top-down traversal of Trec where at each depth d and for each intermediate group gdi , the central

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 18

procedure BuildGroups is called. Notice that any group gdi verifies the following properties: (i)
gdi can be represented by a sequence [R[U1], . . . , R[Un]], and (ii) the sequence respects the flat tree
order of Trec. Then, BuildGroups(gdi , d + 1) first builds the sets of RHS at depth d + 1, which
are exactly the children of the R[Uj] ∈ gdi in Trec. Second, BuildGroups(gdi , d + 1) solves the
aforementioned coloring problem on these RHS sets and builds the k groups (gd+1

j+1 , . . . , g
d+1
j+k).

In the example of Figure 10(right), there is initially a single group g0
1 = [R[u0]] with one

set of RHS. This group may be expressed as the ordered sequence [R[u1]R[u1u2]R[u2]], since
C(R[u0]) = {R[u1], R[u1u2], R[u2]}. g0

1 does not satisfy the independence property at depth 1
because u1 ∩ u1u2 6= ∅ or u2 ∩ u1u2 6= ∅. BuildGroups(g0

1 , 1) yields g1
1 = [R[u1], R[u2]] and

g1
2 = [R[u1u2]]. The algorithm proceeds on each group until a maximal depth dmax is reached:

(g2
1 , g

2
2) = BuildGroups(g1

1 , 2), (g2
3 , g

2
4) = BuildGroups(g1

2 , 2), etc. To illustrate the interest of
property (ii) on groups, let us take sets d = R[u11],f = R[u12], j = R[u21] and l = R[u22] from
Figure 7(b). One can see that ∆([d,f , j, l]) = ∆(d) + ∆(f) + ∆(j) + ∆(l) < ∆([d, j,f , l]). Com-
pared to [d,f , j, l] which respects the global flat tree ordering and ensures u1- and u2-optimality,
[d, j,f , l] does not and thus increases θ(Zu1) and θ(Zu2).

Furthermore, Algorithm 2 ensures the following property, which shows that the independent
sets of RHS grouped together do not introduce extra operations.

Property 4.1. For any group gd = [R[U1], . . . , R[Un]] created through Algorithm 2 at depth d, we
have ∆([R[U1], . . . , R[Un]]) =

∑n
i=1 ∆(R[Ui]).

Proof. For d ≥ 1, let gd = [R[Udi]i=1,...,nd] be a group at depth d created through Algorithm 2 (we
use superscripts d in this proof to indicate the depth without ambiguity). Let us split nodes above
(A) and below (B) layer d in the pruned tree Tp(gd). The number of operations to process gd is:

∆(gd) =
∑

u∈Tp(gd)

δu × θ(Zu|gd) =

∆A︷ ︸︸ ︷∑
u∈A

δu × θ(Zu|gd) +

∆B︷ ︸︸ ︷∑
u∈B

δu × θ(Zu|gd), (12)

where A = {u ∈ Tp(gd) | depth(u) < d} and B = {u ∈ Tp(gd) | depth(u) ≥ d}.
(i) We first consider the term ∆B . Let Bi = {u ∈ Tp(R[Udi]) | depth(u) ≥ d}. Thanks to the
independence property of the R[Udi] forming gd, the pruned layers Udi in T are disjoint and since
T is a tree, we have Bi ∩ Bj = ∅ for all i 6= j. Hence, B =

⋃̇nd

i=1Bi, where
⋃̇

denotes the disjoint
union. Therefore,

∆B =
∑

u∈
⋃̇nd

i=1
Bi

δu × θ(Zu|[R[Ud
j

]
j=1,...nd]) =

nd∑
i=1

∑
u∈Bi

δu × θ(Zu|[R[Ud
j

]
j=1,...nd]).

We recall that a RHS r is said to be active at node u if u ∈ Tp(r). In the inner sum, the only possible
active RHS in Bi are the ones that belong to R[Udi] (independence of the R[Udj]), so that for all
u ∈ Bi, we have θ(Zu|[R[Ud

i
]
i=1,...nd]) = θ(Zu|R[Ud

i
]). Therefore, ∆B =

∑nd

i=1
∑
u∈Bi δu×θ(Zu|R[Ud

i
]).

(ii) We now consider the term ∆A. Similarly to (i), we define Ai = {u ∈ Tp(R[Udi]) | depth(u) < d}.
We have A =

⋃nd
i=1Ai but the union is no longer disjoint. Let Trec(gd) be the restriction to gd of

the recursion tree Trec associated to the flat-tree algorithm applied to RB (see Section 3.2.2 for the
definition of Trec). Trec(gd) is obtained by excluding at each node of Trec the right-hand sides that

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 19

are not part of gd, then by pruning all empty nodes. We also restrict Definition 3.3 to gd and thus
note R[U] = {r ∈ gd | Ld(r) = U}. In particular, the root of Trec(gd) is R[u0] = gd.

By construction of Algorithm 2 (Figure 10), we know that any layer at depth d′ < d of the
group gd consists of independent sets R[Ud′

j] of RHS. Therefore, ∀u ∈ A, ∃!R[U] ∈ Trec(gd) such
that u ∈ U . This means that the only active columns at node u are those in this unique R[U]
and, since the RHS in R[U] are all contiguous in gd thanks to the global flat tree ordering, we have
θ(Zu|R[U]) = θ(Zu|gd) = #R[U].

Furthermore, by construction of the recursion tree (children nodes form a partition of each parent
node), the RHS in R[U] are the ones in the disjoint union of R[Udi] ⊂ R[U], the sets of right-hand
sides at layer d that are descendants of R[U] in Trec(gd). Therefore, #R[U] =

∑
R[Ud

i
]⊂R[U] #R[Udi].

Furthermore, since the R[Udi] such that R[Udi] ⊂ R[U] are contiguous sets in gd and are all active
at node u, we also have θ(Zu|R[Ud

i
]) = #R[Udi]. It follows:

θ(Zu|gd) =
∑

R[Ud
i

]⊂R[U]

θ(Zu|R[Ud
i

]).

We define ξi(u) = 1 if R[Udi] ⊂ R[U] (with R[U] derived from u as explained above), and
ξi(u) = 0 otherwise. The condition R[Udi] ⊂ R[U] means that u is an ancestor of Udi nodes in T .
Thus, ξi(u) = 1 for u ∈ Ai and ξi(u) = 0 for u /∈ Ai. We can thus write

∑
R[Ud

i
]⊂R[U] θ(Zu|R[Ud

i
]) =∑nd

i=1 ξi(u)θ(Zu|R[Ui]) and redefine ∆A as:

∆A =
∑
u∈A

δu × θ(Zu|gd) =
∑
u∈A

δu ×
nd∑
i=1

ξi(u)θ(Zu|R[Ud
i

])

=
nd∑
i=1

∑
u∈A

δu × ξi(u)θ(Zu|R[Ud
i

])

=
nd∑
i=1

∑
u∈Ai

δu × θ(Zu|R[Ud
i

]).

Joining the terms ∆A and ∆B , we finally have:

∆(gd) = ∆A + ∆B =
nd∑
i=1

∑
u∈Bi

δu × θ(Zu|R[Ui]) +
nd∑
i=1

∑
u∈Ai

δu × θ(Zu|R[Ui]) =
nd∑
i=1

∆(R[Ui])

Interestingly, Property 4.1 can be used to prove, in the case of a single nonzero per RHS, the
optimality of the Flat Tree permutation.

Corollary 4.1. Let RB be the initial set of RHS such that ∀r ∈ RB ,#Vr = 1. Then the Flat Tree
permutation is optimal: ∆(RB) = ∆min(RB).

Proof. Since ∀r ∈ RB ,#Vr = 1, Tp(r) is a branch of T . Indeed, Vr is a singleton and Tp(r) is built
by following the path in T from Vr up to the root. As a consequence, any set of RHS R[U] built

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 20

through the Flat Tree algorithm will be represented by a pruned layer U containing a single node
u. Thus, at each step of the algorithm, the RHS sets identified by the Flat Tree algorithm are all
independent from each other. In case Algorithm 2 is applied, a unique group RB is then kept until
the bottom of the tree. Blocking is thus not needed and Property 4.1 applies at each level of the flat
tree recursion. ∆(RB) is thus equal to the sum of the ∆(R[U]) for all leaves R[U] of the recursion
tree Trec. Since ∆(R[U]) = ∆min(R[U]) on those leaves (all RHS in R[U] involve the exact same
nodes and operations), we conclude that ∆(RB) = ∆min(RB).

This proof is independent of the specific ordering of the children at step 2 of Algorithm 1. The
corollary is therefore more general: any recursive top-down ordering based on keeping together at
each layer the RHS with an identical pruned layer is optimal, as long as the pruned layers identified
at each layer are independent.

R[u1] R[u2]

g11d = 1

R[u11] R[u12] R[u21] R[u22]

g21

R[u11u12] R[u21u22]

g22d = 2

R[u1] R[u2]

g11d = 1

R[u11] R[u12] R[u21u22]

g21

R[u21] R[u22] R[u11u12]

g22d = 2

Figure 11: Two strategies to build groups: CritPathBuildGroups (left) and RegBuildGroups
(right).

Back to the BuildGroups function and the coloring problem, we mention that the solution may
not be unique. Even on the simple example of Figure 10, there are several ways to define groups,
as shown in Figure 11 for g1

1 : both strategies satisfy the independence property and minimize the
number of groups. The CritPathBuildGroups strategy tends to create a large group g2

1 and
a smaller one, g2

2 . In each group the computations on the tree nodes are expected to be well
balanced because all branches of the tree rooted at u0 might be covered by the RHS (assuming thus
a reasonably balanced RHS distribution over the tree). The choice of CritPathBuildGroups
can be driven by tree parallelism considerations, namely, the limitation of the sum of the operation
count on the critical paths of all groups. The RegBuildGroups strategy tends to balance the
sizes of the groups but may create more unbalance regarding the distribution of work over the tree.

We note that for a given depth, the application of BuildGroups on all groups may lead to a
too rapid and unnecessary increase of the number of groups. Furthermore, the enforcement of the
independence property during the BuildGroups operation may require the creation of more than
two groups. In the next section we add features to minimize the number of groups created using
greedy heuristics and propose our final version of the Blocking algorithm.

4.3 A greedy approach to minimize the number of groups
The final greedy blocking algorithm is given by Algorithm 3. Compared to Algorithm 2, it adds
the group selection, limits the number of groups during BuildGroups to two, and stops when a
given tolerance on the amount of extra operations is reached.

First, instead of stepping into each group, as in Algorithm 2, the group selection consists in
choosing among the current groups the one responsible for most extra computation, that is, the

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 21

one for which ∆(g)−∆min(g) is maximal. This implies that groups that are candidate for splitting
might have been created at different depths and we use a superscript to indicate the depth d at
which a group was split, as in the notation gd0 .

Second, enforcing the independence property inside all the groups created may be inappropriate
for some problems, because the number of groups may increase much more than needed. Instead of
a coloring problem, BuildGroups (called BuildMaxIndepSet) now looks inside the sets of gd0
for a maximal group of independent sets of RHS at depth d+ 1, noted gd+1

imax, and leaves the other
sets in another group gdc , whose depth remains equal to d. The latter may thus consist of dependent
sets that may be subdivided later if needed2. Rather than an exact algorithm to determine gimax,
we use a greedy heuristic that forms a maximal independent set.

Finally, we define µ0 as the tolerance of extra operations authorized. With a typical value
µ0 = 1.01, the algorithm stops when the number of extra operations is within 1% of the minimal
number of operations, ∆min. When the algorithm stops, G contains the final set of groups.

Algorithm 3 Blocking algorithm
G← {RB}, ∆min ← ∆min(RB), ∆← ∆(RB)
while ∆/∆min > µ0 do

Select gd0 such that ∆(gd0)−∆min(gd0) = maxg∈G (∆(g)−∆min(g)) . Group selection
(gd+1
imax, g

d
c)← BuildMaxIndepSet(gd0 , d+1)

G← G ∪ {gd+1
imax, g

d
c} \ {gd0}

∆← ∆−∆(gd0) + ∆(gd+1
imax) + ∆(gdc)

end while

5 Experimental results
In this section, we report on the operation count ∆ resulting from the proposed permutation and
blocking algorithms, measured in terms of number of operations during the forward elimination
(Equation (2)). Our experiments are performed on a set of 3D regular finite difference problems
coming from seismic and electromagnetism modeling [1, 16], for which the cost of the solve phase
is critical. The characteristics of the corresponding matrices and associated RHS are presented in
Table 2. In both applications, the nonzeros of each RHS correspond to a small set of close points,
near the top of the 3D grid corresponding to the physical domain, and there is some overlap between
RHS. Except in Section 5.3, a geometric nested dissection (ND) algorithm is used to reorder the
matrix.

5.1 Impact of the Flat Tree algorithm
We first introduce the terminology used to denote the different strategies developed in this study
and that impact the number of operations ∆. DEN represents the dense case, where no optimization
is used to reduce ∆, and TP means tree pruning. When column intervals are exploited at each tree
node, we denote by RAN, INI, PO and FT the random, initial (σ = id), Postorder (σPO) and Flat Tree
(σFT) permutations, respectively.

2In case gd
c consists of independent sets and is selected, the exact same sets will be used for gd+1

c , which will then
only be subdivided at depth d + 2.

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 22

Table 2: Characteristics of the n × n matrix
A and n×m matrix B for different test cases.
D(A) = nnz(A)/n and D(B) = nnz(B)/m
represent the average number of nonzeros per
column of A and B, respectively.
application matrix n(×106) D(A) sym m D(B)

seismic
modeling

5Hz 2.9 24 no 2302 567
7Hz 7.2 25 no 2302 486
10Hz 17.2 26 no 2302 486

electro-
magnetism
modeling

H0 .3 13 yes 8000 9.8
H3 2.9 13 yes 8000 7.5
H17 17.4 13 yes 8000 6

H116 116.2 13 yes 8000 6
S3 3.3 13 yes 12340 19.7
S21 20.6 13 yes 12340 9.5
S84 84.1 13 yes 12340 8.6
D30 29.7 23 yes 3914 7.6

Table 3: Number of operations (×1013) during
the forward elimination (LY = B) according
to the strategy used (ND ordering).

∆ DEN TP RAN INI PO FT ∆min

5Hz 1.73 .74 .74 .44 .36 .28 .22
7Hz 5.94 2.54 2.52 1.46 1.21 .92 .69
10Hz 20.62 9.01 8.92 4.78 3.85 2.87 2.26

H0 0.39 0.11 0.11 0.086 0.070 0.057 0.050
H3 7.19 3.33 3.31 2.48 1.47 1.26 0.95
H17 81.34 37.15 36.97 27.52 10.41 10.21 10.12

H116 990.02 448.31 445.91 327.89 123.79 121.76 120.68
S3 13.36 4.98 4.91 3.73 2.65 2.17 1.71
S21 156.20 49.04 48.07 35.42 25.73 22.53 19.43
S84 983.48 286.57 282.70 222.59 161.87 138.56 118.51
D30 71.60 39.78 39.38 19.49 10.93 10.21 7.31

Table 4: Theoretical tree parallelism according
to the strategy used (ND ordering).

S DEN TP RAN INI PO FT

5Hz 8.60 3.91 3.88 3.11 2.39 2.54
7Hz 8.92 3.97 3.94 3.02 2.25 2.48
10Hz 9.10 4.04 4.02 2.96 2.30 2.30
H0 5.88 2.11 2.11 1.75 1.51 1.45
H3 5.99 3.22 3.21 2.47 2.02 2.11

H17 6.32 3.34 3.32 2.54 2.00 1.97
H116 7.92 3.63 3.61 2.75 2.05 2.02

S3 6.12 2.84 2.83 2.18 1.73 1.61
S21 6.30 2.56 2.46 1.85 1.49 1.47
S84 8.01 2.41 2.38 1.90 1.53 1.52
D30 8.50 4.73 4.70 2.86 2.05 2.56

Table 5: Impact of the number of groups
NG on the normalized operation count, un-
til ∆NG/∆min becomes smaller than the tol-
erance µ0 = 1.01 (ND ordering).

∆NG/∆min FT NG= 2 NG= 3 NG= 4 NG= 5
5Hz 1.283 1.111 1.001 x x
7Hz 1.321 1.116 1.002 x x
10Hz 1.269 1.029 1.002 x x
H0 1.148 1.029 1.010 1.002 x
H3 1.329 1.068 1.027 1.005 x
H17 1.009 x x x x
H116 1.009 x x x x

S3 1.275 1.120 1.045 1.012 1.003
S21 1.160 1.037 1.015 1.003 x
S84 1.169 1.041 1.015 1.002 x
D30 1.397 1.082 1.058 1.024 1.004

The improvements brought by the different strategies are presented in Table 3. Compared to
the dense case, TP divides ∆ by at least a factor 2. In the case column intervals are exploited at each
node, the large gap between RAN and INI shows that the original column order holds geometrical
properties. FT behaves better than INI and PO and gets reasonably close to ∆min. Overall, FT
provides a 13% gain on average over PO. However, the gain on ∆ decreases from 25% on the 10Hz
problem to 1% on the H116 problem. This can be explained by the fact that B is denser for the
seismic applications than for the electromagnetism applications (see Table 2). Indeed, the sparser
B, the closer we are from a single nonzero per RHS in which case both FT and PO are optimal.

Second, we evaluate the impact of exploiting RHS sparsity on tree parallelism. For this, we
report in Table 4 the maximal theoretical speed-up S that can be reached using tree parallelism
only (node parallelism is also needed, for example on the root). It is defined as S = ∆

∆cp
where

∆cp is the number of operations on the critical path of the tree. We observe that tree parallelism
is significantly smaller than in the dense case. This is because the depth of the pruned tree Tp(B)
is similar to the one of the original tree (some nonzeros of B appear in general in the leaves), while

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 23

the tree effectively processed is pruned and thus the overall amount of operations is reduced. For
the same reason, S is smaller for test cases where nnz(B)/m is small. For the 5Hz, 7Hz, and 10Hz
problems which have more nonzeros per column of B, besides decreasing the operation count more
than the other strategies, FT exhibits equivalent or even better tree parallelism than PO. For such
matrices, where D(B) = nnz(B)/m is large, FT balances the work on the tree better than PO and
reduces the work on the critical path more than the total work. Overall, FT reduces the operation
count better than any other strategy and has good parallel properties.

5.2 Impact of the Blocking algorithm
First, we show that the Blocking algorithm decreases the operation count ∆ while creating a
limited number of groups. Second, we discuss and justify with parallelism arguments our clustering
strategies illustrated in Figure 11.

In Table 5, we represent the value of ∆NG

∆min
depending on the number of groups created. x means

that the Blocking algorithm stopped because the condition ∆NG/∆min ≤ µ0 was reached, with µ0
for Algorithm 3 set to 1.01. Computing from Table 5 the ratio of extra operations reduction 1 −
∆NG−∆min

∆1−∆min
for NG groups created, we observe an average reduction of 74% of the extra operations

when NG = 2, i.e., when only two groups are created. Table 5 also shows that ∆NG reaches very
quickly a value close to ∆min and thus we confirm the expectation from Section 4.1 that RHS
responsible for most extra operations were those intersecting a separator high in the tree.

Table 6: Sum of critical paths’ operations (×1013) for two grouping strategies when three groups
are created. ∑

g ∆cp(g) 5Hz 7Hz 10Hz H0 H3
CritPathBuildGroup .092 .30 1.00 .037 .50

RegBuildGroup .12 .43 1.58 .044 .72

In Table 6, we report the sum of operation counts on the critical paths ∆cp over all groups cre-
ated using CritPathBuildGroup and RegBuildGroup strategies, when the number of groups
created is three, leading to ∆ close to ∆min, see column “NG=3” of Table 5. In this case, the
total number of operations ∆ during the forward solution phase on all groups is equal whether we
use CritPathBuildGroup or RegBuildGroup. Tree parallelism is thus a crucial discriminant
between both strategies, and we indeed observe in Table 6 that CritPathBuildGroup effectively
limits the length of critical paths over the three groups created, justifying its use.

5.3 Experiments with other orderings
As mentioned earlier, several orderings [14, 12, 2] may be used to order the unknowns of the
original matrix, thanks to the algebraic nature of our Flat Tree and Blocking algorithms. Although
local ordering methods (AMD, AMF as provided by the MUMPS package3) are known not to be
competitive with respect to algebraic nested dissection-based approaches such as SCOTCH4 or
METIS5 on large 3D problems, we include them in order to study how the Flat Tree and Blocking
algorithms behave in general situations.

3http://mumps.enseeiht.fr/
4http://www.labri.fr/perso/pelegrin/scotch/
5http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

RR n° 9122

http://mumps.enseeiht.fr/
http://www.labri.fr/perso/pelegrin/scotch/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 24

Table 7: Operation count ∆(×1013) for permutation strategies PO and FT, and number of groups
NG required to reach ∆NG

∆min
≤ 1.01 for blocking strategies REG and BLK. Different orderings (AMD,

AMF, SCOTCH, METIS) are used.
orderings AMD AMF SCOTCH METIS

σ
PO REG FT BLK ∆min

PO REG FT BLK ∆min
PO REG FT BLK ∆min

PO REG FT BLK ∆min

∆ NG ∆ NG ∆ NG ∆ NG ∆ NG ∆ NG ∆ NG ∆ NG
5Hz 1.44 53 1.36 4 1.25 .75 51 .87 7 .68 .47 328 .32 3 .25 .43 230 .30 3 .24
7Hz 5.03 38 4.44 4 4.35 15.29 18 17.82 12 14.89 1.60 287 1.14 3 .86 1.42 230 1.08 3 .82

10Hz 19.34 38 19.79 3 15.27 96.86 18 99.07 11 82.13 5.86 287 4.21 3 3.05 4.67 230 3.44 3 2.53
H0 .54 533 .53 4 .47 .12 333 .12 5 .0910 .0728 499 .0627 3 .0548 .0774 615 .0668 3 .0569
H3 134.54 380 105.98 5 9.07 101.43 63 133.97 17 9.26 2.19 615 1.76 5 1.18 1.95 533 1.53 5 1.12
H17 183.03 266 225.66 7 135.94 467.06 173 558.31 50 395.74 22.79 380 18.97 5 12.58 21.49 242 16.80 4 12.33
H116 2244.71 1 2244.71 1 2244.71 39383.4 1 39383.6 1 39383.4 290.45 109 224.04 4 153.16 263.72 78 215.21 4 157.00

S3 20.88 725 17.85 6 15.14 20.71 184 24.83 10 17.78 4.54 771 3.41 5 2.72 3.24 771 2.64 5 2.09
S21 392.57 685 348.87 5 310.63 1141.45 493 1352.32 77 830.51 50.91 492 39.55 4 31.73 34.31 223 28.53 5 24.86
S84 3025.30 352 2847.53 5 2501.38 38664.7 725 45346.4 213 30976.9 289.14 286 228.31 4 193.36 207.39 171 174.43 4 150.93
D30 115.37 111 121.29 8 94.51 1015.16 139 1279.55 75 825.21 16.72 156 12.78 5 8.77 15.52 144 12.98 5 8.61

First, an important aspect of using other orderings is that they often produce much more
irregular trees, leading to a large number of pruned layers to sequence. The FT permutation reduces
the operation count significantly with SCOTCH and METIS, for which we observe an average 31%
and 26% reduction compared to the PO permutation. Gains are also obtained with AMD for most
test cases. However, FT does not perform well with AMF. This can be explained by the fact that
the former produces too irregular trees which do not fit well with the design of the FT strategy.

Second, we evaluate the Blocking algorithm (BLK) and compare it with a regular blocking al-
gorithm (REG) based on the PO permutation, that divides the initial set of columns into regular
chunks of columns. Table 7 shows that the number of groups required to reach ∆

∆min
≤ 1.01 is

much smaller for BLK than for REG in all cases. Our Blocking algorithm is very efficient with most
orderings except AMF, where the number of groups created is high (but still lower than REG).

All preceding results confirmed that using the combination of the flat tree permutation and the
Blocking algorithm, we are able to approach ∆min within a sufficiently small tolerance. In the next
section, we try to influence the ordering of the matrix to decrease ∆min.

6 Guided Nested Dissection
At the moment, as soon as at least one RHS nonzero is present in a tree node, we considered in
Section 1 that all operations involving the factors of that node are performed. A smaller granularity
of sparsity (inner node sparsity) could be exploited by ordering last the indices of a supernode
corresponding to RHS nonzeros. Because of fill-in, this is only useful for leaf nodes of the pruned tree
Tp(B). In general, those leaf nodes may not be very high in the tree, in which case there is not much
gain to expect. Given an ordering and a tree, one may think of artificially moving the unknowns
corresponding to RHS nonzeros to supernodes higher in the tree with on one side, a smaller pruned
tree, but on the other side, an increase in the factor size due to these larger supernodes. Better, one
may try to guide the nested dissection ordering in order to include as many nonzeros of B within
separators during the top-down nested dissection and be able to prune larger subtrees. This will
however involve a significant extra cost for applications where each RHS contains several contiguous
nodes in the grid, e.g., form a small parallelepiped. For such applications, the geometry of the RHS
nonzeros could however be exploited. A first idea consists in avoiding problematic RHS by choosing
separators that do not intersect RHS nonzeros. Although this idea could for example be tested by
adding edges between RHS nonzeros before applying SCOTCH or METIS, this does not appear to

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 25

be so useful in our case, where we observed much overlap between successive RHS. Another idea,
when all RHS are localized in a specific area of the domain, consists in shifting the separators from
the nested dissection to insulate the RHS in a small part of the domain. Such a modification of
the ordering yields an unbalanced tree in which the RHS nonzeros appear at the smaller side of
the tree, improving the efficiency of tree pruning and resulting in a reduction of ∆min, and thus ∆.
This so called guided nested dissection was implemented and tested on the set of test cases shown
in Table 8, where we observe that the number of operations ∆min is decreased, as expected. Since
the factor size has also increased significantly, one may need to find a trade-off in order to avoid
increasing too much the cost of the factorization.

Table 8: Number of operations ∆min (×1013) and factor size (×109) for the original (ND) and for
the guided (GND) nested dissection orderings.

Matrices 5Hz 7Hz 10Hz H0 H3
Strategy ND GND ND GND ND GND ND GND ND GND
∆min .22 .19 .69 .62 2.26 1.99 .050 .025 .95 .81
factor size 3.72 5.18 12.8 19.7 44.8 73.4 .24 .37 4.50 5.57

7 Applications and related problems
We illustrate the scope of this work by presenting applications where our contributions can be
applied. In applications requiring only part of the solution, one can show that the tools presented in
Section 2 can be applied to the backward substitution (UX = Y), which involves similar mechanisms
as the forward elimination [17, 19]. The backward substitution traverses the tree nodes from
top to bottom so that the interval mechanism is reversed, i.e., the interval from a parent node
includes the intervals from its children and the properties of local optimality are preserved. If
the structure of the partial solution requested differs from the RHS structure, another call to the
Flat Tree algorithm must then be performed to optimize the number of operations. Exploiting
sparsity also in the backward step can for instance be useful in some augmented approaches [20]
to deal with small matrix updates without complete refactoring, and in some 3D EM geophysics
applications [16]. Another application of this work is the computation of Schur complements, where
instead of truncating a factorization of the whole system (A C

B D), one exploits the factorization of
A to use triangular solves with sparse RHS. Taking the symmetric case where C = BT , the Schur
complement S can be written S = D−BA−1BT = D−B(LLT)−1BT = D− (L−1BT)T (L−1BT),
as in the PDSLin solver [18]. Since B is sparse, B′ = L−1BT can be computed thanks to the
algorithms developed in this article before computing the sparse product B′TB′.

To conclude, we comment on related problems and algorithms. We have seen that the Block-
ing algorithm is closely related to graph algorithms like coloring and maximum independent set.
Concerning the minimization problem (10) which we addressed with the Flat Tree algorithm, it
can also be regarded globally: using the structure of L−1B, the problem then consists in finding a
permutation of the columns that minimizes the sum of the intervals weighted with δu. This interval
minimization problem is similar to a sparse matrix profile reduction problem [5, 15]. As mentioned
in Section 4.1, hypergraph models have been used in the context of blocking algorithms, with dif-
ferent constraints and objectives compared to ours [3, 18]. Modeling L−1B as an hypergraph might
lead to other heuristics than the Flat Tree algorithm using some variants of hypergraph partitioning,

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 26

although dense parts in L−1B might need special treatment. One advantage of our permutation
and blocking algorithms is that, instead of tackling the problem globally, they decompose the prob-
lem into easier subproblems with low complexity by making use of the separator tree T , thereby
exploiting the fact that L−1B has a very special structure closely related to the tree.

Conclusion

Table 9: Time (s) of the forward elimination according to the strategy used on a single Intel Xeon
core @2.3GHz.

Times DEN TP INI PO TP BLK

H0 881.9 156.2 120.8 95.7 78.1 65.4
5Hz 1527.6 472.3 274.3 224.1 180.0 138.6

We introduced permutation and blocking algorithms to further improve the tree pruning [11, 17]
and the node interval [4] algorithms introduced in previous work. A first main contribution of this
article is to provide a “flat tree” algorithm to permute right-hand sides in order to reduce the cost
of the forward elimination. As a second contribution, we introduced a Blocking algorithm that
further decreases this cost by adequately choosing groups of right-hand sides that can be processed
together. Although both algorithms are based on geometrical observations, they are designed
with an algebraic approach, giving a general scope to this work. Notions of node optimality and
RHS independence were introduced and formalized, together with theoretical properties to provide
insight and to support the proposed algorithms. Experimental results on real test cases confirmed
the effectiveness of both the Flat Tree and the Blocking algorithms. Compared to a Postorder-
based permutation, the Flat Tree permutation showed an average (resp. maximum) gain of 13%
(resp. 25%) on the total operation count with a nested dissection ordering, and interesting parallel
properties. Moreover, results with the Blocking algorithm validate our approach since only a handful
of groups is created compared to several hundreds when using a regular blocking technique. Finally,
Table 9 shows that in a sequential setting, time reduction follows operation reduction on the smallest
of our two sets of problems. A detailed performance analysis in multithreaded and distributed
environments is out of the scope of this study and will be the object of future work.

Acknowledgements
We thank EMGS and Seiscope for providing the test cases, and F.-H. Rouet for his comments on
a previous version of this paper. This work was partially supported by the MUMPS Consortium
and by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program
“Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency
(ANR).

References
[1] P. R. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier,

A. Miniussi, and S. Operto, Fast 3D frequency-domain full waveform inversion with a

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 27

parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North
Sea, Geophysics, 81 (2016), pp. R363 – R383.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff, Algorithm 837: AMD, an approximate min-
imum degree ordering algorithm, ACM Transactions on Mathematical Software, 33(3) (2004),
pp. 381–388.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Y. Robert, F.-H. Rouet, and
B. Uçar, On computing inverse entries of a sparse matrix in an out-of-core environment,
SIAM Journal on Scientific Computing, 34 (2012), pp. A1975–A1999.

[4] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and F.-H. Rouet, Parallel computation
of entries of A-1, SIAM Journal on Scientific Computing, 37 (2015), pp. C268–C284.

[5] M. W. Berry, B. Hendrickson, and P. Raghavan, Sparse marix reordering schemes for
browsing hypertext, Lecture notes in applied mathematic, 32 (1996), pp. 99–124.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, A set of level 3 basic
linear algebra subprograms, ACM Trans. Math. Softw., 16 (1990), pp. 1–17.

[7] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, London, 1986.

[8] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
systems, ACM Transactions on Mathematical Software, 9 (1983), pp. 302–325.

[9] J. A. George, Nested dissection of a regular finite-element mesh, SIAM Journal on Numerical
Analysis, 10 (1973), pp. 345–363.

[10] J. R. Gilbert, Predicting structure in sparse matrix computations, SIAM Journal on Matrix
Analysis and Applications, 15 (1994), pp. 62–79.

[11] J. R. Gilbert and J. W. H. Liu, Elimination structures for unsymmetric sparse LU factors,
SIAM Journal on Matrix Analysis and Applications, 14 (1993), pp. 334–352.

[12] G. Karypis and K. Schloegel, ParMetis: Parallel Graph Partitioning and Sparse Matrix
Ordering Library Version 4.0, University of Minnesota, Department of Computer Science and
Engineering, Army HPC Research Center, Minneapolis, MN 55455, U.S.A., Aug. 2003. Users’
manual.

[13] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM Journal on Matrix
Analysis and Applications, 11 (1990), pp. 134–172.

[14] F. Pellegrini, Scotch and libscotch 5.0 User’s guide, Technical Report, LaBRI, Univer-
sité Bordeaux I, 2007.

[15] J. K. Reid and J. A. Scott, Reducing the total bandwidth of a sparse unsymmetric matrix,
SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 805–821.

[16] D. V. Shantsev, P. Jaysaval, S. de la Kethulle de Ryhove, P. R. Amestoy, A. But-
tari, J.-Y. L’Excellent, and T. Mary, Large-scale 3D EM modeling with a Block Low-
Rank multifrontal direct solver, Geophysical Journal International, 209 (2017), pp. 1558–1571.

RR n° 9122

On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers 28

[17] Tz. Slavova, Parallel triangular solution in the out-of-core multifrontal approach for solving
large sparse linear systems, Ph.D. dissertation, Institut National Polytechnique de Toulouse,
Apr. 2009.

[18] I. Yamazaki, X. S. Li, F.-H. Rouet, and B. Uçar, On partitioning and reordering problems
in a hierarchically parallel hybrid linear solver, in 2013 IEEE 27th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), Cambridge, MA,
United States, 2013, pp. 1391–1400.

[19] Y.-H. Yeung, J. Crouch, and A. Pothen, Interactively cutting and constraining vertices
in meshes using augmented matrices, ACM Trans. Graph., 35 (2016), pp. 18:1–18:17.

[20] Y. H. Yeung, A. Pothen, M. Halappanavar, and Z. Huang, AMPS: an augmented
matrix formulation for principal submatrix updates with application to power grids, SIAM
Journal on Scientific Computing, 39 (2017), pp. S809–S827.

RR n° 9122

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Nested dissection, sparse direct solvers and triangular solve
	Exploitation of sparsity in right-hand sides
	Tree pruning
	Working with column intervals at each node

	Permuting RHS columns
	The Postorder permutation
	The Flat Tree permutation
	Geometrical illustration
	Algebraic approach

	Toward a minimal number of operations using blocks
	Objectives and first illustration of independence property
	Algebraic formalization and first blocking algorithm
	A greedy approach to minimize the number of groups

	Experimental results
	Impact of the Flat Tree algorithm
	Impact of the Blocking algorithm
	Experiments with other orderings

	Guided Nested Dissection
	Applications and related problems

