
HAL Id: hal-01649246
https://inria.hal.science/hal-01649246

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-phase preference disclosure in attributed social
networks

Younes Abid, Abdessamad Imine, Amedeo Napoli, Chedy Raïssi, Michaël
Rusinowitch

To cite this version:
Younes Abid, Abdessamad Imine, Amedeo Napoli, Chedy Raïssi, Michaël Rusinowitch. Two-phase
preference disclosure in attributed social networks. DEXA 2017 - 28th International Conference on
Database and Expert Systems Applications , Aug 2017, Lyon, France. pp.249-263, �10.1007/978-3-
319-64468-4_19�. �hal-01649246�

https://inria.hal.science/hal-01649246
https://hal.archives-ouvertes.fr

Two-phase preference disclosure in attributed

social networks

Younes Abid, Abdessamad Imine, Amedeo Napoli, Chedy Raïssi and Michaël
Rusinowitch

1 Lorraine University, Cnrs, Inria, 54000 Nancy, France
firstname.lastname@loria.fr

Abstract. In order to demonstrate privacy threats in social networks we
show how to infer user preferences by random walks in a multiple graph
representing simultaneously attributes and relationships links. For the
approach to scale in a �rst phase we reduce the space of attribute values
by partition in balanced homogeneous clusters. Following the Deepwalk
approach, the random walks are considered as sentences. Hence unsu-
pervised learning techniques from natural languages processing can be
employed in second phase to deduce semantic similarities of some at-
tributes. We conduct initial experiments on real datasets to evaluate our
approach.

Keywords: Online Social Network (OSN), Attribute Disclosure At-
tacks, Privacy

1 Introduction

Social networks o�er their users several means to control the visibility of their
personal data and publications such as attribute values and friendship links.
However even in the case when these policies are properly enforced nowadays
data collection techniques and statistical correlations can provide hints on users
hidden information [14]. Moreover information leaks from relatives of a user are
di�cult to control and, for instance, by homophily reasoning [3] an attacker can
disclose and exploit sensitive data from a target. Therefore we need to anticipate
such disclosure of private information from publicly available data. A way to
tackle the problem is to o�er users tools that rise their awareness about these
privacy breaches. That is we aim to provide people algorithms that try to infer
their own hidden attributes, even when social graphs are sparse or friendship
links unexploitable, so that they can apply proper countermeasures when such
inference are too easy.

In this work, we aim to disclose secret preferences of a social network user for
instance, his/her liked movie with high probability of success. Secret preferences
are either private or unspeci�ed values of some attribute of the targeted user.
The challenge is to predict the secret preference from hundreds of thousands
of possible preferences in the network. Therefore to reduce the preference space
the �rst phase consists in clustering attributes values by common likes. For

2

instance, the values Star Wars V and Star Wars IV of the attribute movies end
up having the same label (i.e. cluster identi�er) since they are liked by many
common users. By carefully chosing the parameters we end up with relatively
homogeneous clusters of balanced sizes. The second phase consists in applying
unsupervised learning techniques from natural language processing to disclose
the (cluster) label of the secret preference. These techniques have proved to be
quite e�ective for predicting missing links in sparse graphs. Finally, when the
label is disclosed we can either further process the cluster content to disclose the
secret preference or directly infer the preferences when the clustered values are
highly similar, as for instance Star Wars episodes.

Let us pinpoint some noticeable features of our approach. Preferences of
users for some attribute values are represented by bipartite graphs. Clustering
attributes values relies only on users preferences in the considered social network
and does not consider external information such as human expertise or informa-
tion from other websites. We process di�erent graphs of attributes at the same
time through random walk to cross latent information about many attributes
as detailed in Section 4. For instance, drinks preferences can play a major role
to disclose the secretly liked dish of the target. To cope with over-�t problems
we assign a weight to each graph in order to quantify its importance in disclos-
ing the secret preference of the targeted user. Weights are parameters validated
through o�-line tests. We also exploit friendship graphs between users in order
to better connect attribute graphs in the random walks.

Related works For space reasons we only discuss closely related works. In [11] the
authors propose algorithms to detect whether a sensitive attribute value can be
infered from the neighborhood of a target user in a social network. Heatherly et
al. [7] seem to be the �rst that study how to sanitize a social network to prevent
inference of social network attributes values. It relies on bayesian classi�cation
techniques. The analogous link prediction (recommendation) problem is solved
in [1] by exploiting attributes to guide a random walk on graph. The random walk
technique has been applied to social representations in [10]. We present here an
inference technique that combines attribute clustering and random walks. The
method can handle sparse social graphs and attributes with large set of values.
The initial clustering allows one to obtain results in a few minutes on large
graphs.

2 Social network model

To model social networks for privacy analysis purposes, it is important to take
into account their complex structures as well as their rich contents. Infering sen-
sitive and personal information can then be more accurate. We use graphs to
model both the structure and the content of social networks. For the network
structure, the link-ship networks are modeled either by directed or undirected
graphs depending on the social network links type. For instance follow-ship on
Twitter are modeled by directed graphs while friendships on Facebook are mod-
eled by undirected graphs. Let Gl = (Ul, L) be the graph of link-ship where Ul is

3

a set of user nodes and L is a set of links between them. In the same model we use
bipartite graphs to represent group membership networks. Let Gg = (Ug, Vg, Pg)
be the graph of memberships where Ug is a set of user nodes, Vg is a set of group
nodes and Pg is a set of links between user nodes and group nodes.

For modeling the networks contents we use bipartite graphs too. In this work
we focus on attributes and omit other contents. Let GA = (UA, VA, PA) be the
graph depicting the preferences of users concerning the attribute A where UA is
a set of user nodes, VA is a set of nodes representing the di�erent possible values
of A and PA is a set of edges between user nodes UA and attribute values nodes
VA. PA represents the preferences (or �likes�) of users in UA for the di�erent
attribute values. Figure 1 depicts the detailed model above.

Fig. 1: Social network model for privacy analysis purposes.

Some attributes such as gender have a small set of values. Some others such as
music, book and politics have a huge set of possible values. Predicting the favorite
book titles or music tunes of a user among scaling thousands of possibilities
is hard in a single step. To cope with this problem we decompose the set of
possibilities into a few clusters as detailed in Section 3. Our objective will be to
predict an attribute value by �rst predicting the cluster that contains this value.
For instance, we aim to predict �rst the favorite music genres and favorite book
genres instead of the favorite music tunes and the favorite book titles directly.
Then once such a cluster is determined, infering a prefered item will be easier
thanks to the smaller size of clusters compared to the whole set of values. Even a
random selection strategy in this last step generates interesting results as shown
by our experiments.

4

3 First phase: clustering targeted attributes values

Since attributes networks are modeled by bipartite graphs, and disclosing the
secret preferences will be performed through random walks in the networks, for
feasibility of the approach it is important to reduce the number of alternative
in paths. For instance, we count 137k community topics, 84k di�erent groups
of music and 31k di�erent artists liked by only 15k di�erent users. Therefore,
we reduce the space of preferences by clustering attribute values to save com-
putational cost when applying unsupervised learning in Section 5. The problem
is alleviated. It consists now of disclosing the secret preferences of the target
among a few hundreds of labels instead of tens of thousands of attribute values.

Example. Figure 2 depicts an example of clustering of the attribute movie, A =
movie. Let Gmovie = (Umovies, Vmovies, Pmovies) be the bipartite graph relating
users to their preferred movies. In this example we aim to partition Gmovie into
nl = 2 subgraphs of almost equally sized disjoints contexts of movies.

Fig. 2: Example of clustering the values of the attribute movies into disjoint
clusters of context.

Clustering all attributes values into contexts requires huge up-to-date knowl-
edge about many �elds and many cultures. For instance, Eddie Murphy movies
are linked to comedy in 2017 but in 2007 his name was correlated to drama for
his role in Dreamgirls for which he picked up his only Oscar nomination. To cope
with this problem we cluster the attributes values based on users preferences.
However we do not cluster users simultaneously since it is obvious that they can
have very di�erent preferences at the same time. For instance, the same user
can like both horror and documentary movies. Furthermore, we aim to disclose
secret preferences by exploiting information from di�erent graphs, including the
friendship graph, as detailed in Section 4.

The problem can be related to a k-way graph partitioning problem since the
goal is to divide the set of attribute values into k subset of about equal size.
Since we also aim to maximize similarities between attribute values belonging
to the same subgraphs, di�erent approaches of dense subgraph discovery could
be applied to iteratively seek and cut the densest subgraph from the original
graph [8]. However, due to the sparsity of the social graph we consider, the

5

dense subgraphs are usually small and the algorithms mentioned in [8] end up
partitioning the graph into a large number of not equally-sized subgraphs with
decreasing densities.

To cope with this issue, we propose a greedy algorithm that adds constraints
on the size of subgraphs and the similarity between attribute values of each
subgraph. In the following we denote by |S| the cardinal of a set S.

Objective function. Our aimed objective is to �nd a partition πl of attribute
values in nl clusters that maximize the similarity between values inside each
cluster. We de�ne the similarity between two attribute values v and v′ to be the
Jaccard coe�cient that measures the ratio of their common likes to the union of
their likes, where the likes of an attribute value f (say, a movie) is by de�nition
|{u ∈ Umovies s.t.(u, f) ∈ Pmovies}| and denoted by likes(f). That is,

similarity(v, v′) = likes(v) ∩ likes(v′)
likes(v) ∪ likes(v′)

(1)

For computational e�ciency the number of clusters nl must be small. But if
nl is too small the neural network detailed in Section 5 will be doomed to learn
from insu�cient data. On the other hand, if nl is too large the neural network
predictions will not be reliable due to over-�tting. Moreover, clusters must be
almost equally-sized to avoid fostering a particular label. Therefore we only con-
sider partitions (c1, . . . , cnl

) of the attribute values satisfying
√
m ≤ |ck| ≤ 2

√
m

for 1 ≤ k ≤ nl, where m is the number of all attribute values, that is the num-
ber of movies in our running example. Consequently, the number nl of clusters

satis�es
√
m
2 ≤ nl ≤

√
m. The set of partitions satisfying the constraints above

is denoted by Πl. A good criteria for a candidate cluster c is to maximize the
average similarity similarity(c) between all couples of attribute values inside
this cluster. Hence the objective function is given by Expression 2.

max(c1,...,cnl
)∈Πl

1
nl

(
∑nl

k=1 similarity(ck)) (2)

Algorithm. Computing the average similarity of a cluster c is expensive due to
the quadratic number of couples of values in c. Moreover, the algorithm needs
to �nd the cluster of maximal average similarity among the numerous ones of
size between

√
m and 2

√
m. To get around with this problem, we propose a

greedy algorithm that computes only the similarity between a cluster of movies
and an unlabeled attribute value (that is a value not assigned yet to a cluster).
Therefore we de�ne:

similarity(c, v) =
∑

v′∈c similarity(v
′,v)

|c| (3)

The idea now is to seek, from a set of unlabeled attribute values, an attribute
value with maximal similarity with the cluster c (function seek_max_similar).
Then add the chosen attribute value (max_similar) to c. The algorithm keeps
adding attribute value to c until it reaches the stop conditions. It then de�nes
next clusters sequentially the same way as detailed in Algorithm 1 until all
attribute values are labeled.

6

Stop conditions. The algorithm stops adding attribute values to the current
cluster c when the size of the cluster c is equal to int(2

√
m) or is in [

√
m, 2
√
m−1]

and one of the two following additional conditions is ful�lled: i) the similarity
between c and any of unlabeled attribute values is less than 1

2 ; ii) the number
of unlabeled attribute values is higher than

√
m. In other word, there exists

no su�ciently similar attribute value to add to the current cluster and there is
enough unlabeled attribute values to create new clusters. There is also a stopping
condition (line 11) when the number of unlabeled attribute values is int(

√
m)

to guarantee that the size of the last cluster will be at least
√
m. Finally, the

main loop stops when all attribute values are labeled.

Data: GA = (UA, VA, PA),
Result: πl . decomposition of VA into l clusters

1 B ←
√
|VA|

2 V ← VA . V contains values not assigned to a cluster
3 while |V | > 0 do
4 c← one_most_liked(V) . initialisation of a new cluster with one

element
5 while |c| < 2B and |V | > 0 do
6 if B ≤ |c| then
7 if max_similarity(c, V) < 1

2 and |V | > B then

8 break

9 end

10 if |V | = int(B) then
11 break

12 end

13 end

14 max_similar← seek_max_similar(c, V)
15 c← c ∪ max_similar
16 V ← V \ max_similar
17 end

18 πl ← πl ∪ c
19 end

Algorithm 1: Partition of a set of attribute values into clusters.

Size of partitions. We have analyzed the performance of the proposed algorithm
with respect to the minimal size of computed clusters, where no cluster can have
twice the size of other cluster from the same partition. Tests depicted by Figure
3 show that the choice of the minimal size to be the root square of the size of the
set of attribute values yields good results for both very sparse graphs like Users-
FastFoods graph (density = 0.0018) and less sparse graphs like the Users-Actors
graph (density = 0.012). We note that this choice yields some clusters of high
similarity (≥ 0.7), few subgraphs (less than the square root of the number of

7

attribute values) and relatively high mean similarity compared to all partitions
similarities (larger than the mean of the means of all similarities).

Fig. 3: Variation of partitioned bipartite subgraph similarities with respect to
the minimal size of subgraphs, (a) Users-Actors graph: 15k users, 364 actors, (b)
Users-FastFoods graph: 15k users, 777 fast foods.

4 Random walks in a social attributed network

In this section we aim to express the latent information in the graphs modeling
both the structure and the content of the network into a document that will be
processed in Section 5 to disclose secret preferences as detailed in Section 6.

As illustrated in Figure 4, the document is constructed by connecting all
graphs through random jumps between them and random walk between their
nodes (see also [10]). Since the values of the analyzed attributes are labeled,
they are represented by their clusters in the �nal document. For instance, the
�rst walk depicted by Figure 4 is [u1, u4, v2,3, u4]. But for e�ciency the walk
[u1, u4, c2,2, u4] is stored instead in the document since the value v2,3 belongs to
the cluster c2,2.

Let n be the total number of graphs that model the social network, comprising
a link-ship graphG1 = Gl = (Ul, L) and n−1 attribute graphsGx = (Ux, Vx, Px).
Let U be the set of users in all graphs and n1 its cardinality. Jumps between two
graphs, Gx and Gy, are possible if the current walker state is a user node, say
uz, that belongs to both graphs (uz ∈ Ux ∩ Uy). The walker is allowed to jump
from the user node uz to the graph Gy with a probability pz,y. The probability
pz,y is de�ned in Equation 4 where weights are parameters used to quantify the
importance of each graph in disclosing secret preferences (e.g., value of some
sensitive attribute) of the target.

pz,y =

{
weight(Gy)∑

{1≤x≤n|uz∈Ux} weight(Gx)
if uz ∈ Uy

0 otherwise
(4)

8

Fig. 4: Example of multi graph random walk.

For each graph Gy = (Uy, Vy, Py) we de�ne two line stochastic adjacency
matrices, TU×Vy

and TVy×U , and a jump matrix, Jy, that leads to Gy as detailed
in 5.

Jy = diag(pz,y|uz ∈ U)

TU×Vy
(i, j) =

{ 1
degy(ui)

if(ui, vj) ∈ Py
0 otherwise

TVy×U (i, j) =

{ 1
deg(vi)

if(uj , vi) ∈ Py
0 otherwise

(5)

where U is the set of all users in all graphs and degy(ui) is the degree of user ui
in graph Gy.

For the link-ship graph G1 = Gl = (Ul, L) we de�ne a jump matrix J1 in the
same way as in Equation 5 but only one line stochastic adjacency matrix TU×U
as detailed in Equation 6.

TU×U (i, j) =

{ 1
degl(ui)

if(uj , ui) ∈ L
0 otherwise

(6)

We de�ne now a �rst order random walk where the next steps probabilities
depend only on the current location. Given a source node S we perform a multi-

9

graph random walk of �xed length l. Steps are generated by the distribution
detailed in Expressions7:

∀k ∈ [2, l], P (sk|sk−1) =



pz,y × 1
degy(sk−1)

if (sk−1, sk) ∈ Py
and sk−1 = uz and sk ∈ Vy

pz,l × 1
degl(sk−1)

if (sk−1, sk) ∈ L
and sk−1 = uz and sk ∈ U

1
degy(sk−1)

if (sk−1, sk) ∈ Py
and sk−1 ∈ Vy and sk ∈ U

0 otherwise

(7)

The transition matrix is de�ned by blocks as follows:

T =


J1 × TU×U J2 × TU×V2 · · · Ji × TU×Vi · · · Jn × TU×Vn

TV2×U

0
· · ·

TVi×U

· · ·
TVn×U


For the example in Figure 4 the jump matrices and the right stochastic

adjacency matrices are as following (assuming weight(G1) = weight(G2) =
weight(G3)): J1 = diag(13 ,

1
3 ,

1
2 ,

1
3), J2 = J3 = diag(13 ,

1
3 , 0,

1
3) and

TU×U =


0 0 0 1
0 0 1

2
1
2

0 1 0 0
1
2

1
2 0 0

 TU×V2 =


1 0 0
1 0 0
0 0 0
0 1

2
1
2

 TU×V3 =


0 1
1 0
0 1
1 0



TV2×U =

 1
2

1
2 0 0

0 0 0 1
0 0 0 1

 TV3×U =

[
0 1

2 0 1
2

1
2 0 1

2 0

]

Hence, the transition matrix is deduced as following:

u1 u2 u3 u4 v2,1 v2,2 v2,3 v3,1 v3,2
u1


0 0 0 1
3

1
3 0 0 0 1

3
0 0 1

6
1
6

1
3 0 0 1

3 0
0 1

2 0 0 0 0 0 0 1
2

1
6

1
6 0 0 0 1

6
1
6

1
3 0

1
2

1
2 0 0

0
0 0 0 1
0 0 0 1
0 1

2 0 1
2

1
2 0 1

2 0



u2
u3
u4
v2,1
v2,2
v2,3
v3,1
v3,2

10

5 Second phase: applying natural language learning

In Section 4 we performed multi-graph random walk to translate both the struc-
ture and the content of the social network into walks. Walks collected in the
�nal document can be interpreted as sentences, where the words are network
nodes. Hence, inferring a link between a user node and an attribute value node
is similar to the natural languages processing (NLP) problem of estimating the
likelihood of words co-occurrence in a corpus.

Here we use a word2vec NLP model [9,5] with skip-gram model and hier-
archical Softmax to encode the steps in embeddings. Embeddings where �rst
introduced in 2003 by Bengio et al. [2]. The basic idea is to map one-hot en-
coded vectors that represent words in a high-dimensional vocabulary space to a
continuous vector space with lower dimension. This approach has the virtue of
storing the same information in a low-dimensional vector. The skip-gram model
for NLP aims to compute words embeddings in order to predict the context of a
given word. The input of the neural network is a high-dimensional one-hot vector
which represents the target word and its output is a real low-dimensional vector,
the embedding of the target word, that holds contextual information. The neural
network is shallow with one hidden layer and the objective function given by
Equation (4) in [10] maximizes the probability of appearance of the target word
within a context of w words. This model has the advantage of generating good
words representations [9] and it shows good results when it comes to learning
structural representations of vertices in a social network [6,10].

Here we adapt this model to the disclosure of secret preferences of users
in social networks. To that end, we perform weighted random walks on social
graphs representing both friendship structures and attribute preferences of users.
In contrast to [10] and [6] where users vertices which have similar friends will
be mapped to similar embeddings, in our case both friends and preferences play
a role in calibrating embeddings. The relative importance of friends and prefer-
ences in computing embeddings are quanti�ed by the graphs weights. With this
in mind, pro�les that share the most important preferences (of highly weighted
graphs) can have similar embeddings even if they do not have similar neigh-
borhood. Moreover, vertices of di�erent types, for instance movies, musics and
users, are represented by vectors belonging to the same euclidean space. Hence,
secret preferences will be easily predicted through linear algebra as detailed in
Section 6. Additionally, by analyzing the variation of accuracy with respect to
graph weights we deduce correlations between attributes as detailed in Section 7

6 Ranking attribute values for predicting preferences

Users, clusters of targeted attributes and values of other attributes, are encoded
by vectors. The vectors are ranked according to a similarity measure with the
target user vector. The inference algorithm will disclose as prefered attribute
value one with the smallest rank or highest similarity.

In [12] Schakel et al. show that word2vec unsupervised learning algorithm en-
codes word semantics by a�ecting vectors in the same direction for co-occurrent

11

words during training. Besides, the magnitude of a vector re�ects both the fre-
quency of appearance of related words in the corpus and the homogeneity of
contexts.

In fact, words that appear in di�erent contexts are represented by vectors
that average vectors pointing in di�erent contexts directions. Hence, the �nal
vector magnitude generally decreases with respect to contexts. With that in
mind, words used only in few contexts have generally higher magnitude than
other words that have the same frequency but are used in more contexts. And
the higher the word frequency is, the higher the chance it has to be used in
di�erent contexts.

To measure semantic similarity between vertices we apply cosine similar-
ity which is widely used in NLP. This metric measures the cosine of the angle
formed by two vectors which represent two di�erent vertices. It yields values
in the interval [−1, 1] that quantify the topical similarity between vertices re-
gardless their centrality. We discuss why cosine similarity is better adapted than
euclidean distance for our purpose. For instance, Star Wars and Titanic are two
famous movies that attract a large audience. The vertices which represent them
are connected to many user vertices in the social network. Consequently, their
embeddings weight average the embeddings of many dissimilar embeddings of
many users. Hence, the embeddings magnitude of these two famous movies are
lower than the embeddings magnitude of the other less famous movies. There-
fore, the euclidean distance between the vectors which encode Titanic and Star

Wars is lower than the euclidean distance between any of them and the rest of
non famous movies. However, the angle between the vectors which represent Star
Wars and Titanic is large due to the fact that they point in di�erent context.
With that in mind, if a given user likes Celine Dion song's My Heart Will Go

On, his encoding vector will points in closer direction to the direction in which
points the vector of Titanic because the vectors encoding Titanic and My Heart

Will Go On points in similar context. Hence, we can predict that this user might
like the Titanic movie even if the euclidean distance between the vector which
encodes his vertex and the vector which encodes the Titanic is large. We note
that if a user has few friends and few preferences his vector magnitude will be
high. On the other hand, vectors encoding hub users have low magnitude. So
their euclidean distances to the vectors encoding Titanic and Star Wars are low
but they do not necessary like them.

7 Experimental results

Dataset. Our dataset contains 15012 Facebook pro�les of students and their
direct friends. The sample is connected to more than 5 millions Facebook pro�les
from all over the world. Thus, we take up the challenging task of disclosing secret
preferences of users from a highly diverse community with rich background from
all over the globe. Our sampled graph of 15012 Facebook users is connected
to 1022847 di�erent liked objects. Objects are pages created on Facebook or
any other object on the Internet connected to Facebook through Open Graph

12

protocol (OGp). The OGp is a Facebook invention that enables any web page
to become an object in a social graph 1. Facebook labels objects by types. We
counted 1926 di�erent types of object in our sample. Those types of objects
are considered as attributes and modeled by bipartite graphs in our model. For
instance the most liked type of object in the sample is community topics with
137338 di�erent liked objects.

Experimental setup. We detail the example of disclosing the secret travel agency
from which the target user books his vacation. We �rst select target users in
the bipartite graph of Users-TravelAgencies and the hide their preferences. The
selection algorithm seeks users who like at least λ travel agencies and removes
r% of their preferred ones. We also add a constraint on the travel agencies graph
connectivity in order to guarantee that the random walk detailed in Section 4
can reach any travel agency and the neural network detailed in Section 5 can
learn about all the travel agencies.

Then we have performed random walks on 7 graphs (6 bipartite graphs for
attributes and 1 friendship graph) as in Section 4 and where the travel agencies
are labeled (w.r.t. clusters). In this example, we have selected graphs with sim-
ilar sizes and densities, and various subjects to focus our tests on the subjects
rather than the mathematical properties of the graph. Details about the ana-
lyzed graphs are given in Table 1. The results of the �rst clustering phase are
also detailed in Table 2.

Graphs Sizes Densities

Users-Users 15012 users 8.94× 10−6

Users-TravelAgencies 3370 users, 4827 travel agencies 6× 10−4

Users-ConsultingAgencies 2288 users, 4176 counsulting agencies 7× 10−4

Users-LocalBusiness 2386 users, 4350 local business 5× 10−4

Users-Politicians 2554 users, 4589 politicians 9× 10−4

Users-AppPages 4396 users, 4244 app pages 8× 10−4

Users-Causes 2547 users, 4410 causes 6× 10−4

Table 1: Details about the graphs used for learning

Hyper-parameters. We have tuned the hyper-parameters of the neural network
as recommended in [10]. That is, the size of the skip-gram window is 10. The
length of the walks is 80. The number of repetitions of walks is 10. And the
dimension of the embeddings is 128. We rather focus on validating the weights
of the di�erent graphs. We used Bayesian optimization as depicted in [13] to
automatically tune weights.

Results. We use the area under the ROC curve (AUC) as de�ned in [4] to measure
the accuracy of the infered links. The amount that AUC exceeds 0.5 tells how
much the inference algorithm is better than random guessing. The AUC for link
prediction problem is computed as following:

1 https://developers.facebook.com/docs/sharing/opengraph

https://developers.facebook.com/docs/sharing/opengraph

13

nr(nel>esl) + 0.5× nr(nel=esl)
nnel × nesl

where nnel is the number of not existing links, nesl is the number of existing
but secret links, nr(nel>sl) is the number of couples of a not existing link and
a secret link of smaller rank, nr(nel=esl) is the number couples of a not existing
link and a secret link of the same rank. Note that AUC value will be 0.5 if the
ranks are independent and identically distributed.

In our model links between the targeted user and the travel agencies which
belong to the same cluster will have the same rank. Assuming that all clusters
have di�erent ranks (69 di�erent cosines coded on 2 bytes in an euclidean space of
dimension 128 where vectors are coded on 256 bytes) the AUC can be computed
as following:

AUC = AUC1 +AUC2 ×
nr(nel=esl)

nnel×nesl

AUC1 =
nr(nel>esl)

nnel×nesl

where AUC1 is the accuracy of ranking clusters and AUC2 is the accuracy of
ranking values inside the selected cluster cs (that should contain the secretly
prefered value). Due to graph sparsity (only 2 travel agencies are liked by a user
in average) we can make the following approximations when the goal is to predict
one given secret link at a time (nesl = 1).

nnel × nsl ' m− 1
nr(nel=esl) ' |cs| − 1

AUC ' AUC1 +AUC2 × |cs|−1m−1

Since m = |TravelAgencies| = 4827 and
√
m − 1 ≤ |cs| − 1 ≤ 2

√
m − 1 we

have

0.0146 = 1√
m+1

=
√
m−1
m−1 ≤

|cs|−1
m−1 ≤ 2

√
m−1
m−1 = 2 1√

m+1
= 0.0292

For the results depicted in Table 3 the rank inside clusters is generated by

independent and identical distribution (AUC2 = 0.5).Therefore AUC2× |cs|−1m−1 is
negligible w.r.t. AUC1 in that case and does not a�ect the global accuracy of the
prediction. We can observe that the obtained AUC in Table 3 are clearly above
0.5 showing a satisfactory performance from the proposed method. Computation
times are in the order of a few minutes. Increasing the number of steps in random
walks improves accuracy but a�ects e�ciency.

8 Conclusion

We have proposed a new method for infering hidden attribute values or prefer-
ences in social networks. The method relies on �rst clustering attribute values
and then applying e�cient machine learning technique from natural language
processing. The method has been fully implemented and the �rst experiments

14

Full Users-TravelAgencies graph

Number of travel agencies 4827
Number of user to travel agency links 9804

Removed links

Minimal degree of targets: λ 10
Percentage of removed links per target: r 10 20 30

Number of targets 69 45 31
Total number of removed links 80 101 106

Graph partitions

Number of clusters 68 68 68
Maximal number of Travel Agencies in a cluster 138 138 138
Minimal number of Travel Agencies in a cluster 69 69 69
Best cluster similarity between Travel Agencies 0.857 0.614 0.71
Worst cluster similarity between Travel Agencies 0.03 0.003 0.002

Mean of clusters similarities between Travel Agencies 0.12 0.112 0.114
Std of clusters similarity between Travel Agencies 0.14 0.114 0.12

Table 2: Processing of Users-TravelAgencies graph

Graphs Best weights con�gurations

Users-Users 0.2498 0.2154 0.168
Users-TravelAgencies 0.2498 0.138 0.209

Users-CounsultingAgencies 0.0002 0.0002 0.164
Users-LocalBusiness 0.0002 0.2154 0.111

Users-Politicians 0.2498 0.2154 0.117
Users-AppPages 0.0002 0.0002 0.114

Users-Causes 0.2498 0.2154 0.117

Percentage of removed links per target: r 10 20 30

Best Mean Accuracy Result (AUC) 0.6836 0.6715 0.6724
69 targets 45 targets 31 targets

Table 3: AUC and the best weights con�gurations.

15

are encouraging. However we need to perform larger scale experiments which
is not easy due to the restrictions in crawling social networks and the needs to
anonymize properly the collected data. The next step is to develop online tools
for users so that they can control privacy leaks from their footprints in social
networks.

References

1. L. Backstrom and J. Leskovec. Supervised random walks: Predicting and recom-
mending links in social networks. CoRR, abs/1011.4071, 2010.

2. Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic lan-
guage model. Journal of Machine Learning Research, 3:1137�1155, 2003.

3. I. Elkabani and R. A. A. Khachfeh. Homophily-based link prediction in the
facebook online social network: A rough sets approach. J. Intelligent Systems,
24(4):491�503, 2015.

4. F. Gao, K. Musial, C. Cooper, and S. Tsoka. Link prediction methods and their
accuracy for di�erent social networks and network metrics. Scienti�c Programming,
2015:172879:1�172879:13, 2015.

5. Y. Goldberg and O. Levy. word2vec explained: deriving Mikolov et al.'s negative-
sampling word-embedding method. CoRR, abs/1402.3722, 2014.

6. A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
855�864, 2016.

7. R. Heatherly, M. Kantarcioglu, and B. Thuraisingham. Preventing private infor-
mation inference attacks on social networks. IEEE Transactions on Knowledge

and Data Engineering, 25(8):1849�1862, Aug 2013.
8. V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A survey of algorithms for dense

subgraph discovery. In Managing and Mining Graph Data, pages 303�336. 2010.
9. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-

sentations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013.

10. B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: online learning of social repre-
sentations. In The 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD '14, New York, NY, USA - August 24 - 27,

2014, pages 701�710, 2014.
11. E. Ryu, Y. Rong, J. Li, and A. Machanavajjhala. curso: protect yourself from curse

of attribute inference: a social network privacy-analyzer. In Proceedings of the 3rd

ACM SIGMOD Workshop on Databases and Social Networks, DBSocial 2013, New

York, NY, USA, June, 23, 2013, pages 13�18, 2013.
12. A. M. J. Schakel and B. J. Wilson. Measuring word signi�cance using distributed

representations of words. CoRR, abs/1508.02297, 2015.
13. J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of ma-

chine learning algorithms. In Advances in Neural Information Processing Systems

25: 26th Annual Conference on Neural Information Processing Systems 2012. Pro-

ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States.,
pages 2960�2968, 2012.

14. E. Zheleva, E. Terzi, and L. Getoor. Privacy in Social Networks. Synthesis Lectures
on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers, 2012.

	 Two-phase preference disclosure in attributed social networks
	Introduction
	Social network model
	First phase: clustering targeted attributes values
	Random walks in a social attributed network
	Second phase: applying natural language learning
	Ranking attribute values for predicting preferences
	Experimental results
	Conclusion

