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Dynamical Sparse Recovery with Finite-time
Convergence

Lei Yu, Gang Zheng, Jean-Pierre Barbot

Abstract—Even though Sparse Recovery (SR) has been suc-the observation error term and the sparsity-inducing term [12]—
cessfully applied in a wide range of research communities, [14], i.e.,
there still exists a barrier to real applications because of the
inef ciency of the state-of-the-art algorithms. In this paper, we
propose a dynamical approach to SR which is highly ef cient
and with nite-time convergence property. Firstly, instead of
solving the *; regularized optimization programs that requires gnd typically, the sparsity-inducing term(x) = kxk; ,
exhausting iterations, which is computer-oriented, the solution to (jxij and > 0 is the balancing parameter. We call
SR problem in this work is resolved through the evolution of a 5¢' thecritical point, i.e., the solution of (1). And typically,

continuous dynamical system which can be realized by analog]c r rse vectors< with rsity. th lution will b
circuits. Moreover, the proposed dynamical system is proved to Oor Sparse Vectorx S-Sparsity, the solulio e

have the nite-time convergence property, and thus more ef cient uUnique providing that RIP condition for with order of 2s
than LCA (the recently developed dynamical system to solve is veried [11]. On the other hand, exploiting hierarchical
SR) with exponential convergence property. Consequently, our Bayesian model built on the sparse signals [8], [15]-[18]
proposed dynamical system is more appropriate than LCA 10 yagyits in compelling algorithms inherently with different
deal with the time-varying situations. Simulations are carried out - . .
to demonstrate the superior properties of our proposed system. sparsity-inducing term [16]. Moreover, the Qreedy algorithms
are also favorable for SR due to the theoretical guarantees and
high ef ciency when the considered signal is highly sparse [9],
[19]-[21].
Although greedy algorithms are ef cient, the condition for
I. INTRODUCTION the stably recovery o$-sparsex is generally very strong. In
particular, it is showed in [22] that to guarantee a stably re-
As a fundamental of Compressive Sensing (CS) theory [Hovery of anys-sparsex with the orthogonal matching pursuit
Sparse Recovery (SR), or sparse representation, has been glgforithm [20] ins iterations, the dictionary shoulg satisfy
stantially investigated in the last two decades. As a powerfle RIP with the restrict isometry constant < 1= s+1.
tool, it has also been successfully applied in a wide range of Igthough it has been shown in [23] that stably recovery of any
search communities and obtained Compelling results, inC'UdiQ%parse( with the orthogona| matching pursuit a|gorithm [20]
signal processing [1]-[5], medical imaging [6], [7], machings also possible if satis es the RIP with the restrict isometry
learning [8], [9], and computer vision [10]. In particularconstant 3;5 < 1=3, the required number of iterations 3§s
the objective of SR is to nd a concise representation of @hich is computational expensive. Besides, other aforemen-
signal using a few atoms from some speci ed (over-complet@hned algorithms are ablatch-baseavhich normally require a
dictionary, large number of iterations to guarantee the convergence (most
y= x+" of them with sublinear convergence rate) and thus with high
computational complexity. It is thus implausible for the real
with y 2 RM the observed measurements corrupted by somgplications where the signals are usually time-varying, such
noises”, x 2 RN the sparse representation with no morgs radar imaging [24], face recognition [10], DOA estimation
than s nonzero entries stsparsity) and 2 RM N the [5] and so on. Regarding the real applications, many “online”
dictionary (normallyM N). Thus it always involves an algorithms have been proposed recently either by generalizing
underdetermined linear inverse problem. Providing that the regularized LS in the manner of LMS (Least Mean Square)
Restricted Isometry Property (RIP) of dictionary is ful lled,[25], [26] and RLS (Recursive Least Square) [27], or extending
the unique solution is guaranteed [11]. the Bayesian approaches following an adaptive framework
The problem of SR is often casted as an optimization prpg], [29]. On the other hand, instead of the online algorithms,
gram that minimizes a cost function constructed by leveragifige Locally Competitive Algorithm (LCA) [30] has been
proposed to solve the SR problem by exploiting the continuous
This work is supported by NSFC Grant 61401315, and the Projeqjynamical systems. And recent advances in very-large-scale
sponsored by SRF for ROCS, SEM, under Grant 230303. . . N .
Lei Yu is with School of Electronic and Information, Wuhan University,'ntegratlon (VLSI) enables the realization of LCA with analOQ
Wuhan Hubei, China (email: ly.wd@whu.edu.cn). chips [31]. Consequently, instead of numerically calculating

gaﬁgnienggﬂ?-a ﬁ'g with  Non-A, INRIA Lille, France (email: the matrix multiplications in the digital approaches, LCA can
z inria.fr). . . L - .
Jean-Pierre Barbot is with Quartz EA 7393, ENSEA, Cergy Pontoise afiptain the computation result from analog circuits which will

Non-A Inria Lille, (email: barbot@ensea.fr) be very ef cient.
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X =arg min éky xks+  (x) (1)

Index Terms—Sparse Recovery, 1-minimization, Dynamical
System, Finite-time Convergence



Mathematically, LCA is in fact a continuous version of thehe types of stability for the studied system. Supposés the
iterative soft-thresholding algorithm [13], [32]. Moreover, proequilibrium point, and denote bg(t) = u(t) u , the basic
viding that satisfying RIP, LCA guarantees an exponentiatiea is to choose a Lyapunov functid(e) which should be
convergence rate [31]. Even though armed with analog circuitscally positive de nite for alle 6 0 and V(0) = 0, then
the LCA is much more ef cient than its discrete version [32]system (2) is:
the exponential rate is not enough to ensure the convergence of) |ocally Lyapunov stable around , if
SR during the evolution of the LCA dynamics especially when
signals varying rapidly. Consequently, the main objective of \i(e) 0,860
this paper is to redesign the dynamics of LCA to increase thez) locally asymptotically stable with rate aroundu , if
convergence rate. As we can see that sparse recovery problem
(1) is an optimization problem. Note that, except the numerical \L(e) kV(e);8e6 0
method, continuous method can be also used to solve the - .

T o ; with k > 0;
optimization problem, whichhistorically has a strong link to
control theory [33], [34]. In fact, in [35], the proposed LCA
method exactly used control theory to solve the optimization \L(e) kV (e);8e60
problem (1). In order to clarify the motivation, let us rstly with k> 0 and 2 (0; 1),

recall some basic backgrounds of control theory. o - ]
Similarly, global stability can be proved by choosing a
. globally positive de nite and radically unbounded Lyapunov
A. Recall to System Stabilities function, i.e.,V(e) ! 1 if jigj ! 1 . Besides, with the
Researchers in control community are interested in stabhosenV (€), if one can only provel(e) 0, then LaSalle
lizing different types of dynamical systems with some propétheorem can be still used to prove the asymptotical stability.
control laws. Consider the following system: It states that if the se¥(e) = 0 contains onlye = 0, then it
u=f(u) @ is asymptotical stable.

3) locally nite-time stable aroundi , if

with u 2 RN the system state with respect to tiheand B_ Motivations

denote u(t) the value of state at time instamt For this . : .
In this paper, a new dynamical system will be proposed, of

system, we call the point 2 RN as an equilibrium point _ . S L . . .
if f(u)=0.Note that the linear time-invariant system ha\éVhICh the equilibrium point is unique and yields the solution

. S : . of the optimization problem (1). Therefore, the above basic
only one isolated equilibrium point, but nonlinear system an
; . A results (Lyapunov and LaSalle Theorems) from control theory
switched systermay have more than onisolatedequilibrium

. o . Will be used to analyze the performance of convergence. In

points. Therefore, only local stability around each equilibrium . . . .

. . -.order to well explain how to design a dynamical system with

point can be analyzed. Concerning the concept of stab|I|t'¥ : L

different de nitions are given in the literature on-asymptotical ( nite-time) convergent performance, let us
' consider the following two simple systems:

De nition 1. System(2) is said to be: u= u 3)

1) locally Lyapunov stablearoundu , if for any > 0,
there exists > 0 such that, ifjju(0) ujj < ,then and
juit) uijj< ,forallt> 0 u= j uj sgn(u); with 2 (0;1): (4)

2) locally asymptotically stablearound u , if there ex-
ists > 0 such that, ifjju(@ uijj < , then
limya  jjut) ujj=0;

3) locally nite-time stablearoundu , if there exist > 0
andT > 0 such that, ifju(0) u jj < , thenjju(t)
ujj=0forallt>T.

It is easy to see that =0 is the only equilibrium point for
both systems. For system (3), choose the Lyapunov function
asV(u) = u?, we have\L = 2u? = 2V, thusu of
system (3) asymptotically converges to the equilibrium point
0. Concerning system (4), choose as wWéll= u?, which
gives\M. = 2ujuj sgn(u) = 2V “z~. Since 2 (0;1), u of
Lyapunov stability only requires the solutiar(t) starting system (4) converges to the equilibrium poihafter a nite-
from the neighborhood of the equilibrium point staying timeT. Particularly, when =1, system (4) is exactly system
inside its neighborhood. Asymptotical stability needs that th{8), and the nite-time convergence property is degraded to
trajectory of the system should convergautoast tendstol . asymptotical one. In other words, by introducing the sign
The strongest de nition is the nite-time, which furthermorefunction (which is called as sliding mode technique in control
imposes thau(t) should exactly equal te after a nite- theory), the convergence performance of the studied system
time T. Moreover, the extension of local stability to globatan be improved.
one needs just to relax the neighborhood of the equilibrium Let us then turn to the problem (1). Motivated by the above
pointu (jju(0) u jj < )by allowing allu(0) 2 RN . Ifthe example, the nite-time convergence can also be ful lled by
system globally converges to, it implies as well thau is exploiting the sliding mode technique in LCA [35], which
the unique equilibrium point. has an asymptotical (exponential) convergence property to
Without solving the differential equation, in control theorysolve the optimization problem (1). The rest of this paper is
the Lyapunov function method is widely used to determinerganized as follows. The new dynamical system is built in



Section Il and its nite-time convergence property is proved iB. The Proposed Dynamical System

Section IIl. Relationships between our proposed method andp, this paper, a new dynamical system is proposed to solve
the related works are discussed in Section IV. Simulatiogge ", -minimization problems (1). As stated in the last section,
are implemented to verify the theorems and demonstrate th@tivated by the sliding mode technique, a new dynamical

superior of our proposed system to LCA in Section V and eXystem is constructed by introducing the paramet@r (0; 1],
tensions to recover time-varying sparse signals are empirically.

presented in Section VI. Conclusions are made in Section VII. ut)= du(t)+( T 1a(t) Tye

_ )
[I. SPARSERECOVERY VIA DYNAMICAL SYSTEM R(t) = a(t)
A. Preliminary of LCA with d ¢ being a function de ned as
Let us now rst take a look at the LCA method proposed dec =] j sgn()
in [35] to solve the optimization problem (1): wherej j; ;sgn are all element-wise operators, 2 R,
uty= u(t) (T Daty+ Ty (5) denotes an exponen8tial coef cient and
(1) = a(t) >=1; if 1> 0
whereu 2 RN is the state vecto® represents the estimation sogn(!)_2[ 1;1]; if! =0:
of the sparse signak of (1), > 0 is a time-constant > T ifl< 0

determined by the physical properties of the implementing

system. Since always exists as a company of the derivative |n the following sections, we will demonstrate that the
with respect to the time, it can be simply setto =1 for new designed system (7) resolves the optimization problem

mathematical analysis and then added to the nal resultif tinfg) and converges to the equilibrium point with nite-time
derivative existsa(t) = T (u(t)) with T () is acontinuous convergence.

soft thresholding function )
Theorem 2. Under Assumption 1, the state(t) of (7)

T (u)=max(juj ; 0) sgr(u) (6) converges in nite time to its equilibrium point , and R(t)

with > 0 of (7) converges in nite-time to of (1).

Then de ning byu; thei-th element of stater, we can call Remark 1. Considering the dynamic (7), even if it is not a
u; as anactivenode if the amplitudga; (t)j is different from Lipschitz function ati =0 for 2 (0;1), it still has a unique
zero, otherwise we call this nodeactive Then de ne by  solution (Cauchy problem). This is due to the fact that dynamic
the set of active nodes, i.e, 6 0, and © the set of inactive (7) is at least locally asymptotically stable at= 0 and then
nodes, i.e.a < = 0. In order to guarantee the existence othe only one solution is clearlgt > 0 u(t) =0 if u(0) = 0.
unique solution of optimization problem (1), assumptions oioreover for = 0 the solution must be considered in a

should be made before going deep into analysis, where fh#ppov meaning [36].

restricted isometry property (RIP) [11] is assumed. Remark 2. When =1, the proposed dynamical systdif)

Assumption 1 (RIP [11]). Matrix  satis es thes-order of becomes exactly the same as LCA proposed in [Bd]. =0

RIP condition with constantg 2 (0; 1). the dynamic of neuron cell becomes a rst order sliding mode
dynamics and chattering phenomenon occurs at equilibrium
point. This is not wished in the neural network and more
particularly into our proposed optimization algorithm for the
problem (1).

The above assumption implies that for amgparse signals
X, i.e., vectors with at most nonzero elements, the following
condition is veri ed

(1 okxks k xki (1+ ¢)kxks:

Denote the index set of nonzero elements farit implies
that

IIl. CONVERGENCE INFINITE TIME

In this section, we will analyze the property of the proposed
system (7) in the following four steps. At rst, similar to LCA,
we can also prove that the output of the proposed system (7)
where denotes the submatrix of with active nodes. converges to the critical point of (1). After that, we will prove
Explicitly, RIP condition guarantees that eigenvalues of anfat the trajectory of (7) stays in a bounded space. Then, the
Gramm matrix T for any index set are bounded. attractive property of an invariant set is proved via LaSalle

Suppose that RIP of is ful lled with constant s, the LCA theorem [37], [38] by introducing a new semipositive de nite
system (5) converges exponentially, which can be concludighction. At last, the nite time convergence of (7) is proved.
in the following theorem. In the following, note that variables; x; a are always the
function of the timet which are sometimes neglected for
simplicity and the derivative with point above always means
the derivative with respect to the time u; represents the
i-th element of vectonu and | as the identity matrixu
is a constant with respect to time which represents the
kut) uk, Ke@ 9 equilibrium point of the trajectory(t).

1 s eig T ) 1+ ¢

Theorem 1 (LCA Convergence Property [35])If Assump-
tion 1 holds, then LCA systefB) converges to the equilibrium
pointu exponentially fast with convergence spééd )=,
i.e.,9K > O, such that8t 0



A. Solution Equivalence proposed dyanmics in (7), the trajectanyshould belong to

Considering the proposed dynamical system (7), the secdng Which implies that Zeno bghavior does not exist for the
claim of Theorem 2 can be easily proved by slightly modifyingroPosed system (7) with continuous threshold (6).
the result in many papers related to LCA, such as [31]. And O

we re-write the following lemma to make our proofs complete. |, o qer to invoke the LaSalle theorem in the next subsec-

Lemma 1. Equilibrium points of (7) are critical points of (1). tion, we must prove rst that the state behavior stays in a

bounded space.
Proof. The subgradient of (1) with respect to in the set P

valued framework [36], [39], [40] gives Lemma 3. For all bounded initial statesi, the trajectory of
@k x yk3+ kxki ; (7) stays in a bounded set.
@x =( "(x y)+ sgrx)) " (8) Proof. In order to prove that the state trajectory stays on a

bounded set, we invoke again (1) but with respecut@et
x =T (u)),

And denex = T (u), thenx andu should have the same
sign. By simple calculation,

u x=(ju max@uj ; 0)) sgr(u)= sgn(x) V(u)= Sy T Wiz + [T (Wija
Then, substitute the sgn in (8) and the derivatives with respect to tirhés
1 2
@Zk X yk2+ kal :( T( X y)+ u X)T \L(U):(U+( T |)T (U) Ty)TFOU_

@x
1k K2+ kxk with F0= @TW being the Frechet derivative with respect to
Consequentlyy = 0 in (7) onl when &2k X ykat kda) _ T T - S wi : :
S€q (LR y @x u, thus it leads to a diagonal matrix withon the diagonal if
0, this completes the proof. [ the neuron is active and if not.

The above lemma connects the dynamical system (7) andNow considering dynamical system (7), it gives
the optimization problem (1), and _g_uarante_zes the equiv_alence V= (u+( T DT (u) Ty)TEO
of the output of (7) and the critical point of (1). Since T -
Assumption 1 implies the uniqueness of critical point of du -+ ( DT (u) yc
(1), then Lemma 1 means that the system (7) has only one 0
equilibrium point.

_ _ _ _ As limmr  V(u) = 1 and\(u) 0, one can conclude
Remark 3. The generalized active functioh is not the thatu stays in a bounded set, i.e., (7) is Lyapunov stable.
main contribution of this paper, thus only soft-thresholding 0

function is addressed. Alternating of active function will get
the same result as Lemma 1, and proofs with generalized active
functions can be referred in the appendix of [35]. B. Global Convergence
. . Even if LaSalle theorem requests that the state behavior
Due to the sgn function, the resulted system (7) is ag-

ffiust evolve in a bounded space, as this bounded space can be

tually a hybrid (SW'tCh?d) syst.e.m an(_j .'t m_|ght_ exist th%s wide as we want with respect to the initial state, then we
Zeno phenomenon (In nite transitions within nite time [41]),Consider this convergence as a global one

which makes the analysis very complicated. Consequently, It

. : . 7' "On the other hand, it has been proved that under the
is necessary to verify whether Zeno exists, and the fOHOW”}stumption 1, the uniqueness of the solution to (7) is guar-
lemma veri es this point. !

anteed [11]. Thus it implies that there exists a solution
Lemma 2. The system (7) with continuous threshold (6) ito dynamical system (7). In order to prove the convergence
everywhere integrable and has a unique solution, moreoveroperty of (7), the error terr is introduced.
Zeno behavior can't occur.

g(t), u(t) u

Proof. According to control theory, the existence and unique- a(t), a(t)
ness of the solution of dynamical systems is not guaranteed

only at the state point where the system is not Lipschitz. And then de ne the Lyapunov function with respectto

For the proposed (7), its solution exists except whét) + 1

(T 1)a Tyisequal to zero, i.e., the equilirum point. E(w) = EJ'J' bz + 17( 7 1)G(t) )

Nevertheless, at this equilirum point, Lemma 1 shows that it ) .

is the unique equilibrium point of (7) which concides with th&ith 1 2 RN being the vector with all elements equal 1o

a

unique critical point of (1). andG(t) = [ Gy (th); Ga(t2);  ;Gn (un)]" 2 RY, where
As we will prove in Theorem 2 that this unique equilibrium Zy,
point is globally stable, therefore, the solution of (7) with Gi(t) = gi(s)ds
0

continuous threshold (6) always has a unique solution.
M(_)reover' sincd (u) de ned in (6) ISa CO”“”UP_US thresh- Variablest and & are always function of which are neglected in the
old, i.e., T (u) 2 CO, then according to the de nition of the following sections for simplicity.



with gi(s) = T (s+u;) T (u;). Then we have the following  For the second inequality, by exploiting the rst result of

properties. this lemma, one can have
Lemma 4. The functiorE de ned in(9) satis es the following E () }kuké +17( 7)) G(w)
properties: 2
1) Forallty 0,0 Gi(t) % According to Lemma 6 in appendix, the eigenvalue df
2) E is non-increasing, i.eE. 0 is upper bounded, and thus it has
3) For dynamical systen{7), E cannot be negative, i.e. +
: E o},/ ystent?) ’ 1T( ") G(w) N(lzisS)kuk%
4) There exists a positive constant 0 such that thus de ning by = N=s the signal to sparsity rate,
E(u kU’k2 + +
() 2 E(t) %kukﬁ (15)
Proof. 1) According to (6), the operatdr is non-decreasing,
thus one can conclude thgt(s) 0;8s 0, thus Then, by de ning = -£*-<"L ‘one can conclude the second
inequality. O
Gi(¢) O . - .
_ ) According to (9) and its third property stated in Lemma 4,
For the second inequality, we rst have one can deduce th& is a positive semi-de nite and radically
T T() x y8x vy unbounded Lyapunov functiorThen armed with the second
’ property of Lyapunov functiorE, we have the following
which impliesgi(s) s;8s 0. Consequently, theorem.
Z w 2w & Theorem 3. Under Assumption 1, the dynamical system (7)
Gi(t) = , 9 (s)ds . sds= — globally converges to the critical point of (1).
where equality holds only if; or u; + i ) Proof. According to the LaSalle Theorem [38], we can con-
2) The time derivatives oE gives clude thatw will converge to an invariant subséf,, of
; ; M, fejae+( T I)a = 0g. From (14) and (13), it is
E(t) = (1 +( la) (10) easy to conclude thaE- = 0 implies & = 0, thus all state

of U is invariant. Consequentlyi,, = U. Finally, we can
conclude thatr converges tdJ, and thena converge to a set
w=u=du+( T a Tyc (11) of critical points of (1) i.e.a , and according to Assumption
1, a is unique, thenUj,, = U is reduced to a singleton
According to the de nition,u anda are the equilibrium fy=0g or equivalentlyfa= a g.

points of dynamical system (7), which concludes that ]

Then due to the fact that is constant, thus

u+( T a Ty=0 (12)
C. Finite Time Convergence Property

Then plug (12) into (7), we can get In this subsection, the convergence property of (7) will be

= du+( T DES (13) considered. Hereafter, we will prove then, fersuf ciently
close t00, ket +( T I )ak3 is not singular with respect to
Consequently, combine equation (10) and (13), we have .
E= (+( 7  Da)fde+( T lac Lemma 5. There exist a timé. < 1 and a positive value
= kua+( T | yakiy (14) > 0, such that whert > t ¢, the following inequality is
0 veri ed,
keks Kk e+ (T | Yaks (16)

3) From the result of Lemma 3, the proposed system (7) is
Lyapunov stable for any initial condition, i.ex = 0, which
meansE will converge to 0. Furthermore, we know tHat 0  Proof. In order to prove this result, we should rst prove the
for all &, so for anyE < O, it will be non-increasing all relation betweenrt anda. According to Lemma 1, and armed
the time instead of converging @ i.e. the system will not with the result from [35], on can also conclude that none of
converge, which is contraindicative. Thus for the proposegitching occurs after a nite timé; < 1 . It means that after

dynamic system (7)E is non-negative, i.eE 0. time t;, every nodesy; (t) will be with the same sign as; .
4) By de nition of E () in (9), we have Then following cases are respectively considered. Foi e
1. ., 1, 1 element,
E(e) = Sliwiiz + 17 ( 1G(&) 1) if ju ()j < we havejaij = jT (s +u;) T (u)j=
I TP T 0 j ej.
= Slez+ 1 G(w) 17 G(w) 2) If ju; ()j > we haves = 4 + sgr(th + u; )

1T T G 0 u; +  sgr(u; ). According to Lemma 3, the proposed



system is globally convergent. It implies thjatj can Convergence Rate
be very small, i.e., for any small> 0, there exists a

timet( ) < 1, such thafity(t)j < ; 8t>t( ). Thus, Prop.E =0;t t

de ne ty = t( ), we havejt; (t)j < ; 8i and
t>t,, thenw; + u; andu; are with same sign, and we
haves = ;.

Above all, one can conclude that there exists a tine

maxfty;tog< 1, such that for alt >t ¢, LCAE! Ot!1

jrel oo mmm e e
& = i ifi 2 t
& =0 ifi2 ¢ t

Consequently, one have
Fig. 1. The schematic diagram of convergence rate. The dashed line represents

ke + (T |)ak§ =k T wu kg + Ko < T w k% the convergence rate of LCA, i.drgj; The solid curve represents the
T 5 convergence rate of the proposed system,jirj; the dark shadowed area
k od kz represents the equilibrium region of the proposed system, where) .
Exploiting Assumption 1, one can conclude that the Gramm
matrix T is not singular, thuke+( T  1)aks > Oas It means that whert  t; (Eg), the Lyapunov function
long askuks > 0. And furthermore, there exists a small valu€ (&) exactly equals td, i.e. (7) is stable, as shown in Fig. 1.
> 0 such that Note that the settling time is dependent to the initial valige

and moreover, when ! 1 the settling functiorty ! +1 ,
which corresponds to the asymptotic convergence property. In
] the situation when parameter2 (0; 1), we have to consider

two different cases:
Now consider the dynamical system (7) with soft threshold-  \yheno < E o exp(2)=, the settling functiort; is

ing function (6), then Theorem 2 can be proved as follows. monotone increasing with respect to

when Eg > exp(2)=, the settling functiont; has a
minimum value at =1 &
Consequently, when the state is close to the equilibrium point,
E()= kuo+( T 1akj} smaller will lead to faster convergence.
K a+( T | yak}* On the other hand, regarding to the equation (15), the
okl (17) settling time is also dependent on the settings of the sparse
2 " recovery problem, i.e(s;M;N ), which determine the RIP
(= )1+T (E() = constant s and the signal to sparsity rate. Apparently,
the larger the number of measurements the smaller the RIP
constant s which leads to the smaller settling tinhe. While
the larger signal to sparsity ratewill result in a larger settling
time ts .

kek3 k a+( T 1)aks

Proof of Theorem 2According to Lemmas 3, 4 and 5, the
following result is straightforward, for>t ¢,

where the rstinequality is due to the fact thatk;.  k xko
as 2 (0;1]

Then8t >t o E(¢) converges to zero in nite time denoted
ty >te. Finally, we have8t >t ¢, u= u and this ends the

proof. L E. convergence Rate
_ In this subsection, we will compare the convergence rate
D. Convergence Time between nite-time and exponential convergence. In order
According to (17), one can conclude that the trajectory & analyze the convergence property in counterpart of the
Lyapunov function is upper bounded, exponential convergence rate, the logarithmic form of (18) is
) analyzed, i.e.
E@ ET 1t .t 4(E) (18) 2 broa b
0 2 ) f 0 E(H) el— log E, Szt
whent >t ¢ (Eo), we haveE (t) = 0. Then the convergence speed can be evaluated via the slope of

Then it is not so dif cult to analyze the convergence timethe exponents with respect to tingi.e.
Particularly, according to Theorem 4.2 in [42], the settling

time functiont; can be explicitly conducted by exploiting (17) rer(t; )= 1 :
(partial integration with respect t8 andt on both sides), q Cc +( 1);
2 1 ; _  Eo _ a1 .
t (Eo) = —— Ey? (19) with ¢g = =0 andc; = = While the convergence

7 (1 ) speed of the corresponding exoponential convergence rate can

with Eq = E(&(0)) being the initial condition of Lyapunov be direct obtained by setting =1, then one can get

function and = = . re =



Considering the convergence rate, apparentp is time is with exponential convergence, consequently, our proposed
varying, as shown by the red solid curve in Fig. 1. Andystem can cope with signals with higher varying speed than
: LCA, which can be illustrated by Example 1.

2 Eg? 1
moreover, whem - 37 , We haverer - T, Comparing to LCA, the complexity to implement the ana-
i.e.jrer j rej, namely, the proposed system (7) convergégg architectures of our proposed dynamical system will be
faster than LCA system. slightly increased due to the fractional exponent and sign

Moreover, as the evolution timteapproaching to the settling function. In fact, those terms can be easily realized even
time t; , the denominator ofer will go to zero and then leads PY using simple operational ampli ers, with which the basic
to in nite value of jre1j, i.e. system (7) will converge super fasfunctionaliies such asnultiplication,  division, _
to the equilibrium point, as shown in Fig. 1. In this case, tH89: €xp, abs  already exist. For example, the fractional
proposed system (7) is more appropriate to solve the dynarfiPonential operator (such as with 0 < < 1) can be
sparse signals, where the consecutive data are close end’ﬁ@lized via cascading a logarithm operator and an exponential
such that the initiaEy is suf ciently small, which makes the OPerator - =exp(  Inx)) [44]. _ o
settling timet; small enough to guarantee the real time sparse©n the other hand, besides the soft-thresholding activation
recovery. function, other type of active functions introduced in [35] can

On the other hand, the convergence rate is also related®{g® P€ exploited in the proposed system. And the analysis for
the parameter . Thus the inuence of can be explicitly alternatives can be addressed by anfalogy, where one only has
analyzed in the following cases. When > 1, increasing ~ © reformulatg the.Lemma 4 according to Appendix of [35]
will decrease the convergence rate. Wiger ¢q < 1, it can and the relgtlonshlp between and & used in Lemma 5 can
be divided into two case, also be derived.

whent > 2cplog(ci)c; , increasing will decrease the
convergence rate;
whent < 2cylog(cy)c,, increasing will increase the  In this section, we present several simulations to illustrate

V. SIMULATIONS

convergence rate; the theoretical results presented in this paper. Simulations will
be carried out in four aspects. At rst, the global convergence
IV. DISCUSSIONS property of the proposed system is illustrated. Afterwards, we

Th d model in thi . tension 1o L ill analyze the number of switches before the convergence
€ proposed model in this paper 1S an extension to r the proposed system. Then, the property of nite time

proposed in [30], where the ODE of the dynamic SyS'ter&)nvergence is addressed. At last, the effects obn the
of LCA is essentially the same form as the We"'knowréonvergence rate is also analyzed '

continuous Hop eld neural network (HNN) [43] and Lyapunov In the following, we will respectively exploit the pro-

funcit|op s l_[|38] playstha (\ﬁfry Impo[)tatnt roIeLg Acongelt'gl\?:lc osed dynamical system and LCA to solve the canonical
analysis. rlowevet, the diiierence between an arse representation problems. Without special explanation,

also very essential. In particular, active function is continuolﬂ e simulations are carried out with the following setting. The

and smooth for HNN, however, it is not necessarily to bgriginal sparse signals 2 RN with N = 200 and sparsity

smooth for LCA and our proposed system. On the othgr: 10 are randomly generated, of which the nonzero entries

hand, 'the_ previous .rgsearches have rarely been focusedapg drawn from a normal Gaussian distribution. Afterwards,
the nite-time stabilities of the networks for aUtonomou%easurementy > RM with M = 100 are collected via

systems_ (LCA is with exponential stability). I_n this paper,. . 4om projectionsy =  x + ", where measurement matrix
we modi ed the ODE of the LCA system to introduce the 2 RM N is drawn from a normal Gaussian distribution

sliding mode technique, and proposed a completely different is normalized to make every column with unit norm)

Lygpu_r;ovl thm(t::]lon (9)_tollmpllli:ltll}/l_pgzv?hour resultsa h 3md" is the Gaussian random noise with standard derivation
imifarly to the seminal work o  the proposed method _ .51 Dynamical equations of LCA and our proposed

in this paper, possesses of solving the sparse representag Lem are simulated through a discrete approximation in

via the dynamical system composed of many neuron-l atlab with a step size d3:001 and a solver time constant is

elements operating in parallel analog architectures [30]. It éﬁosen to be equal to= 0:1. The initial states is also set to

worth to remark that comparing to the computational orientqp(o) =0 and the threshold value = 0:05 for both systems
algorithms, the computational complexity of the proposed ' '

method is actually not reduced. Alternatively, the complexit

of the proposed method (as well as LCA) is transferred f Global Convergence

the implementation of analog architectures realized by analogn this subsection, global convergence property of our
chips. While the algorithm is very efcient as long as theroposed system is evaluated. Theorem 3 states that the pro-
analog architectures are implemented, e.g., matrix multiplicaesed should converge and recover the solution to the sparse
tion result can be obtained in real time, the computer-orientegpresentation problem (1), which has a unique minimizer.
algorithms require tens or hundreds of operations to get ths shown in Fig. 2, we plot the outpat of our proposed
result. Consequently, LCA-like approaches would be modynamical system (7) after convergence. The comparison is
appropriate to real time applications. On the other hand, omade to LCA with same initial condition. And it is shown
proposed system is with nite-time convergence, instead, LCtat our proposed system can reach the same sparse solution



as LCA, with 10 nonzero entries, which correspond to th
nonzero entries in original sparse sigmal 2f

0.4

@ —& LCA
0.3+ —o Proposed, , =0.5/1

Or
0.2} g

01+t 9@

02+ : < 216

031 1 -2 -1 0 1 2 3

05}
-0.6

& | Fig. 4. Trajectoriesis4(t) v.s.u1o(t) with 20 different initial conditions via
0 50 100 150 200 the proposed system with = 0 :5.

Locations

Fig. 2. Outputa of LCA and the proposed system after convergence witﬁ' Finite Switches
=0:5and =0:05. In this subsection, we will empirically verify the result of
Lemma 2. The switch occurs gs;(t)j] >  decreasing to

On the other hand, we also plot the evolution of severti(t)i _or jui(t)j increasing tojui(t)j > . In
active nodes and nonactive nodes with respect to time i Simulation, the ODE (7) is simulated through a discrete
LCA and our proposed dynamical system in Fig. 3. The initi@PProximation viaode4 with step size0:001 and S seconds
starting points of statas(t) for both systems are identical. It is€volution is implemented to guarantee the convergence, thus
shown that every node of both LCA and our proposed systdff Solution trajectory is discretized in&b00 points. Then,
converge to a xed point and the convergent points for eadiP00 trials are carried out with randomly generated initial
node of LCA and our proposed system are identical, whifonditions and noises, then the number of occurrences (for
the node of our proposed system converges much faster igqgh trial) of switches is counted along the trajectories of all

LCA. the nodes over the€000discrete points. At last, we can plot
the histogram of the number of occurrence of switches, as
shown in Fig. 5(b). This gure illustrates that the number of

0.4 , switches required for our proposed system before convergence
--LCAu, is nite.
0.3f --LCA U, R Moreover, we also plot the histogram of number of switches
02l - - LCA Uy, for LCA as the comparison, as shown in Fig. 5(a). Similarly,
N - - LCA, ulsdf» _ the number of switches required for LCA is also nite. Further
0.1y _E:gzzzgd' ;8'2’ 310 more, the average number of switches required for LCA is less
E o :pmposed: 05,0 H than that required for our proposed system. Even though, as
> __Proposed, 0.5, u. - shown in Fig. 6 where evolutions of the number of active
-0-17 = nodes for LCA and our proposed system are plotted, it is
0.2 HY clear that the number of active nodes converges faster for our
K proposed system than LCA. It implies that, although more
03¢ switches occurred for proposed system, the interval between
_0_40 : : . . two contiguous switches is much smaller than that for LCA.
time (s)

C. Convergence in Finite Time

Fig. 3. Evolution of several active nodes (solid lines) and nonactive nodes According to Theorem 2, after some time > 0, the

(dashed lines) with respect to time for LCA and our proposed dynamical
system with

=0:5.

proposed system will converge in nite time. As shown in
Fig. 7, the evolutions of state erraft) and the number of the
active nodes with respect to time are put together, where initial

At last, we evaluate the global convergence property of ograte pointu(0) is generated randomly. Instead of exponential

proposed system by plotting the trajectories of two randombpnvergence rate as LCA (which has been proved in [35]), the
selected nodes;p and uy4 starting from20 randomly gen- proposed system converges largely faster than LCA, and the
erated initial points. And the result is plotted in Fig. 4, fronevolution of state error exhibits a nite-time convergence. On
which one can clearly nd that the solution is attractive fothe other hand, the proposed system can nd the correct active
any of those initial points. nodes faster than LCA.
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Fig. 6. Number of active nodes for the proposed system withO :5.

with various signal lengthN 2 [200, 400 600,800} The
evolutions of state erroti(t) = u(t) u for both LCA and

the proposed system are plotted in Fig. 8(a). Similarly, the
convergence performances comparing to LCA with respect to
sparsity levels, measurement numbé&f and the threshold

are respectively considered, as shown in Fig. 8 from (b) to
(d). It is obvious that the proposed system converges much
faster than LCA with different signal length, measurement
number, sparsity level and threshold, and performs the nite-
time convergent property.

~ o O : - -
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> 2t Tee~all ——Proposed, =0.5|]
=] el
o4 Tl
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2 5 ) ) ) )
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time (s)

Fig. 7. Evolutions of state erra¥(t) and the number of active nodes with
respect to time.

D. In uence of

In this subsection, the performance with respect tas
hanalyzed, where simulations are carried out by ranging
from 0:2 to 1 (when = 1 it is equivalent to LCA) and
let other parameters be xed. The results are shown in Fig. 9,
and one can nd that the convergence rate is decreasing as
increasing, which veri es the result in the proof of Theorem
2.

On the other hand, it is worth mentioning that simulations of
dynamical system might induce oscillations when parameter
is getting smaller. For instance, in Fig. 9 (the left and
middle sub gure), oscillation happens when ODE is realized

by approximating with low oder ODE solvers, suchael

with xed time step10 3. This phenomenon is due to the fact
that the functiord ¢ with < 1 will result in some numerical
computational problems when the variables are getting close
to zero. In numerical simulations, it can be alleviated by either
reducing the time step for ODE solvers or alternating to use
higher order ODE solvers. As shown in Fig. 9, one can nd
that the oscillations disappeared when reducing the time step
from 10 3 to 10 * or replacingodel solver byode4 solver,

i.e., Runge-Kutta method.

In order to verify Theorem 2, simulations with different VI. EXTENSION TO TIME-VARYING PROBLEMS
settings are carried out, as shown in Fig. 8. We rstly x In previous sections, it has been proved that the proposed
the sparsity leves = 10, measurement numbéd = 100 dynamical system (7) has the nite-time convergent property,
and the threshold = 0:05, then implement the simulationand empirically, it converge much faster than LCA. This
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10

u k3 for the proposed dynamical system with different value a2 [0:2; 0:5; 0:8; 1]. Different ODE solvers are used

(left) odel with time steple 3, (middle)odel with time steple 4 and (right)ode4 with xed time steple 3.

property is more applausive than LCA especially in real agize are required for convergence. However, it is straightfor-
plications, where sparse signals encountered are time-varyimgyd in our proposed system, where the only requirement is
ie., to plug the time-varying measurement&) into the system
(20) (7) without changing any parameters.

To demonstrate the superiority of our proposed system, a
toy example is given here.

y = x@®+ (1)

with y andx being both varying with respect to time.
In order to approximate the time-varying sparse sigré,
in [32], a maximum sampling rate and a large gradient stéxample 1. A lengthN time-varying sparse signat(t) is
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vector with norm1 and denote byXs the set ofs-sparse

vectors
Xs=fy2RVjy;=0;8i2 andy;=x;;82 ; Sg
For each element of, it will appeark = %\ ! times in all

possibles-sparse vectors iXs. Thus we have the following

equation

X
kx = y
y2Xs
Then,
X
kk X|(2 =k yk2
y2Xs
X p_Sx——
k yka iSi k yk3
Fig. 10. Estimation of time-varying sparse signals via LCA and the proposed y2Xs y2Xs
system. p__~X P——
iSi 1+ 9kyki =" KiSj(1+ &)
y2Xs
generated with sparsitg = 5, where4 of nonzero entries are
drawn randomly and stay constant with respect to time. Addwus,k xk3 N1+ s)=s. O

the last nonzero entry is varying according to the following
function
X44(t) =cos(0:4t)+1:5

Then measurements are gathered according20) with [1]
normal Gaussian noise with derivation= 0:016 2]
The estimations are obtained by evolving both LCA and
our proposed system with = 0:5 and threshold = 0:05,
as shown in Fig. 10. Obviously, LCA cannot tracking the
signal, while our proposed system can successfully trackina
the changing of signal. ]

VIl. CONCLUSION (5]

In this paper, we proposed a new dynamical system that
can solve the sparse representations. It is with the nitelf]
time convergence property. Comparing to LCA, the proposed
system can converge to the same equilibrium point but witfv]
much faster convergence, which is very applaudable in real-
time sparse representation applications.

Moreover, connections between continuous dynamical syss)
tems and discrete optimization algorithms for sparse regular-
ized inversion problems have been investigated [45]. Meaqg]
while, it is also claimed in [32] that the iterative soft-
thresholding algorithm can be considered as the discretized
version to LCA. Thus, the future works would be focused
investigating the discretized version of our proposed dynamical
system, which might result in a new sparse representati@al
algorithm with faster convergent property. (12]

APPENDIX
(13]

Lemma 6. If the matrix 2 RM N satis es thes-order
RIP with constant s, then the eigenvalue of T is upper
bounded byN (1 + ¢)=s.

Proof. Denote byS the all possible subset with size of
f1;:::Ng, thusjSj= N . Then letx 2 RN be an arbitrary

S

(14]

(15]
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