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Model Predictive Control of Biped Walking with Bounded Uncertainties

Nahuel A. Villa and Pierre-Brice Wieber

Abstract— A biped walking controller for humanoid robots
has to handle together hard constraints, dynamic environments,
and uncertainties. Model Predictive Control (MPC) is a suitable
and widely used control method to handle the first two issues.
Uncertainties on the robot imply a non-zero tracking error
when trying to follow a reference motion. A standard solution
for this issue is to use tighter constraints by introducing some
hand tuned safety margins, for the reference motion generation
to ensure that the actual robot motion will satisfy all constraints
even in presence of the tracking error. In this article, we find
bounds for the tracking error and we show how such safety
margins can be precisely computed from the tracking error
bounds. Also, a tracking control gain is proposed to reduce
the restrictiveness introduced with the safety margins. MPC
with these considerations ensure the correct operation of the
biped robot under a given degree of uncertainties when it is
implemented in open-loop. Nevertheless, the straightforward
way to implement an MPC closed-loop scheme fails. We discuss
the reasons for this failure and propose a robust closed-loop
MPC scheme.

I. INTRODUCTION

Walking depends on contact forces between the feet and
the ground. The unilateral nature of this interaction (feet can
only push on the ground) limits the motion that a legged
robot can realize and plays a crucial role in its stability.
When walking on a flat ground, this corresponds to having
the Center of Pressure (CoP) stay within the support polygon
[25]. Model Predictive Control (MPC) is one of few suitable
methods to handle such constraints [17], and has been used
therefore extensively for the control of legged robots. This
allows generating walking motions online with automatic
footstep placement [14], taking into account visual feedback
[8], avoiding collisions in a crowd [3], undertaking physical
collaborations with humans [1].

In a complex system such as a humanoid robot, sources
of uncertainties abound: noisy sensors, imperfect actuators,
unmodeled dynamics, inaccurate models of the environment,
etc. These sources of uncertainty can always be reduced with
more precise (and more expensive) hardware or we can try to
estimate them, but only up to a point: there always remains a
certain amount of uncertainty. And as a result, there always
remains a certain amount of tracking error when trying to
follow a reference motion [5], [12], [9], [25], [15]. In order
to satisfy all constraints in the presence of such tracking
error, the usual approach is to introduce hand tuned safety
margins [24]. The first contribution of this paper is to show
how such safety margins can be computed precisely based on
the tracking error produced by a given set of uncertainties.
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The reference motion is usually generated with an MPC
scheme independently from the actual robot motion [11].
We will refer to this approach as Open Loop MPC (OL–
MPC). There are situations, however, where it is necessary
to generate a reference motion taking into account the actual
state of the robot [13], such as when there is a strong
perturbation. A classical approach is to generate the reference
motion starting directly from the actual state of the robot. We
will refer to this approach as Closed Loop MPC (CL–MPC).
Unfortunately, we are going to see that this approach can
fail. In an approach discussed in [18], the initial state of the
reference motion is actually chosen to take into account the
actual state of the robot but also ensure explicitly robustness.
We will refer to this approach as Robust Closed Loop MPC
(RCL–MPC).

Robust control is an approach to controller design that
explicitly deals with uncertainty. One possible aim is to
reduce the probability of failure [1], [6], [7]. But here, we
aim at ensuring the correct operation of the system for any
uncertainty between certain bounds.

Section II briefly introduces the dynamics of walking.
Section III proposes an analysis of tracking error under
bounded uncertainties, and introduces the key concept of
Robust Positive Invariant (RPI) set. Section IV discusses
how to optimize tracking control gains in order to minimize
the necessary safety margins. Section V introduces different
combinations of Model Predictive Control (MPC) scheme
and higher-frequency tracking control that can be found in
the literature. Section VI demonstrates with simple simu-
lations how some of these schemes can fail while others
succeed.

II. POINT MASS MODEL WITH BOUNDED
UNCERTAINTIES

Let us consider the Center of Mass (CoM) c of a biped
robot walking on a flat horizontal ground. From Newton and
Euler equations of the whole robot, we obtain the Center of
pressure (CoP) [25] as:

px,y = cx,y − mcz c̈x,y + SL̇x,y

m(c̈z + gz)
− vx,y, (1)

with L the angular momentum, gz the vertical acceleration
due to gravity, m the robot mass, S =

[
0 −1
1 0

]
a rotation

matrix and v represents a bounded uncertainty:

v ∈W. (2)

Because contact forces with the ground are unilateral (the
robot can push but not pull on the ground), the CoP is bound



to lie in the support polygon P:

p ∈ P. (3)

This dynamics is traditionally reformulated as follows
in order to emphasize the linear relationship between the
horizontal motion of the CoM and the CoP [9], [1], [24],
[23], [5], [10], dropping coordinate indices x and y:

c̈ = ω2(c− p− n− v), (4)

where ω2 = gz/cz and

n =
c̈

ω2
− mcz c̈+ SL̇

m(c̈z + gz)
. (5)

We can bound the values of n as discussed in [4], [21]:

−n ∈ N . (6)

Assuming that p, n and v are constant over time intervals
of length τ , typically 5(ms), we can obtain a linear time-
invariant discrete-time system following a standard procedure
[19]:

x+ = Ax+B(p+ n+ v), (7)

with

A =

[
cosh(ωτ) ω−1 sinh(ωτ)
ω sinh(ωτ) cosh(ωτ)

]
,

B =

[
1− cosh(ωτ)
−ω sinh(ωτ)

]
,

x =

[
c
ċ

]
∈ X , (8)

where x+ is the successor state. Here, we introduce the state
constraint X to take into account maximum leg length.

III. ROBUST POSITIVE INVARIANT SET

Let us consider a reference motion xref following the
nominal, undisturbed linear dynamics

x+ref = Axref +Bpref . (9)

Because of uncertainties v and model errors n in the
dynamics (7), we have to consider a (linear) tracking control
law (with compensation of n)

p = pref − n+K(x− xref ) (10)

to properly follow this reference motion. With this control
law, the tracking error

δ = x− xref (11)

follows the closed-loop dynamics

δ+ ∈ (A+BK)δ +BW. (12)

Iterating this closed-loop dynamics N times, the tracking
error becomes:

δ+N ∈ (A+BK)Nδ +

N−1⊕
i=0

(A+BK)iBW, (13)

where ⊕ is the Minkowski sum1. If the gain K stabilizes
the matrix A+BK (eigenvalues inside the unit circle), then
when N →∞ the first term vanishes:

(A+BK)Nδ → 0 (14)

and δ+N → Z, where

Z =

∞⊕
i=0

(A+BK)iBW. (15)

When there is no uncertainty, W = {0}, the tracking error
converges to the origin, Z = {0}, as desired. But if there
are uncertainties, what we see here is that the tracking error
δ will converge to a bigger set Z, which depends on W .

We can observe from (15) that

(A+BK)Z ⊕BW = Z, (16)

what implies, following the closed-loop dynamics (12), that

∀δ ∈ Z, ∀v ∈W, δ+ ∈ Z. (17)

Once the tracking error reaches Z, it stays in Z. This set is
Robust Positively Invariant (RPI) [20], and can serve as a
bound on tracking error in steady-state. It can be shown that
the set Z defined above is actually the minimal RPI (mRPI)
set (in the sense of being a subset of any RPI set of (12))
[20], so it provides the smallest bound possible on tracking
error. Naturally, when δ ∈ Z, Kδ ∈ KZ. In that case, in
order to satisfy the constraints (3) and (8) with the tracking
error (11) and the control law (10), the reference motion
must clearly satisfy

xref ∈ X 	 Z, (18)
pref ∈ P 	N 	KZ, (19)

where 	 is the Pontryagin difference2. Here, Z and KZ play
respectively the role of state and control safety margins for
the design of the reference motion xref .

IV. OPTIMAL TRACKING CONTROL GAINS

It can be interesting to use a tracking control gain K that
minimizes the safety margins Z and KZ. In our case the CoP
p is the most constrained element in the dynamics. Therefore,
we choose to minimize more specifically

KZ =

∞⊕
i=0

K(A+BK)iBW. (20)

Note that if
K(A+BK) = 0, (21)

all terms with i > 0 vanish and the above sum becomes
KZ = KBW . We show in the Appendix that this happens
with

K = k
[
1 ω−1

]
and k =

eωτ

eωτ − 1
. (22)

1Given sets A and B, A⊕B := {a+ b | a ∈ A, b ∈ B}.
2Given sets A and B, A	B := {x | x+B ⊆ A}.
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Fig. 1: With the choice of gain (22), the minimal Robust
Positive Invariant (mRPI) set Z is a parallelogram. Any
tracking error δ (blue circle) is driven by the closed-loop
matrix A+BK onto the line [1 ω−1]δ′ = 0 (dashed line).
An uncertainty is then added from the set BW (red segment).

We confirmed numerically by computing KZ for the entire
range of stabilizing gains, that this choice of K actually
minimizes the safety margin KZ.

Introducing the Capture Point (CP)

ξ = c+ ω−1ċ =
[
1 ω−1

]
x, (23)

we can observe from (21) and (22) that for any tracking error
δ, [

1 ω−1
]
(A+BK)δ = 0, (24)

so the CP tracking error is driven to 0 in one sampling period.
Such a dead-beat control of the CP was already proposed in
[9] for different reasons as uncertainties were not considered.
It corresponds also to “the best regulator” proposed in [23].
The set Z corresponding to this choice of gain K, using
parameters provided in Table I, can be seen in Fig.1, together
with the typical behavior of the closed-loop dynamics (12)
of the tracking error.

With this choice of gain, the control safety margin be-
comes

KZ = KBW = −eωτW. (25)

As a result, the maximal set of uncertainties such that KZ ⊆
P , so that the constraint (19) is nonempty (Neglecting N ),
is

Wmax = −e−ωτP. (26)

For example assuming a source of uncertainties in the form
of an external horizontal force f acting on the CoM of the
robot,

v = − f

mω2
, (27)

parameters in Table I would lead to a maximal force fmax =
48(N).

TABLE I: Numerical Values

Parameter Symbol Value Unit

CoM Height cz 0.8 (m)

Robot Mass m 58 (kg)

Gravity Acceleration g 9.81 (m.s−2)

Natural Frequency ω 3.5 (s−1)

Support Polygon P [−0.07, 0.07] (m)

Set of Uncertainties W [−0.05, 0.05] (m)

Tracking Sample Period τ 0.005 (s)

Tracking Gain (22) k 57.6 (-)

Control Safety Margin KZ [−0.051, 0.051] (m)

MPC Sampling Period T 0.1 (s)

MPC Horizon length N 16 (-)

It is standard practice to include a saturation in the control
law (10) with respect to the constraint (3), either explicitly
limiting its value [9], [23] or in an optimization problem [24].
This usually increases significantly the region of attraction
of the control law [2]. But this leads to a piecewise linear
dynamical behavior, which is more demanding to analyze.
In this article, we will limit our analysis to the linear
behavior where the saturation is not reached, considering
only sets of uncertainties W ⊆ Wmax . Our results are
therefore conservative, not considering the improvements due
to saturation.

V. MPC SCHEME FOR BIPED WALKING

Humanoid robots are supposed to adapt to dynamically
changing environments [3], [1], [8], so the reference walking
motion introduced in Section III must be computed online
and adapted accordingly. This is usually done with some
form of MPC in order to make sure that constraints (18) and
(19) are satisfied. We usually want this reference motion
to follow some desired trajectory for the CoM and CoP,
minimizing an objective function

α1‖pref − pd‖2 + α2‖cref − cd‖2 + α3‖ċref − ċd‖2, (28)

where α1, α2 and α3 are predefined weights. To maintain
stability and recursive feasibility, we consider a capturability
condition as terminal constraint [22], taking into account the
safety margin KZ:

ξ+Nref ∈ P 	N 	KZ. (29)

While the tracking control law (10) is sampled every
τ = 5(ms), the reference walking motion is classically
recomputed only every T = 100(ms) [3]. Each time it is
recomputed, the initial reference state x0ref for the prediction
can be chosen in different ways. Following the analysis in
section III, we know that if the initial tracking error δ0 is in
the set Z,

δ0 = x0 − x0ref ∈ Z, (30)



where x0 is the current state of the robot, then the safety
margins in (18) and (19) ensure that the control and state
constraints (3) and (8) are correctly satisfied.

The reference motion is usually generated with an MPC
scheme independently from the actual robot motion [11].
In that case, since the set Z is robust invariant, condition
(30) is recursively satisfied and robust recursive feasibility
is ensured for all v ∈ W (see prop.2 in [16]). We are
going to see, however, that this choice is too restrictive and
can fail tracking desired trajectories even when there are no
uncertainties. We will refer to this approach as Open Loop
MPC (OL–MPC).

There are situations, anyway, where it is necessary to
generate a reference motion taking into account the actual
state of the robot [13], such as when there is a strong
perturbation. A classical approach is to generate the reference
motion starting directly from the actual state of the robot:

x0ref = x0. (31)

That clearly satisfy the condition (30), but we are going
to see that this choice is actually still too restrictive, as
desired trajectory tracking can fail even when there are no
uncertainties. And when there are uncertainties, recursive
feasibility [15] is lost since the initial state (31) may not
satisfy constraints (18) or (29), and the controller can diverge.
We will refer to this approach as Closed Loop MPC (CL–
MPC).

In an approach discussed in [18], the initial state of
the reference motion x0ref is optimally chosen to take into
account the actual state of the robot satisfying (18), (29) and
(30) as constraints. Robust recursive feasibility for all v ∈W
is ensured in this case (see prop.3 in [18]). We will refer to
this approach as Robust Closed Loop MPC (RCL–MPC).

VI. SIMULATIONS

We are going to consider now three different scenarios,
all involving exclusively lateral motion of the robot, with
potential uncertainty v up to ±0.05 (m), which is significant
with respect to the 0.14 (m) wide feet of the robot, in order
to illustrate as clearly as possible the differences in behavior
obtained with these different MPC schemes. Simulation
parameters are provided in Table I.

In the first scenario, the robot is standing still on one foot,
without any uncertainty, starting from desired positions of the
CoP and CP on the boundary of the control safety margin:
pd = ξd = 0.019(m). During the simulation, these desired
positions are switched to the middle of the foot: pd = ξd =
0(m). In this case, in order to move the CP to the middle
of the foot, the CoP would have to enter the control safety
margin. With both the OL–MPC and the CL–MPC schemes,
the reference motion is prohibited to do so. As a result, it
can’t follow the desired position, and stays stuck instead in
its initial position, as shown in Fig. 2. With RCL–MPC, the
reference motion is free to start from a different position,
slightly away from the boundary of the control safety margin.
As a result, the reference motion is able to follow the desired
position without problem, as shown in Fig. 3.
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Fig. 2: With both the CL–MPC and the OL–MPC schemes,
the CP (black line) and the CoP (blue line) are stuck on the
boundary of the control safety margin and can’t follow the
desired position (blue dashed line) to the middle of the foot.
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Fig. 3: With the RCL–MPC scheme, the CP (black line) and
the CoP (blue line) can follow the desired position (blue
dashed line) without problem.

In the second scenario, the robot is again standing still
on one foot, starting from desired positions of the CoP and
CP on the boundary of the control safety margin: pd =
ξd = 0.019(m). This time, however, these desired positions
are kept constant, and uncertainties are applied instead to
the system. After some initial time without uncertainties,
a constant, maximal uncertainty is applied for some time,
before changing randomly every T = 0.1(s), and then every
τ = 0.005(s). As soon as the first uncertainty appears, the
state of the system is immediately driven slightly inside
the control safety margin. At that moment, the terminal
constraint in the CL–MPC scheme becomes instantaneously
infeasible. If we relax this terminal constraint (as done for
example in [3] for a different reason), the state of the
system quickly diverges, as shown in Fig. 4. On the contrary,
with both the OL–MPC and the RCL–MPC schemes, the
reference motion is kept stationary, and safely tracked by
the control law (10) as shown in Fig. 5. A zoom on the
behavior of the CP is also provided, to show that it stays
within bounds

ξ − ξref ∈
[
1 ω−1

]
Z (32)

as expected.
The third scenario involves walking nine consecutive steps

before stopping on one foot, and summarizes all the behav-
iors demonstrated earlier. After a couple steps are realized
in place, the desired position is shifted 0.5 (m) on the side.
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Fig. 4: With the CL–MPC scheme, the CP (black line)
quickly diverges as soon as the first uncertainty appears.
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Fig. 5: With both the OL–MPC and the RCL–MPC schemes,
the reference motion is kept stationary, and safely tracked by
the control law (10) (top). A zoom on the behavior of the
CP (bottom) shows that it stays within bounds ξ − ξref ∈
[1 ω−1]Z as expected.

After four more steps are realized, a constant uncertainty is
applied.

With the OL–MPC scheme (top of Fig. 6), we can observe
a significant tracking error (actually an overshoot) with
respect to the desired position on the fifth step. With the CL–
MPC scheme (middle of Fig. 6), the overshoot is still present,
and divergence shortly after the uncertainty is introduced.
With the RCL–MPC scheme, both the overshoot and the
divergence are avoided (bottom of Fig. 6).

The RCL–MPC scheme clearly shows a much improved
behavior over both the CL–MPC and the OL–MPC schemes.

VII. CONCLUSIONS

We analyzed the tracking error dynamics in biped robots
affected by bounded uncertainties, and we found the smallest
bound possible for the tracking error (the mRPI set) (15). In
order to ensure the robot motion recursively satisfies con-
straints (3) and (8), the reference motion has to be generated
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Fig. 6: With the OL–MPC scheme (top), we can observe
a significant overshoot with respect to the desired position
on the fifth step. With the CL–MPC scheme (middle), the
overshoot is still present and divergence shortly after the
uncertainty is introduced. With the RCL–MPC scheme, both
the overshoot and the divergence are avoided (bottom).

satisfying tighter constraints that consider the tracking error,
as shown in (18), (19) and (29).

In [4] and [21] it is proposed a robust approach to handle
bounded model errors. The reference motion is optimized
to satisfy the system constraints for any possible value of
error within these bounds. The present work extends this
approach to consider also a tracking error produced by
bounded uncertainties.

We proposed a tracking control gain (22) to reduce safety
margin size and handle bigger uncertainties. Using parame-
ters corresponding to HRP2 (Table I), and assuming a source
of uncertainties in the form of an external horizontal force
f , applied on the CoM, the maximal uncertainty supported
corresponds to fmax = 48(N).

OL–MPC scheme is normally used in biped robots [10]
since the correct walking dynamics is ensured for the consid-
ered set of uncertainties. In the case of the closed-loop MPC
schemes, if the reference motion is generated at each sample
time directly from the actual state of the robot (CL–MPC),
the controller may fail. This problem is fixed generating the
reference motion to satisfy (18), (29) and (30) as constraints
(RCL–MPC).



APPENDIX

Let us consider a tracking control gain of the form
K = k

[
1 λ

]
and look for values k and λ such that

K(A+BK) = KA+KBK =

k
[
cosh(ωτ) + λω sinh(ωτ) ω−1sinh(ωτ) + λ cosh(ωτ)

]
+ k2(1− cosh(ωτ)− λω sinh(ωτ))

[
1 λ

]
= 0.

Multiplying on the right by
[
λ
−1

]
we obtain that λ2ω2 = 1,

the positive solution is λ = ω−1. Replacing this value in the

previous expression gives k =
eωτ

eωτ − 1
.
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