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Abstract. In this work, we discuss two notions of differential equivalence
on Sboxes. First, we introduce the notion of DDT-equivalence which
applies to vectorial Boolean functions that share the same difference
distribution table (DDT). Next, we compare this notion, to what we
call the γ-equivalence, applying to vectorial Boolean functions whose
DDTs have the same support. We discuss the relation between these two
equivalence notions and provide an algorithm for computing the DDT-
equivalence and the γ-equivalence classes for a given function. We study
the sizes of these classes for some families of Sboxes. Finally, we prove a
result that shows that the rows of the DDT of an APN permutation are
pairwise distinct.

1 Introduction

Block ciphers are central primitives in symmetric encryption schemes. Modern
block ciphers are designed based on a methodology which guarantees that the
cipher is resistant against all classical attacks. The differential cryptanalysis,
presented by Biham and Shamir in 1990 [1], is one of the most prominent
attacks against block ciphers, and a precise evaluation of its complexity has
led to some design criteria on the building blocks in the cipher. The main
criterion, which has been introduced by Nyberg and Knudsen [17, 18], is the
so-called differential uniformity of the Sbox, i.e., of the nonlinear mapping
used in the cipher. This parameter should be as small as possible in order to
maximize the complexity of differential attacks, and the mappings with the lowest
differential uniformity, named APN mappings, have been investigated in many
works during the last twenty-five years. Indeed, these mappings are highly relevant
for cryptographic applications and they are also optimal combinatorial objects of
independent interest. Therefore, this design criterion is at the origin of a whole
line of research, including the search for infinite families of permutations with a
low differential uniformity, the study of their properties or some classification
work (e.g. [5, 8, 9, 10,11,13,17]).



However, besides the differential uniformity of the Sbox, the whole differential
spectrum and even the form of the difference distribution table (DDT) are
important when the resistance against several variants of differential cryptanalysis
is quantified. Obviously, the number of occurrences of the differential uniformity
in the DDT of the Sbox corresponds to the number of one-round differentials
with the highest probability and should then be minimized. Also, the whole
differential spectrum of the Sbox is involved in all known upper-bounds on the
maximal expected differential probability over two rounds of an SPN cipher [6,19].
Not only the number, but also the location within the DDT of these maximal
values may influence the resistance of the cipher against multiple differential
cryptanalysis [3] or truncated differential attacks [14] (see e.g. [2, Section 3.2] for
a discussion). When designing block ciphers, it would then be of major interest to
be able to start from a desired DDT which guarantees a high resistance against
all variants of differential cryptanalysis, and to construct Sboxes having this
specific DDT. Instead, the main technique currently available to the designers
consists in randomly choosing Sboxes until one with a suitable DDT is found.
However, constructing Sboxes from a prescribed DDT is a difficult problem,
related to many open issues in the area. The characterization of the valid DDT,
i.e. for which there exists at least one function with these particular DDT, is
also open. In the case of APN functions, this general problem corresponds to
the problem of determining the differential equivalence class of a given function,
introduced by Gorodilova [12]. It has also been raised by Carlet in the case of
APN functions [7, Pb. 3.11]. It is obviously related to the so-called Big APN
problem, i.e., the existence of APN permutations operating on an even number
of variables. Indeed, it has been long conjectured that bijective APN functions
do only exist in odd dimension, until the first ever counter-example over F6

2 was
presented by Dillon et al. [5]. However, the conjecture still stands for any even
dimension n ≥ 8.

Our Contributions. In this work, we provide a new algorithm for computing
the differential equivalence class corresponding to a prescribed DDT. We applied
this algorithm to find several equivalence classes. Most notably, one of the main
problems we focus on is to determine whether the differential equivalence class
of a permutation over Fn

2 can contain more than 22n elements. In other words,
we wonder whether two permutations F and G with the same DDT necessarily
satisfy G(x) = F (x⊕c)⊕d for some c, d ∈ Fn

2 . As a result, we found permutations
F whose differential equivalence classes contain other elements than the functions
x 7→ F (x⊕ c)⊕ d. However, we conjecture that this is only the case when some
rows of the corresponding DDT are equals. We also discuss some properties of
the DDT of an APN permutation, adding some constraints on the valid DDT for
such permutations.



2 Two Notions of Differential Equivalence

Even if the following properties hold in the general case, our work mainly focuses
on vectorial Boolean functions with the same number of inputs and outputs,
i.e., on functions from Fn

2 into itself. Cryptographic Sboxes are examples of such
functions that usually verify additional properties for cryptographic applications,
most notably nonlinearity. Although we focus on Sboxes in the remainder of this
paper, most of the results can be adapted to general vectorial Boolean functions.

The differential properties of a vectorial Boolean function are related to its
derivatives.

Definition 1 (Derivative of a function). Let F be a function from Fn
2 into

Fn
2 . The derivative of F with respect to a ∈ Fn

2 is the function

∆aF : x ∈ Fn
2 7→ F (x⊕ a)⊕ F (x).

The multi-sets corresponding to the images of the derivatives of F are usually
represented as a two-dimensional array called the difference distribution table.

Definition 2 (DDT and its characteristics). Let F be a function from Fn
2

into Fn
2 . The difference distribution table (DDT) of F is the two-dimensional

table defined by

δF (a, b) = #{x ∈ Fn
2 : ∆aF (x) = b}, ∀a, b ∈ Fn

2 .

Two important characteristics of the DDT, introduced in [8, 17] respectively, are
as follows:

– the differential uniformity of F is the highest value in the DDT, i.e.

max
a,b∈Fn

2 ,a 6=0
δF (a, b).

The lowest possible value for the differential uniformity of a function from
Fn
2 into itself is 2 and the functions with differential uniformity 2 are called

almost perfect nonlinear (APN).
– the indicator of the DDT is the Boolean function of 2n variables defined by

γF (a, b) = 0 if and only if δF (a, b) = 0 or a = 0.

The previous properties then lead to two different notions of equivalence between
Sboxes. We say that

– F and G are DDT-equivalent if they have the same DDT;
– F and G are γ-equivalent if their DDTs have the same support, or equivalently

if γF = γG.

The notion of γ-equivalence has been investigated under the name differential
equivalence by Gorodilova [12]. It must not be confused with the differential
equivalence introduced in [20,21], which refers to another property.

Obviously, DDT-equivalence implies γ-equivalence. However, the converse
also holds in some particular cases.



Proposition 1. Let F and G be two functions from Fn
2 into itself which are γ-

equivalent. Assume that, for each derivate of F and G, there exists some integer λ
such that the derivative is a λ-to-1 function. Then, F and G are DDT-equivalent.
Most notably, this situation holds for quadratic functions or for APN functions.

Proof. The result comes from the fact that, in this case, the DDT of the function
is entirely determined by its support. Assume that, for any a ∈ Fn

2 , a 6= 0, ∆aF
is a λ-to-1 function (where λ may depend on a). Then, the entries of the row in
the DDT corresponding to ∆aF belong to {0, λ}. Since the sum of all entries
within a row equals 2n, we deduce that λ is a power of 2, and its value can be
deduced from the number of elements b such that γF (a, b) = 1 which equals
2nλ−1. Then, the row corresponding to ∆aF is entirely deduced from γF . When
F is a quadratic function, its derivatives have degree at most 1. Then, ∆aF is a
2d-to-1 function where d is the dimension of the kernel of ∆aF . ut

The previous proposition obviously includes the case of quadratic APN
functions studied in [12] and in [22], implying that the γ-equivalent APN functions
exhibited in [12] are also DDT-equivalent.

In general, the two notions of differential equivalence do not coincide. The
following example exhibits two γ-equivalent functions with different DDTs.

Example 1. Let F and G : F4
2 → F4

2 be represented by their value tables:

F = [0x0,0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8,0x9,0xA,0xB,0xC,0xD,0xF,0xE],

G = [0x0,0x1,0x3,0x2,0x5,0x4,0x7,0x6,0x8,0x9,0xA,0xB,0xC,0xD,0xE,0xF].

Both DDTs are diagonal with 2× 2 blocks, the first block being

[
16 0
0 16

]
for both

tables. Then, for F , all the diagonal blocks are

[
12 4
4 12

]
, whereas for G, half of

the blocks only are of this shape, the other ones are

[
4 12
12 4

]
. It is then clear that

F and G are γ-equivalent, but are DDT-inequivalent.

In this work, we mainly focus on the sizes of the DDT-equivalence classes
and γ-equivalence classes. A lower bound on these sizes is given in the following
proposition.

Proposition 2. Let F be a function from Fn
2 into itself and let ` denote the

dimension of its linear space, i.e., of the space formed by all a ∈ Fn
2 such that ∆aF

is constant. Then, the DDT-equivalence class of F contains the 22n−` distinct
functions of the form

x 7→ F (x⊕ c)⊕ d, c, d ∈ Fn
2 . (1)

Proof. The fact that all functions Fc,d : x 7→ F (x⊕ c)⊕ d are DDT-equivalent is
well-known (see e.g. [12, Prop. 1]). Now, two pairs (c1, d1) and (c2, d2) lead to
the same function if and only if, for all x ∈ Fn

2 ,

F (x⊕ c1)⊕ F (x⊕ c2) = d1 ⊕ d2 ,



which means that ∆c1⊕c2F = d1 ⊕ d2, i.e. (c1 ⊕ c2) is a linear structure and
d2 = d1 ⊕∆c1⊕c2F . Then, the number of distinct functions Fc,d equals 22n−`.

ut

In the sequel, we consider that two functions are trivially DDT-equivalent if
they satisfy the Relation (1) from the above Proposition 2. Moreover, we say
that a DDT-equivalent class is trivial if its size matches the lower-bound given
in Proposition 2.

Another important property of the size of these equivalence classes is the
following result proved in [12] for γ-equivalence, which can easily be generalized
to DDT-equivalence.

Proposition 3. Let F and G be two functions which are EA-equivalent, i.e.,
there exist three affine functions A0, A1, A2 where A1 and A2 are bijective such
that G = A2◦F ◦A1⊕A0. Then, the DDT-equivalence classes (resp. γ-equivalence
classes) of F and of G have the same size. Moreover, the class of G is composed
of all A2 ◦ F ′ ◦A1 ⊕A0 where F ′ varies in the class of F .

It follows that the sizes of these differential-equivalence classes can be computed
for one representative in each EA-equivalence class only.

3 Computation of the γ-Equivalence and
DDT-Equivalence Classes

We present in this section an algorithm that takes as input a 2n × 2n table D
filled with nonnegative integers and returns all functions F from Fn

2 into itself, if
any, whose difference distribution table has the same indicator (see Definition 2)
as the one of D, which we denote γD. In other words, our algorithm retrieves the
γ-equivalence class of functions of a given table D. Note that one can also derive
the DDT-equivalent functions from this class, by post-filtering the functions
returned by the algorithm.

Throughout the following sections, we denote binary vectors of Fn
2 by integers

and make an extensive use of this notation. The algorithm determines all possible
values for F (i), i = 0, . . . , 2n − 1, by taking into account the constraints imposed
by the table D and the values F (j), j < i, that have already been computed. It
essentially implements a tree-traversal algorithm, where each Level i contains the
nodes corresponding to the possible values that F (i) can take. The tree therefore
has depth 2n. There is a natural incentive to implement such algorithms using
recursion, which we adopt in the sequel.

From now on, we denote by Ri = {y : D[i][y] 6= 0} the set of column indices
of non-zero elements on D’s ith row. The algorithm starts running and tries to
determine all possible values for F (0), F (1), . . . , F (2n − 1). By assuming that all
values F (0), F (1), . . . , F (i − 1) have already been set, the value F (i) can be
computed according to the following relations:

– F (i)⊕ F (0) = ∆iF (0) must lie in Ri,
– F (i)⊕ F (1) = ∆i⊕1F (1) must lie in Ri⊕1,



– F (i)⊕ F (2) = ∆i⊕2F (2) must lie in Ri⊕2,
– . . .
– F (i)⊕ F (i− 1) = ∆i⊕(i−1)F (i− 1) must lie in Ri⊕(i−1).

Thus, F (i) should lie in the intersection of the sets

{x⊕F (0) : x ∈ Ri}∩{x⊕F (1) : x ∈ Ri⊕1}∩ · · ·∩{x⊕F (i−1) : x ∈ Ri⊕(i−1)}.

If this intersection is empty, then the algorithm backtracks and picks another
value for F (i− 1), from the set of possible values. Otherwise, F (i) is set to the
smallest element in the intersection and the algorithm continues by searching for
possible values for F (i+ 1). At this point, it has to be noticed that F (0) can take
any given value. However, we explain now a pruning observation that prevents
the algorithm from trying all possible 2n values for F (0) and all possible values
for F (1).

Pruning. We can reduce the search space of the algorithm by pruning some
branches. The procedure starts, without restriction, by the determination of the
images of 0 and 1. We explain now why it is possible to fix those two values and
still recover all the other functions for different values of these images.

First, recall that a function F (x) and F (x)⊕d, for any d ∈ Fn
2 , have the same

DDT. This implies that there are at least 2n functions having a certain DDT for
any image of 0. We can therefore fix the image of 0 to any particular value, and
query the algorithm for functions having this first defined point. All the other
functions will then be recovered by translation.

Second, for a defined image of 0, it is not necessary to ask the algorithm to look
for every possible image of 1. Indeed, the functions F (x) and F (x⊕c)⊕F (0)⊕F (c),
for any c ∈ Fn

2 , have the same DDT. This means that, once F (0) has been fixed,
there are as many solutions for any value of F (1) as long as F (0)⊕ F (1) ∈ R1.
Moreover, remark that there is an even number of functions having the same DDT
and the same images in 0 and 1: the functions F (x) and F (x⊕ 1)⊕ F (0)⊕ F (1)
are equal in 0 and 1.

One Example. Before giving the pseudo-code of the algorithm, we show a
small example of its execution for the 23 × 23 table shown in Figure 1, which
corresponds to the DDT of the PRINTcipher Sbox [15].

Here are the main steps performed by the algorithm (also see Figure 2):

1. Set F (0) = 0
2. Set F (1) = 1, as 1 is the minimal value of the set R1 = {1, 3, 5, 7}
3. As F (2) ⊕ F (0) ∈ R2 = {2, 3, 6, 7} and F (2) ⊕ F (1) ∈ R3 = {1, 2, 5, 6},
F (2) ∈ {2, 3, 6, 7} ∩ {0, 3, 4, 7} = {3, 7}. Set F (2) = 3.

4. As F (3) ⊕ F (0) ∈ R3 = {1, 2, 5, 6}, F (3) ⊕ F (1) ∈ R2 = {2, 3, 6, 7} and
F (3)⊕F (2) ∈ R1 = {1, 3, 5, 7}, F (3) ∈ {1, 2, 5, 6}∩{2, 3, 6, 7}∩{0, 2, 4, 6} =
{2, 6}. Set F (3) = 2.

5. As F (4)⊕ F (0) ∈ R4 = {4, 5, 6, 7}, F (4)⊕ F (1) ∈ R5 = {1, 3, 4, 6}, F (4)⊕
F (2) ∈ R6 = {2, 3, 4, 5} and F (4) ⊕ F (3) ∈ R7 = {1, 2, 4, 7}, F (4) ∈
{4, 5, 6, 7} ∩ {0, 2, 5, 7} ∩ {0, 1, 6, 7} ∩ {0, 3, 5, 6} = ∅.



∆out

0 1 2 3 4 5 6 7

0 8 . . . . . . .
1 . 2 . 2 . 2 . 2
2 . . 2 2 . . 2 2

∆in 3 . 2 2 . . 2 2 .
4 . . . . 2 2 2 2
5 . 2 . 2 2 . 2 .
6 . . 2 2 2 2 . .
7 . 2 2 . 2 . . 2

Figure1: Difference distribution table of dimension 23 × 23 corresponding to the
PRINTcipher Sbox.

6. Go back to Step 4 and set F (3) = 6. Compute now any possible values for
F (4) by repeating Step 5, with F (3) = 6.

7. . . .
8. Once F (7) has been fixed, we verify that γF is equal to the indicator of D

and add it to a list of solutions. We then backtrack to find the other solutions.

The two solutions found with the restrictions F (0) = 0 and F (1) = 1 are
F = (0, 1, 3, 6, 7, 4, 5, 2) and F ′ = (0, 1, 7, 2, 5, 6, 3, 4) as it can be seen in Figure 2.
All the γ-equivalent functions can be found by computing F (x ⊕ c) ⊕ d and
F ′(x⊕ c)⊕ d for all c, d ∈ F3

2. At the end, we obtain 26 γ-equivalent functions.

Figure2: Example of the algorithm’s execution on the table of Figure 1.



Algorithm 1 Main

Input: A table D of size 2n × 2n

Output: A list F of all functions F : Fn
2 → Fn

2 γ-equivalent to the indicator of D
1: F ← {∅} . Globaly defined
2: S ← [0,min{R1}, 0, . . . , 0] . len(S) = 2n

3: RecursifSearch(S, 2)
4: return F

Algorithm 2 RecursifSearch

Input: A table S of size 2n, an integer i
1: if i < 2n then
2: L ←

⋂
0≤k<i

{x⊕ S[k] : x ∈ Rk}

3: else
4: if γS = γD then . Or DDT(S) = D if we test the DDT-equivalence
5: Append S to F
6: return
7: if L 6= ∅ then
8: for all x ∈ L do
9: S[i]← x

10: RecursifSearch(S, i+ 1)

11: else
12: return

Algorithm. In the algorithm, we take the pruning observation into account and
only look for functions such that the image of 0 is 0 and the image of 1 is the first
possible value. From now on, we denote by S a table of dimension 2n used to
store the intermediate possible images. Then, we denote by F a solution returned
by the algorithm, obtained when all the cells of S have been set.

Hence, at the beginning, S[0] is set to 0 and S[1] is set to min{R1}. The
recursive Algorithm 2 is then called for i = 2, where i means that the algorithm
is searching for candidate values for S[i]. It starts by computing the possible
values for S[i] on Line 2 and store them in a set L. If this set is not empty, the
algorithm tries to compute the next value, S[i+ 1], for every possible value of
S[i]. The procedure is repeated until either S[2n − 1] has been set or L is empty.
In the latter case, the algorithm backtracks to the next possible value in L at a
certain Level i as there was no solution in this branch. In the former case, all the
values for S have been set. At this point, we verify (Line 4) whether the function
found has the same γ indicator as the table D (resp. it has D as a DDT). Indeed,
it is possible that the support of γS is strictly included in the one of the indicator
of D.



4 Experimental Results

One of the questions we are interested in is the existence of two DDT-equivalent
permutations F and G, which are not related by G(x) = F (x⊕ c)⊕ d for some
c, d. It is worth noticing that, in the case of non-bijective mappings, such pairs
of functions exist. For instance, in [12], 22n+n/2 quadratic functions have been
exhibited, which are γ-equivalent (and thus DDT-equivalent) to the Gold function

x2
n/2+1+1 over F2n when n is a multiple of 4.

4.1 Results for some Known Functions

Using the algorithm described in the previous section, we have been able to
compute the γ-equivalence classes and the DDT-equivalence classes of some
cryptographically relevant functions.

It is clear from Proposition 3, that it is sufficient to run the algorithm for a
single representative in each EA-equivalence class. Hence, after computation, we
can affirm that the size of the DDT-equivalence classes of all APN permutations
over Fn

2 , with n ≤ 6, is 22n. This equivalently means that each class is only
obtained by translating the input and output of the representative function. More
precisely, these representative permutations for each dimension n correspond to:

– for n = 6: the so-called Dillon permutation [5],
– for n = 5: the five APN permutations described by Brinkmann and Leander

in [4, Table 1],
– for n = 3: the Gold permutation.

We have also examined all permutations of dimension n = 4 with optimal
differential uniformity (equal to 4) and nonlinearity from the 16 different affine-
equivalence classes given in [16]. The γ-equivalence class for each of them contains
exactly 28 elements. Since none of these functions has a linear structure, we
deduce from Proposition 2 that these 28 elements also form their DDT-equivalence
class.

Then, none of the permutations with the lowest possible differential uniformity
in dimension n < 6 has a DDT-equivalence class with size bigger than 22n.
However, it is possible to construct such permutations when we increase the
differential uniformity.

4.2 An Example of Non-Trivially DDT-Equivalent Permutations

In this paragraph, we exhibit a permutation F over F5
2, such that some elements

in its DDT-equivalence class are not of the form F (x⊕ c)⊕ d for any c, d ∈ F5
2.

We consider the table D, composed by 2 × 2 blocks of the form

[
16 16
16 16

]
everywhere on the diagonal except for the first block which is

[
32 0
0 32

]
. By

running our algorithm on this table, we recovered 56× 28 permutations having



this DDT. Even by considering the fact that the permutations corresponding to
this DDT will necessarily have a linear structure, this number is still higher than
the number of distinct functions of the form F (x⊕ c)⊕ d, which equals 22×5−1

as shown in Proposition 2.

In Table 1 are presented two functions F and F ′ whose DDT is D but for
which there is no pair (c, d) such that F ′(x) = F (x⊕ c)⊕ d for all x.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F (x) 0 1 2 3 4 5 6 7 8 9 10 11 13 12 15 14
F ′(x) 0 1 2 3 4 5 6 7 8 9 10 11 13 12 15 14

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F (x) 16 17 19 18 20 21 23 22 25 24 26 27 28 29 31 30
F ′(x) 16 17 19 18 21 20 22 23 24 25 27 26 28 29 31 30

Table 1: Two non-trivially DDT-equivalent permutations.

4.3 A Conjecture on the Size of DDT-Equivalence Classes

We then know two examples of functions having a non-trivial DDT-equivalence
class (in the sense that they contain more functions than the ones obtained by
translations): some Gold functions studied in [12] and the functions we exhibited
above. The common point between these two examples is that they both have non-
distinct rows in their DDTs. Besides this property, they seem to have very different
characteristics. Indeed, the second ones are permutations with a linear structure,
while the first ones are non-bijective and are APN. Moreover, as previously
noticed, the APN permutations seem to not have larger DDT-equivalence classes
(at least for small dimensions), and the permutations studied in Example 1 have
a linear structure but its DDT-equivalence classes are trivial.

These remarks, combined with the computations we have performed using
our algorithm, lead us to the statement of the following conjecture.

Conjecture 1. The DDT-equivalence class of a permutation F , such that the
rows in its DDT are pairwise distinct, only contains permutations of the form
F (x⊕ c)⊕ d, with c, d ∈ Fn

2 (i.e. is trivial).

It is worth noticing that Example 1 shows that the same conjecture does not
hold for γ-equivalence.

Hoping to make a step towards the proof of this conjecture, we show in the
next section that APN permutations cannot have two equal rows in their DDTs.



5 A Note on the DDTs of APN Permutations

Since the DDTs having at least two equal rows seem to play an important role,
a natural question is the following: Is it possible that this situation occurs for
some remarkable families of Sboxes? As a partial answer, we prove in this section
that all the rows in the DDT of any APN permutation are distinct.

Let F be an APN permutation of Fn
2 . We start by stating two simple remarks.

The first remark is due to the fact that F is a permutation while the second one
is a result of F being APN.

Remark 1. F (x)⊕ F (y) 6= F (x)⊕ F (z), for x, y, z ∈ Fn
2 pairwise distinct.

Indeed, if we suppose that for some pairwise distinct x, y, z ∈ Fn
2 , we have

that F (x)⊕ F (y) = F (x)⊕ F (z), this would imply that F (y) = F (z), which is a
contradiction by the fact that F is a permutation.

Remark 2. ∆aF (x) 6= ∆aF (y), for x, y, a ∈ Fn
2 with y 6= {x, x⊕ a} and a 6= 0.

Assuming an equality between the left and the right handsides of the equation,
would imply an equality between two images of ∆aF not trivially equal, which
cannot occur as F is APN.

Theorem 1. Let F be an APN permutation of Fn
2 . Then, the rows of the DDT

of F are pairwise distinct.

Proof. We prove this result by contradiction. Indeed, suppose that the row of
the DDT corresponding to the image set of ∆aF equals the row corresponding
to the image set of ∆bF , for some a, b ∈ Fn

2 \ {0} with a 6= b.
The proof then tries to match the values ∆aF (x), for x ∈ Fn

2 with the values
∆bF (x), for x ∈ Fn

2 and to show that this is impossible to do. For this, we show
that it is impossible to create a chain of values x0, x1, . . . , x2n−1 such that

∆aF (x0) = ∆bF (x1)

∆aF (x1) = ∆bF (x2)

...

∆aF (x2n−2) = ∆bF (x2n−1).

We start by proving the following statement by induction.
Let x0, . . . , xk−1 ∈ Fn

2 such that ∆aF (xi) = ∆bF (xi+1) for all 0 ≤ i <
k − 1. Then, there are at most 2n − 4k possibilities for choosing xk such that
∆aF (xk−1) = ∆bF (xk). More precisely, xk does not take any of the 4k values
xi, xi ⊕ a, xi ⊕ b, xi ⊕ a⊕ b, for i = 0, . . . , k − 1.

Basis. Let k = 1. Suppose that ∆aF (x0) = ∆bF (x1). Then, the variable x1
cannot take any of the four values x0, x0 ⊕ a, x0 ⊕ b and x0 ⊕ a⊕ b. Indeed, if we
suppose for example that ∆aF (x0) = ∆bF (x0), this translates to F (x0)⊕F (x0⊕
a) = F (x0)⊕ F (x0 ⊕ b) which is impossible by Remark 1. We use Remark 1 to



prove in the same way the impossibility of the remaining three values. Therefore,
there are at most 2n − 4 possible values for x1.

Inductive step. Suppose that for all i < k there are at most 2n−4i possibilities
for choosing xi and that xi cannot take any of the values in the set {xj , xj ⊕
a, xj ⊕ b, xj ⊕ a⊕ b|0 ≤ j < i}. We show in the following that there are at most
2n − 4k possibilities for choosing xk.

We have that∆a(xk−1) = ∆b(xk). By Remark 1, we get that xk 6= {xk−1, xk−1⊕
a, xk−1⊕b, xk−1⊕a⊕b}. We show now that xk /∈ {xi, xi⊕a, xi⊕b, xi⊕a⊕b |0 ≤
i ≤ k− 2}. Indeed, suppose for example that xk = xi for some 0 ≤ i ≤ k− 2. We
have that

∆aF (xi−1) = ∆bF (xi),

∆aF (xk−1) = ∆bF (xi).

By adding these equations, we get that ∆aF (xi−1) = ∆aF (xk−1). By the
induction hypothesis, xk−1 6= xi−1 and since F is APN we get a contradiction
by Remark 2. The other contradictions are obtained in a similar way by the
induction hypothesis and Remark 2.

We show now that it is impossible to construct such a sequence x0, . . . , x2n−1.
Indeed, we can see, that for choosing for example a value for xk for k = 2n−2,
there are 2n − 4 · 2n−2 = 0 choices left. Therefore, we conclude that if F is an
APN permutation of Fn

2 all rows of the DDT must be pairwise distinct. ut

6 Conclusion

In this paper, we investigated two different notions of differential equivalence, the
DDT-equivalence and the γ-equivalence, and provided an algorithm to compute
both equivalence classes for a given vectorial Boolean function. During our
experiments, we encountered permutations over Fn

2 whose differential equivalence
class contains more than 22n elements. We conjectured in this paper that functions
having a non-trivial DDT-equivalence class may relate to the number of distinct
rows in their DDT. Finally, an interesting future direction would be to study the
differential equivalence classes, and in particular the sizes, of functions either in
higher dimensions and/or without any particular structure.
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6. Canteaut, A., Roué, J.: On the behaviors of affine equivalent sboxes regarding
differential and linear attacks. In Oswald, E., Fischlin, M., eds.: EUROCRYPT 2015,
Part I. Volume 9056 of LNCS., Springer, Heidelberg (April 2015) 45–74

7. Carlet, C.: Open questions on nonlinearity and on APN functions. In Koç, Ç.K.,
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