Attitude Estimation for Indoor Navigation and Augmented Reality with Smartphones

Thibaud Michel 1 Pierre Genevès 1 Hassen Fourati 2 Nabil Layaïda 1
1 TYREX - Types and Reasoning for the Web
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
2 NECS - Networked Controlled Systems
Inria Grenoble - Rhône-Alpes, GIPSA-DA - Département Automatique
Abstract : We investigate the precision of attitude estimation algorithms in the particular context of pedestrian navigation with commodity smartphones and their inertial/magnetic sensors. We report on an extensive comparison and experimental analysis of existing algorithms. We focus on typical motions of smartphones when carried by pedestrians. We use a precise ground truth obtained from a motion capture system. We test state-of-the-art and built-in attitude estimation techniques with several smartphones, in the presence of magnetic perturbations typically found in buildings. We discuss the obtained results, analyze advantages and limits of current technologies for attitude estimation in this context. Furthermore, we propose a new technique for limiting the impact of magnetic perturbations with any attitude estimation algorithm used in this context. We show how our technique compares and improves over previous works. A particular attention was paid to the study of attitude estimation in the context of augmented reality motions when using smartphones.
Type de document :
Article dans une revue
Pervasive and Mobile Computing, Elsevier, 2018, 〈10.1016/j.pmcj.2018.03.004〉
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01650142
Contributeur : Tyrex Equipe <>
Soumis le : vendredi 2 mars 2018 - 08:48:06
Dernière modification le : lundi 30 avril 2018 - 15:02:01

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Thibaud Michel, Pierre Genevès, Hassen Fourati, Nabil Layaïda. Attitude Estimation for Indoor Navigation and Augmented Reality with Smartphones. Pervasive and Mobile Computing, Elsevier, 2018, 〈10.1016/j.pmcj.2018.03.004〉. 〈hal-01650142v2〉

Partager

Métriques

Consultations de la notice

344

Téléchargements de fichiers

246