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Abstract

We investigate the precision of attitude estimation algorithms in the particular context of pedes-
trian navigation with commodity smartphones and their inertial/magnetic sensors. We report on
an extensive comparison and experimental analysis of existing algorithms. We focus on typical
motions of smartphones when carried by pedestrians. We use a precise ground truth obtained
from a motion capture system. We test state-of-the-art and built-in attitude estimation techniques
with several smartphones, in the presence of magnetic perturbations typically found in buildings.
We discuss the obtained results, analyze advantages and limits of current technologies for atti-
tude estimation in this context. Furthermore, we propose a new technique for limiting the impact
of magnetic perturbations with any attitude estimation algorithm used in this context. We show
how our technique compares and improves over previous works. A particular attention was paid
to the study of attitude estimation in the context of augmented reality motions.

Keywords: Attitude Estimation, Smartphone, Inertial Sensors, Augmented Reality Motions,
Magnetic Field, Perturbations, Benchmark.

1. Introduction

Pervasive applications on smartphones increasingly rely on techniques for estimating at-
titude. Attitude is the orientation of the smartphone with respect to Earth’s local frame [1].
Augmented Reality (AR) applications [2, 3, 4], pedestrian dead-reckoning systems for indoor-
localization [5], and photo sphere creations and previews [6] constitute examples in which pre-
cision and stability of attitude estimation matter.

Modern smartphones embed sensors such as accelerometer, gyroscope, and magnetometer
which make it possible to leverage existing attitude estimation algorithms. Such algorithms have
been extensively investigated in various domains such as: robotics [7], aerospace [8], unmanned
aerial vehicles [9], bio-logging [10], indoor positioning [5]. However, the particular context of
smartphones carried by pedestrians brings new challenges due to singular accelerations and mag-
netic perturbations, which sometimes invalidate the basic hypotheses that underly state-of-the-art
attitude estimation algorithms. In particular, the absence of model describing the smartphone mo-
tions (preventing control), and the presence and variations of magnetic perturbations during the
estimation phase, both introduce additional difficulties.
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Contribution. We investigate the precision of attitude estimation algorithms in the context of
commodity smartphones carried by pedestrians with a specific focus on AR. We consider eight
typical motions (such as texting, phoning, running, etc.) with various impacts on external ac-
celerations, as well as the presence/absence of magnetic perturbations typically found in indoor
environments. We systematically analyze, compare and evaluate eight state-of-the-art algorithms
(and their variants). We precisely quantify the attitude estimation error obtained with each tech-
nique, owing to the use of a precise ground truth obtained with a motion capture system. We
make our benchmark available1 and pay attention to the reproducibility of results. We analyze
and discuss the obtained results and report on conclusions. We also present a new technique
which helps in improving precision by limiting the effect of magnetic perturbations with all con-
sidered algorithms.

Outline of the paper. We first introduce required preliminaries in §2. We then review the closest
related works in §3. We present the considered algorithms in §4, our new technique in §5, and
our experimental protocol in §6. We finally report on obtained results and lessons learned in §7
and §8 before concluding in §9.

2. Background for attitude estimation

2.1. Sensors measurements and calibration
The sensors configuration of a smartphone is composed of a triad of MEMS (Micro-Electro-

Mechanical Systems) sensors consisting of a 3-axis gyroscope, a 3-axis accelerometer and a
3-axis magnetometer. The outputs of these low-cost sensors are imprecise as they suffer from
several problems: noise, bias, full scale range, axes misalignment, axes non-orthogonality and
temperature variations. Sensors models are described below.

2.1.1. Gyroscope
The 3-axis gyroscope measures the angular velocity of the smartphone in rad.s−1: gyr =[

gyrx gyry gyrz
]T

. The widely used continuous time model for a gyroscope can be written
as:

gyr = gyrr + gyrb + gyrn (1)

where:

gyr is the angular rate measured by the gyroscope.

gyrr is the true angular rate.

gyrb is the gyroscope bias.

gyrn is the gyroscope noise.

A gyroscope during a static phase should provide an angular velocity of 0 for each axis. Due
to the poor quality of sensors, measurements show a small bias. This bias can be detected during
static phases and is then subtracted from measurements during online phase.

1http://tyrex.inria.fr/mobile/benchmarks-attitude
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2.1.2. Accelerometer
The 3-axis accelerometer measures the acceleration of the smartphone, including the gravity

and external acceleration in m.s−2: acc =
[
accx accy accz

]T
. The continuous time model

for an accelerometer can be written:

acc = accr + accb + accn (2)

where:

acc is the sum of the gravity and external acceleration of the body measured by the accelerom-
eter (Eq. 3).

accr is the true sum of the gravity and external acceleration of the body.

accb is the accelerometer bias.

accn is the accelerometer noise.

Gravity is the force of attraction by which terrestrial body tends to fall toward the center of
the earth and external accelerations are all others accelerations applied on the body:

acc = gravity + accext. (3)

An accelerometer during a static phase provides a magnitude of acceleration close to g, where
g is the acceleration due to the gravity at the Earth’s surface (g ≈ 9.8 m.s−2). In [11], authors
provide an accelerometer calibration algorithm based on a minimum of 9 static phases. This
calibration allows to remove the bias and misalignment by normalizing the acceleration vector
in multiple smartphone orientations.

2.1.3. Magnetometer
The 3-axis magnetometer measures the magnetic field in the smartphone frame in micro-tesla

(µT ): mag =
[
magx magy magz

]T
. The continuous time model for a magnetometer can be

written such as:

mag = magr + magb + magn , where: (4)

where:

mag is the sum of the Earth’s magnetic field and other magnetic fields measured by the mag-
netometer (Eq. 5).

magr is the true sum of the Earth’s magnetic field and other magnetic fields.

magb is the magnetometer bias.

magn is the magnetometer noise.
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Figure 1: Earth’s magnetic field representation

The Earth’s magnetic field can be modeled by a dipole and follows basic laws of magnetic
fields. At any location, the Earth’s magnetic field can be represented by a three-dimensional
vector and its intensity varies from 25µT to 65µT . The National Geospatial-Intelligence Agency
(NGA) and the United Kingdoms Defence Geographic Centre (DGC) provide a World Magnetic
Model (WMM) [12] every 5-years. Declination is used to know the angle between the Magnetic
North and Geographic North, while inclination and intensity are used to build the reference
vector.

Unfortunately, the magnetometer does not measure only the Earth’s magnetic field. Most of
the time in indoor environments, we are in presence of magnetic dipoles which perturb the mea-
sure of Earth’s magnetic field. These perturbations can be caused by electromagnetic devices
(speakers, magnets), manmade structures (walls, floors) or other ferromagnetic objects like belts,
keys, etc. For example, a smartphone speaker has a field of about 200µT (4 times more than the
Earth’s magnetic field). The study found in [13] categorizes the environmental characteristics
with respect to the magnetic deviations.

Earth’s magnetic field is a vector pointing toward magnetic north and its magnitude is noted
F . All other magnetic fields applied on the body are called magnetic perturbations and noted
magext:

mag = Earth’s magnetic field + magext. (5)

Magnetic perturbations are categorized in two groups: hard and soft iron distortions. Hard
iron distortions are caused by ferromagnetic materials in the same frame than the smartphone
(e.g. speaker for a smartphone). Soft iron distortions are caused by objects that produce a
magnetic field (buildings walls, machines, heaters...) in Earth’s frame. In a context free from
magnetic interferences, hard and soft iron distortions can be partially corrected at the same time
by normalizing the magnetic field vector in multiple smartphone orientations [14, 15]. In theory,
due to soft iron distortions, when the device is moving or when the magnetic context changes,
the calibration phase needs to be reprocessed.

2.2. Attitude representation
The smartphone attitude is determined when the axis orientation of the Smartphone-Frame

SF (SFx, SFy, SFz) is specified with respect to the Earth-Frame EF (EFx, EFy, EFz) (or Local
Tangent Plane (LTP)), see Fig. 2.
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(a) Top View (b) Side View

Figure 2: The Smartphone-Frame SF (dashed line) and Earth-Frame EF (solid line).

The SFx-axis is horizontal and points to the right, the SFy-axis is vertical and points up and
the SFz-axis points towards the outside of the front face of the screen. The EFy-axis points to the
North. The EFz-axis points to the sky perpendicular to the reference ellipsoid and the EFx-axis
completes the right-handed coordinate system, pointing East (ENU : East, North, Up). Another
convention is often used by aerial vehicles called NED for North, East and Down.

Based on the literature, the attitude can be expressed with four different mathematical repre-
sentations [16]. Euler angles (yaw, pitch, roll), rotation matrices, quaternions or axis/angle.

A unit-norm quaternion, which defines the rotation between SF and EF , is defined by:

q = E
S q =

[
qw qx qy qz

]T ∈ R4, (6)

where qw and
[
qx qy qz

]
are respectively the scalar and the vector parts of the quaternion.

To express a vector v =
[
vx vy vz

]T
from EF to SF, Hamilton product [17] is used

(Eq. (7)). Conversely, from EF to SF, Eq. (8) is used.

Svq = q−1 ⊗ Evq ⊗ q, (7)
Evq = q ⊗ Svq ⊗ q−1, (8)

where vq is the quaternion form of v (Eq. (9))

vq =
[
0 vx vy vz

]T
. (9)

The well-known kinematic equation can be used to describe the variation of the attitude in
term of quaternion:

q̇ =
1

2
q ⊗ ωq, (10)

where ωq is the quaternion form of angular velocity. More details about quaternion algebra can
be found in [17].

Each representation has some drawbacks. In our context, Euler angles cannot be used due to
the well-known gimbal-lock problem [18], when the device is in a pocket or held for phoning, the
yaw angle can vary widely. Nevertheless, quaternions avoid the singularity problem, they pro-
vide basic primitives with cheap computation cost. All the algorithms that we have implemented
in Java/Matlab and benchmarked in §7 use the quaternion algebra. A simple mathematical trans-
formation between quaternions and Euler angles can be found in [18].
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2.3. Attitude Estimation
The problem of finding the optimal attitude estimation solution was formulated for the first

time by Wahba in 1965 [1]. Wahba’s problem seeks to find a rotation matrix between two coor-
dinate systems from a set of vector observations (minimum two vectors known in a fixed frame
and in a body frame). In our case, the two coordinate systems are the Smartphone Frame (SF)
and the Earth Frame (EF) as shown in Fig. 2. A typical Inertial Measurement Unit (IMU) in a
smartphone can provide two vector observations expressed in two frames:

• acceleration in SF provided by an accelerometer noted Sacc and its projection in EF noted
Eacc.

• magnetic field in SF provided by a magnetometer noted Smag and its projection in EF
noted Emag.

These 2 observation vectors can be modeled as following:

Saccq = q−1 ⊗ Eaccq ⊗ q, (11)
Smagq = q−1 ⊗ Emagq ⊗ q. (12)

If the smartphone is in static phase (not translating), accext =
[
0 0 0

]T
and

Eacc =
[
0 0 g

]T
. (13)

In absence of magnetic deviations, magext =
[
0 0 0

]T
and

Emag =
[
mx my mz

]T
, (14)

where mx, my and mz can be obtained using the WMM [12].
Figure 3 shows these two vectors: Eacc in blue and Emag in green.

Figure 3: Reference vectors when the smartphone is static and in the absence of magnetic deviations.

In addition to accelerometer and magnetometer, the gyroscope is used to estimate variation of
attitude. Unfortunately, the gyroscope bias leads after integration (Eq. (10)) to an angular drift,
increasing linearly over time. Since the use of only gyroscope is not enough for attitude esti-
mation, accelerometer and magnetometer are used to get an absolute quaternion and compensate
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the drift. The crux in solving an attitude estimation problem then consists in combining inertial
and magnetic sensor measurements in a relevant manner. Fig. 4 illustrates the whole approach,
where K is the fusion gain between data merged from accelerometer-magnetometer fusion and
gyroscope integration. This gain is adjusted depending on sensors reliability.

Sacc
Smag

gyr

Eacc Emag

data fusion

1
2 q̂ ⊗ gyrq

K (fusion gain)∫
q̂ (estimated quaternion)

Figure 4: Method for attitude estimation.

2.4. Attitude in Geo Augmented Reality

Augmented Reality is a live view of real world environment where virtual objects are shown
over the camera image of an hand-held device. Geo Augmented Reality [19] (or Gravimetric
AR) is an AR method which relies exclusively on device position and orientation (Fig. 5). This
technique does not use image processing. GPS, Wifi, Bluetooth or any kind of location sensors
can be used to determine device position. The orientation of the device is processed by an at-
titude filter using the onboard MEMS sensors described above. Precision of attitude estimation
is crucial in Geo AR, as virtual objects should be seen at the right place. Stability of attitude
estimation is crucial as well, since movements of virtual objects should be perceived as follow-
ing camera movements. This is why we further study feasible balances between precision and
attitude in Section 8.

Figure 5: Geo Augmented Reality.
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3. Related Works

Since 1965, a multitude of solutions have been proposed to resolve attitude estimation prob-
lem, such as TRIAD [20], QUaternion ESTimator (QUEST) [21], Singular Value decompo-
sition method (SVD) [22], Kalman Filters (KF) [23, 24, 25, 26, 27], Extended Kalman Filters
(EKF) [28, 29, 30, 31, 5], Unscented Kalman Filters (UKF) [32], Adaptive Kalman Filters (AKF)
[33, 34], Particle Filters [35] and more recently Observers [10, 36, 37, 38]. A survey and an anal-
ysis of these methods can be found in [39]. In 2007, Crassidis et al. provide another survey with
a focus on nonlinear attitude estimation methods. In this paper we further focus on algorithms
that use measurements from the 3 sensors that are now commonly found on smartphones: gy-
roscopes, accelerometers and magnetometers, and attempt to leverage on these measurements to
provide precise attitude estimation of smartphones carried by pedestrians.

Preliminary versions of this work were presented at the IPIN 2015 [40] and PerCom 2017
[41] conferences. Compared to these earlier results, the present article mainly comprises three
additions: (i) more detailed descriptions on considered motions and magnetic perturbations, in
particular with a quantitative characterization; (ii) the overall study is extended with a specific
focus on augmented reality applications; (iii) novel results concerning stability and precision
balances achievable with each filter. We report on a systematic search of parameters adjustment
with each filter to shed light on the feasibility envelope in terms of precision and stability.

Most algorithms developed so far rely on a common assumption: the external acceleration
is negligible. However, when used in the context of smartphone carried by a pedestrian, this
assumption is questionable (we have experimentally observed high external accelerations: see
e.g. second column of Table 1). Specifically, the relation between Sacc and Eacc given by Eq.
(11) is true only if no external acceleration is applied on the smartphone. Assumption of external
acceleration is not a new problem, in [23, 24, 29, 26] authors propose to discard accelerometer
measurements in the update phase of their KF. They set values of covariance matrix to infinity
when:∣∣‖Sacc‖ − ‖Eacc‖

∣∣︸ ︷︷ ︸
µ

> γacc. (15)

In [31] and [42], they explain how they adjust the covariance matrix in function of the left term
of Eq. (15). In [33] and [34], authors use KF residual errors to detect external acceleration. The
technique proposed in [33] needs time to let residual matrix converge in a static phase to identify
bias before estimating external accelerations. Finally, in [5], Renaudin et al. only perform the
update phase of their KF during periods considered as Quasi Static Field (QSF). During QSF, a
low variance is given to measurements and Eacc is adjusted during these phases. To the best of
our knowledge, the use of a detector à la (15) has not been investigated yet with an observer-based
filter.

Most algorithms found in the literature do not consider magnetic perturbations. However,
in the pedestrian context, the smartphone is often exposed to ferromagnetic objects, and this
is known to yield a bad attitude estimation [13, 43]. Few papers are concerned with magnetic
perturbations for attitude estimation on a smartphone carried by a pedestrian. In [38], authors
consider the impact of magnetic perturbations on the North-East plane, abstracting over other
possible impacts. In [23] and [29], authors set the covariance matrix of magnetic measurements
to infinity when:∣∣‖Smag‖ − ‖Emag‖

∣∣ > γmag. (16)
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In [23], in addition to detector (16), Harada et al. use the following property to detect magnetic
perturbations:

θ(Sacc, Smag)− θ(Eacc,Emag) > γθ, (17)

where: θ(v1, v2) = arccos
v1 · v2
‖v1‖ · ‖v2‖

.

Similarly to how external accelerations are treated, Renaudin et al. [5] use a QSF detector based
on variance of measurements.

In the present paper, we develop a new technique for limiting the impact of magnetic pertur-
bations on attitude estimation algorithms that are executed on smartphones carried by pedestri-
ans. In addition, we conduct extensive practical experiments with several (and typical) motions
of smartphones carried by a pedestrian, and show how our approach compares and improves
over previous works in this context. To the best of our knowledge, our systematic comparison of
attitude estimation algorithms is the first in this context. Our experiments include 126 datasets
with several typical motions, several devices, realistic magnetic perturbations, and a fine-grained
analysis.

4. Selected Attitude Estimation Algorithms for Comparison

We now review the state-of-the-art algorithms that we consider in our study. We have selected
8 filters from the literature which are representative of the different techniques developed for
solving the attitude estimation based on IMU sensors. Our selection of algorithms can roughly
be divided into two categories: those based on observers, and those based on KFs (with their
EKF, UKF, and AKF variants). We summarize the main principles and objectives of each al-
gorithm (see [40] for a more formal description of each algorithm using a common notation).
For reproducibility purposes, we also indicate parameters that we used with each algorithm –
which we set in accordance with authors guidelines found in their papers. We also consider
the “black-box algorithms” embedded in Android and iOS. The considered algorithms are the
followings:

Madgwick et al. [38]. This filter is a Gradient Descent (GD) based algorithm designed for
pedestrian navigation. The authors propose to consider magnetic field deviations only on
North-East plane using the following technique: Emag =

[
0 my mz

]T
, where my =√

h2x + h2y ,mz = hz and h = q̂−1⊗Smag⊗ q̂. Madgwick is the common implementation
of the filter, and MadgwickB the same with a gyro bias. Parameters: β = 0.08, ζ = 0.016.

Martin et al. [37]. This filter is an observer with a new geometrical structure (invariant ob-
server). The authors introduce new measurements based on the cross product of acceler-
ation and magnetic field. Martin is the common implementation of the filter. Parameters:
la = 0.7, lc = 0.1, ld = 0.01, n = 0.01, o = 0.01, k = 10, σ = 0.002.

Mahony et al. [36]. This filter is a complementary filter designed for aerial vehicles. The main
idea is to calculate the error by cross multiplying measured and estimated vectors. Mahony
is the common implementation of the filter. MahonyB is the implementation which takes
into account a gyro bias. Parameters: β = 1, ζ = 0.2.
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We provided a new variant of this filter (MahonyMartin), the observation vector from
magnetometer is replaced by the cross product of accelormeter and magnetometer from
Martin et al. Parameters: β = 0.2, Ka = 1, Kc = 0.5.

Fourati et al. [10]. This filter is a mix between a complementary filter algorithm and the Mar-
quardt approach designed for bio-logging. Fourati is the common implementation of the
filter. FouratiExtAcc is an extension which takes external accelerations into account using
Eq. (15)). Parameters: β = 0.3, Ka = 2 and Km = 1. Ka = 0 when γacc = 0.5m.s−2.

In the same way we provided MahonyMartin variant, we proposed a new filter based on
Fourati et al. algorithm, FouratiMartin which uses the cross product of accelerometer and
magnetometer. Parameters: β = 0.3, Ka = 2, Kc = 1.

Choukroun et al. [25]. This filter provides a linearization of measurement equations. A KF is
proposed and guarantees a global convergence. Choukroun is the common implementation
of the filter.

Renaudin et al. [5]. This filter is an EKF designed for Pedestrian Dead Reckoning (PDR). In
addition to Eq. (11) and Eq. (12), they use two others properties:

acct+1 = q−1
ω ⊗ acct ⊗ qω, (18)

magt+1 = q−1
ω ⊗magt ⊗ qω, (19)

where qω is interpreted as a rotation between two successive epochs. Eq. (11), (12), (18)
and (19) are applied only during QSF periods. The detector for QSF works by analyzing
variance of acceleration and magnetic field measurements on a small window (≈ 0.2s).
This filter has to be initialized (≈ 5s at the beginning) without external accelerations
and magnetic perturbations (mostly outside). Renaudin is the common implementation
of the filter. In RenaudinBG, the gyro bias estimation is added where, gradients update
from Eq. (18) and Eq. (19) are considered. RenaudinExtaccExtmag takes both QSF
detectors into account. Parameters: QSF Window = 10, γQSF Acc = 3.92m.s−2, γQSF Mag =

6µT, outliersQSF Acc = 4.90m.s−2, outliersQSF Mag = 8µT .

Sabatini et al. [29]. This filter is an EKF which considers external acceleration and magnetic
perturbations as explained in §3. Sabatini is the common implementation of the filter.
SabatiniExtacc and SabatiniExtmag takes respectively external accelerations and mag-
netic perturbations into account. We did not implement the gyro bias part of this filter.
Parameters: γacc = 0.5m.s−2, γmag = 15 µT, γθ = 10°, mov averagemag = 0.1s

Ekf is the common implementation of the Extended KF.

OS The Android API of Nexus 5 and iOS API of iPhones also provides quaternions generated
by undisclosed “black-box” algorithms. We include them in our comparisons.

5. Design of a new algorithm for better limitation of magnetic perturbations impact

The presence of magnetic perturbations in indoor environments is well-known [43]. For
example, Figure 6 illustrates variations of the magnetic field observed inside Inria’s research
center compared to Earth’s magnetic field. To limit the impact of such magnetic perturbations,
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we propose a new approach that further builds on the idea of detectors à la (16). The overall
principle is twofold: (1) during periods when we detect magnetic perturbations, we can discard
magnetometer measurements for a short period (≈ 2− 3s) so that more importance are given to
gyroscope measurements; (2) this period should be reasonably short-enough so that the impact
of gyroscope’s bias2 is limited.

0 10 20 30 40 50 60 70

50

100

150

time [s]

‖mag‖ [µT ] measurement
Earth’s magnetic field

Figure 6: Magnitude of magnetic field measurements and Earth’s magnetic field in the indoor environment of Inria
building in Grenoble.

We propose an improvement of the magnetic perturbation detector (Eq. (16)) adapted to the
pedestrian context. When a person is moving with a normal speed (walk) in a building, we have
observed huge variations of magnitude of magnetic field

∥∥Smag
∥∥ > 100 µT (see for example

Fig. 6 at t = 24s). The main problem with the detector (16) is to find a proper γmag which should
be: (i) high enough not to discard magnetometer measurements due to low magnetic perturba-
tions omnipresent in an indoor environment and (ii) small enough to reject high perturbations
which affect attitude estimation (such as those coming from the proximity of e.g. heaters, see:
§6.3).

When the threshold of (Eq. (16)) is reached, generally the filter is already diverging. This
means that when this detection occurs, and therefore when gyroscope integration starts, magne-
tometer measurements involving perturbations below the threshold have already impacted atti-
tude estimation.

Figure 7 presents our new technique to limit the impact of magnetic perturbations. The
principle is that we reprocess the filter for the tmag, rep last seconds without magnetometer mea-
surements (Eq. (12)). When the detection occurs, attitude estimation is immediately replaced by
these values. This technique avoids the attitude divergence during the tmag, rep last seconds before
the detection (Eq. (16)). This technique can be used for real-time attitude estimation (time for
reprocessing being negligible when compared to tmag, rep), in which case a discontinuity of some
degrees can be observed when the detection occurs (see Fig. 12).

During periods of magnetic perturbation, Eq. (16) can be true for a small duration. This
is because magnitude of magnetometer measurement can be similar to Earth’s magnetic field
magnitude during a perturbation phase, it depends on the direction of the perturbation. For this
purpose a last condition is added: Eq. (12) can be used only if there is no detection (Eq. (16))
during the last tmag, nopert seconds.

This technique works with all filters where updates (Eq. (11)) from magnetometer can be
temporarily removed (which is the case of all algorithms considered here). An important prereq-
uisite is magnetometer calibration. In a context without magnetic perturbations, magnitude of
magnetometer measurements should be equal to the magnitude of Earth’s magnetic field.

2We experimentally measured the drift due to gyroscope’s bias integration as approximately 5 °/min.
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Data:
f (gyr, acc, mag, dT, mag update) is a basic filter (KF or observer) where mag update is a boolean indicating
whether magnetometer measurements have to be used.
vec states and values is a moving vector keeping track of filter state and measurements from sensors over a
sliding window.
last mag pert is the elapsed time since the last magnetic perturbation detected. Initially it is set to 0.

// Detecting magnetic perturbations

mag updatek = abs(‖Smag‖ − ‖Emag‖)) < γmag

// Enforcing minimal durations
if mag updatek then

last mag pert = last mag pert + dT
if last mag pert < tmag, nopert then

mag updatek = false
end

else
last mag pert = 0

end

// Reprocessing last values without mag data
if !mag updatek−1 and mag updatek then

f.setState(vec states and values.first)
foreach element e of vec states and values do

f(e.gyr, e.acc, e.mag, e.dT, false)
end

end

attitude, state = f(gyr, acc, mag, dT, mag updatek)

// Store state and measurements
vec states and valuesk = state, gyr, acc, mag, dT
remove lines of vec states and values where elapsed time > tmag, rep

Figure 7: Pseudo-code for limiting the impact of magnetic perturbations.

In addition to the algorithms presented before, we also consider 2 new algorithms based on
the aforementioned technique. The first one, MichelObsF, is an implementation of the technique
where f is the observer function from Fourati et al. [10]. The second algorithm, MichelEkfF, is
designed with f set to the well known EKF filter from the literature. For both algorithms we use
the following common parameters: γmag = 15µT , tmag, nopert = 2s and tmag, rep = 3s.

6. Experimental Protocol

In this section, we explain our experimental methodology. A total of 126 trials have been
conducted by 3 peoples with 3 different smartphones, following several typical motions in an
environment with low and high magnetic disturbances.

6.1. Ground Truth

Reference measurements have been made by a Qualisys system. This technology provides
quaternions with a precision of 0.5° of rotation. Our room is equipped with 20 Oqus cameras
connected to a server and a Qualisys Tracker software with a sampling rate at 150Hz. For the
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purpose of aligning timestamps of our ground truth data with the one of smartphone’s sensors,
we used a slerp interpolation [44]. The motion tracker reference frame has been aligned with
EF using room orientation provided by architects. The room is a 10m × 10m square motion
lab3 (see Fig. 8). In this room, we observed that the magnetic field is almost homogeneous from
a sub-place to another (variations are less than 3µT ), and with negligible variations over time.

Figure 8: Kinovis room at Inria, Grenoble, France.

A smartphone handler with infrared markers has been created with a 3D printer for this study
and its markers have been aligned with SF (see Fig. 9).

6.2. Typical Smartphone Motions

We identify 8 typical smartphone motions, inspired from [45]:

• Querying the context in augmented reality (see Fig. 9a).

• Walking while user is texting a message (see Fig. 9b).

• Walking while the user is phoning (see Fig. 9c).

• Walking with a swinging hand (see Fig. 9d).

• Walking with the device in the front pocket (see Fig. 9e).

• Walking with the device in the back pocket (see Fig. 9f).

• Running with the device in the hand (see Fig. 9g).

• Running with the device in the pocket (see Fig. 9h).

AR motion is a slow motion typically found during AR experiences. Other motions happen
when pedestrians move and are relevant for navigation applications. Each motion is characterized
by a particular external accelerations. The Table 1 shows some statistics on external acceleration
magnitude grouped by motion, for the 126 tests. The second column of Table 1 shows the average
(AVG) of external acceleration magnitude grouped by motion where the third column shows the
estimated one from Eq.15.

3See: http://kinovis.inrialpes.fr
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(a) AR (b) Texting (c) Phoning (d) Swinging

(e) Front Pocket (f) Back Pocket (g) Running Hand (h) Running
Pocket

Figure 9: The eight typical motions for a smartphone.

Table 1: Statistics on Magnitude of External Accelerations for each motion
Ext. Acc.

AVG
(m.s−2)

Ext. Acc.
AVG est.
(m.s−2)

Ratio > 0.5m.s−2 > 1.5m.s−2 > 5m.s−2

AR 0.56 0.24 2.39 46.4% 2.4% 0.0%
Texting 1.08 0.61 1.81 83.5% 20.7% 0.1%
Phoning 1.08 0.57 1.96 83.1% 21.0% 0.1%

Front Pocket 2.48 1.40 1.81 97.1% 68.2% 7.5%
Back Pocket 2.53 1.23 2.10 97.5% 72.0% 7.7%

Swinging 5.28 2.30 2.42 99.7% 96.8% 52.5%
Running Pocket 9.56 5.93 1.61 99.6% 98.2% 84.4%
Running Hand 16.34 8.44 2.02 99.9% 99.7% 98.6%

During tests, we observed that external accelerations almost never reach zero because the
device is always moving, and constant speed is very unlikely when the device is held or carried
in a pocket. However, we noticed a high variety of external accelerations: some motions involve
external accelerations that are 20 times lower than gravity while others (like running hand) are
closer to twice the value of gravity. We also noticed that the maximum swing of accelerometer
(±2g) is often reached during our running experiments.

6.3. Introducing Magnetic Perturbations

During tests, we noticed that magnetic disturbances are always present in indoor-environments,
and they vary between different buildings. This is mainly due to building structure. We also ob-
served in some cases, if user is close to heaters, electrical cabinets or simply close to a wall,
magnitude of magnetic field can grow up to 150 µT during few seconds, that is 3 times more
than Earth’s magnetic field (see e.g. Fig. 6).

The motion capture system used is located in a room with low and constant magnetic per-
turbations. In order to reproduce typical magnetic perturbations of indoor environments inside
the motion lab, we used several magnetic boards (see Fig. 10). This allowed us to introduce
magnetic perturbations similar to the ones described above in Fig. 6. Specifically, during the 2
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minutes tests, we brought the device to a few centimeters away from magnetic boards; and we
repeated this 3 or 4 times (see Fig. 11).

Figure 10: Magnetic boards for building structure and heaters simulation.

0 10 20 30 40 50 60 70

50
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time [s]

‖mag‖ [µT ] measurement
Earth’s magnetic field

Figure 11: Magnitude of magnetic field measurements and Earth’s magnetic field during our simulation with magnetic
boards.

The Table 2 shows some statistics on External Magnetic Field Magnitude (EMFM). When
we do not consider white magnetic boards, magnitude of magnetic field is not totally equal to
the magnitude of Earth’s magnetic field, so perturbations cannot be entirely omitted. If we add
magnetic boards, a difference between the two magnitudes can be clearly observed (column 2).
In average, 26.5% of the time, magnetic perturbations have a magnitude higher than > 5µT and
they not exist if we remove magnetic boards.

Table 2: Statistics on Magnitude of Magnetic Field with low and high magnetic perturbations
EMFM
(µT )

EMFM Estimated
(µT )

Ratio
STD
(µT )

> 0.5µT > 1.5µT > 5µT

High 29.57 18.61 1.65 43.09 46.7% 31.2% 26.5%
Low 7.12 5.18 1.40 1.99 13.0% 0.2% 0.0%

6.4. Different Devices

Measurements have been recorded with 3 different smartphones from 2 manufacturers. The
3 smartphones used are a LG Nexus 5, an iPhone 5 and an iPhone 4S. We implemented a log
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application4 for Android and iOS. Table 3 summarizes sensors specifications for the 3 devices.

Table 3: Sensors specifications with the max. sampling rate
Accelerometer Gyroscope Magnetometer

iPhone 4S STMicro STM33DH STIMicro AGDI AKM 8975
100Hz 100Hz 40Hz

iPhone 5 STMicro LIS331DLH STIMicro L3G4200D AKM 8963
100Hz 100Hz 25Hz

Nexus 5 InvenSense MPU6515 InvenSense MPU6515 AKM 8963
200Hz 200Hz 60Hz

For the purpose of aligning timestamps of magnetic field and gyroscope data with data ob-
tained from accelerometer, we used a linear extrapolation. In order to keep the focus on a real-
time process, interpolation is not allowable here. We choose to align data at 100Hz. Moreover,
for each trial, we chose to process 31 algorithms at 4 sampling rates and with 7 different calibra-
tions, that is a total of more than 110 000 tests and 804 millions quaternions compared.

6.5. Common Basis of Comparison and Reproducibility
To ensure a reasonably fast convergence of algorithms, we initialize the first quaternion (for

estimation algorithms) using the first measurement of accelerometer and the first measurement
of magnetometer. In addition, we discard the first five seconds from our results, to allow time for
filter to converge.

Most smartphone APIs (including Nexus 5 and iPhones) provide both calibrated and uncali-
brated data from magnetometer and gyroscope5, and only uncalibrated data from accelerometer.
Calibration phases can be triggered by the Android operating system at anytime. However, we
notice that the gyroscope bias is removed during static phases and the magnetometer is calibrated
during the drawing of an infinity symbol. For iOS devices, magnetometer calibration must be
explicitly triggered by the user. The exact calibration algorithms embedded in both iOS and
Android are not disclosed so we consider them as “black-boxes”.

To investigate the impact of calibration, we also developed a custom calibration procedure:
every morning, we applied our own implementation of the calibration based on Bartz et al. [15]
to remove soft and hard iron distortions from magnetometer and based on Frosio et al. [11]
for the accelerometer. In addition, for all calibrations we applied a scale to adjust magnitude
to 9.8m.s−2 for accelerometer and Earth’s magnetic field magnitude for magnetometer. For the
gyroscope, we simply remove the bias by subtracting measured values in each axis during static
phases.

The precision error is reported using the Mean Absolute Error (MAE) on the Quaternion
Angle Difference (QAD) [46]. It allows to avoid the use of Euler angles with the gimbal-lock
problem. The formula of QAD is defined by:

θ = cos−1(2〈q1, q2〉2 − 1). (20)

Since the accuracy of the system that provides the ground truth is ±0.5°, we consider that two
algorithms exhibiting differences in precision lower than 0.5° rank similarly.

4https://github.com/tyrex-team/senslogs
5not from iOS API
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7. Results and Discussions

We made available the whole benchmark including the 110000+ of 2-minute results and the
126 datasets at: http://tyrex.inria.fr/mobile/benchmarks-attitude. Tests
can thus be reproduced. This benchmark makes it possible to evaluate new filters over a common
ground truth, and to compute additional analytics like e.g. precision errors using Euler angles.
In this Section we report on a few discussions, backed by aggregated views on a fraction of the
obtained results.

7.1. Importance of Calibration

We tested attitude estimation algorithms in 6 different situations where magnetometer, gyro-
scope and accelerometer are either calibrated or not. Table 4 presents the results, showing that
precision is impacted in the same way with all algorithms.

Table 4: Precision of attitude estimation according to calibration with all motions

Mag: No
Gyr: No
Acc: No

Mag: Yes
Gyr: No
Acc: No

Mag: Yes
Gyr: No
Acc: Yes

Mag: Yes
Gyr: Yes
Acc: No

Mag: Yes
Gyr: Yes
Acc: Yes

Mag: OS
Gyr: OS*
Acc: No

Choukroun 95.1° 16.5° 16.5° 9.9° 10.0° 17.3°
Fourati 83.7° 15.6° 15.5° 10.3° 10.4° 16.3°

Madgwick 77.5° 18.2° 18.2° 8.1° 8.1° 17.7°
Renaudin 82.2° 19.5° 19.5° 8.0° 8.1° 18.1°

Ekf 79.8° 19.4° 19.4° 7.9° 8.0° 18.2°
MichelEkfF 82.0° 20.1° 20.1° 6.9° 7.0° 18.2°

MichelObsF 82.1° 13.6° 13.5° 5.9° 5.9° 15.1°
* Not available for iOS devices

In a context free from magnetic perturbations, the magnitude of uncalibrated magnetic field
is about 350µT . This is why it is impossible to estimate attitude if calibration of hard iron dis-
tortions has not be done before. The gyroscope calibration phase is mostly important during
periods with no update from accelerometer and magnetometer values. If gyroscope is not cali-
brated, integration drift will grow from 5°.min−1 to 20°.min−1. We observe that accelerometer
calibration does not significantly improve the precision of attitude estimation for the considered
datasets. The way we performed calibration (see §6.5) provides a significantly better precision
in attitude estimation than the calibration performed by device-embedded algorithms.

7.2. The Difficulty with Noise for Kalman Filters

KFs are often used in the general domain of attitude estimation where white noises naturally
model physical sensors noise. We know from theory that KF converge when the smartphone
is static and magnetometer values correspond to Earth’s magnetic field. However, this is not
the case in the context that we consider. The magnitude of external accelerations and magnetic
perturbations experienced by the smartphone is much higher than its physical sensors noise.

With values for sensors noise experimentally extracted (as commonly found in the litera-
ture), filters yield high precision errors and diverge quickly. This is shown in Table 5 where
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ChoukrounSn, RenaudinSn and EkfSn respectively denote the algorithms initialized with values
for noise measured from physical sensors.

Table 5: Precision of attitude estimation according to sensor noises without magnetic perturbations.
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Choukroun 5.1° 4.3° 4.4° 4.8° 4.6° 6.3° 7.9° 21.1°
ChoukrounSn 15.6° 20.6° 15.9° 17.8° 16.9° 11.5° 17.6° 35.2°

Ekf 4.5° 4.0° 3.7° 4.6° 4.6° 5.9° 8.2° 16.8°
EkfSn 44.0° 57.8° 36.1° 20.6° 30.8° 29.1° 23.3° 54.1°

Renaudin 4.5° 3.8° 3.7° 4.7° 4.6° 6.1° 8.5° 17.9°
RenaudinSn 20.8° 18.5° 17.8° 17.3° 18.4° 11.4° 17.4° 36.5°

KFs can still give better results in this context, provided we adapt the “noise values” in a
way that does not reflect anymore physical sensors noise, but that instead takes into account the
relative importance of sensor measurements in this context. Gyroscope measurements are not
impacted by external accelerations nor magnetic perturbations. In our context, we observed that
giving more importance to gyroscope measurements (compared to magnetometer and accelerom-
eter measurements) yields better results (despite convergence being a bit longer). Experimentally
we obtained the best results (See Choukroun, Renaudin and Ekf in Table 5) by using the follow-
ing “noise values”: σacc = 0.5, σmag = 0.8, σgyr = 0.3 for all KFs6.

Applying KFs remains non trivial, because the notion of noise to model in this context goes
much beyond the setting in which initial KFs were designed.

Observers and KFs exhibit similar results for low to moderate external accelerations. For
higher accelerations (typically found when swinging and running), observers were found to im-
prove precision. This is especially the case for MichelObsF that outperforms MichelEkfF, as
shown in Table 7.

7.3. Bias Consideration
Many existing filters try to estimate sensors bias and in particular gyroscope bias. For exam-

ple, in observers, typical procedures use residuals between reference and estimation to estimate
bias (e.g. [36, 38]). In our setting however, residuals do not only originate from gyroscope
bias but also from magnetic perturbations and external accelerations. Furthermore, a calibration
phase is performed in a previous stage.

We can thus wonder how useful classical bias estimation techniques are in our setting. Table 6
compares the results obtained with two variants of each filter: one with bias estimation and
one without. We observe that bias estimation seems unnecessary in our context of study. We
remark however that bias estimation can still be useful for situations where the gyroscope is
not calibrated. In this particular case, precision of attitude estimation is improved with bias
estimation, provided external accelerations remain small.

6except for the Linear KF from Choukroun where we adapt these values for the linearized model: σacc = 0.3, σmag =
0.3, σgyr = 0.5
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Table 6: Precision of attitude according to bias estimation without magnetic perturbations.
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Madgwick 4.8° 4.1° 4.6° 4.9° 5.0° 5.8° 7.1° 16.5°
MadgwickB 5.2° 4.8° 5.4° 5.8° 6.2° 11.5° 10.5° 19.8°

Mahony 5.0° 4.6° 4.2° 5.1° 5.2° 7.5° 7.9° 11.2°
MahonyB 5.6° 4.9° 4.7° 6.1° 5.7° 9.9° 13.1° 26.4°
Renaudin 4.5° 3.8° 3.7° 4.7° 4.6° 6.1° 8.5° 17.9°

RenaudinBG 4.5° 3.7° 3.8° 4.5° 4.6° 6.9° 12.8° 19.3°

7.4. Behaviors during Typical Smartphone Motions

Table 7 compares the precision of attitude estimation for each motion. We observe a negative
correlation between magnitude of external accelerations and precision of attitude estimation.
This is verified for all algorithms.

Table 7: Precision of Attitude estimation according to typical motions without magnetic perturbations.
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OS 7.1° 5.9° 5.8° 12.7° 13.2° 20.3° 24.4° 62.0°
Choukroun 5.1° 4.3° 4.4° 4.8° 4.6° 6.3° 7.9° 21.1°
Madgwick 4.8° 4.1° 4.6° 4.9° 5.0° 5.8° 7.1° 16.5°

Mahony 5.0° 4.6° 4.2° 5.1° 5.2° 7.5° 7.9° 11.2°
Fourati 4.8° 4.0° 4.4° 4.6° 4.8° 5.3° 6.3° 6.6°

FouratiExtacc 4.9° 5.4° 4.7° 6.0° 5.7° 8.4° 12.2° 29.1°
Sabatini 4.5° 4.0° 3.7° 4.6° 4.6° 5.9° 8.2° 16.8°

SabatiniExtacc 4.5° 4.5° 4.0° 5.5° 5.0° 9.7° 15.0° 33.5°
Renaudin 4.5° 3.8° 3.7° 4.7° 4.6° 6.1° 8.5° 17.9°

RenaudinExtacc 4.5° 3.8° 3.7° 4.8° 4.8° 6.0° 8.0° 30.3°
MichelObsF 4.8° 3.9° 4.4° 4.6° 4.8° 5.3° 6.3° 6.6°
MichelEkfF 4.5° 4.0° 3.7° 4.6° 4.6° 6.0° 8.2° 16.8°

We observe that two algorithms stand out in terms of precision: Fourati and MichelObsF.
Table 1 presents the left term µ of detector (Eq. (15)) and the magnitude of external accel-

erations (extracted from the ground truth). We observe that the two series are highly correlated
(ρ > 99%). This suggests that it is possible to reasonably distinguish periods with high external
accelerations.

We also observe that filters which take external accelerations into account do not yield better
precision than others. This can be explained by long periods of perturbations without the smart-
phone becoming completely static. Moreover, filters are very sensitive to false detections which
make them quickly diverge. An interesting perspective for the further development of filters in
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this context would be to investigate how to better leverage the detection of periods with high
external accelerations in order to improve precision of attitude estimation during those periods
(Table 7).

7.5. Impact of Magnetic Perturbations

We tested different motions in the presence/absence of magnetic perturbations (§6.3). Results
are shown in Table 8.

Table 8: Precision of attitude estimation according to typical motions with magnetic perturbations.
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OS 29.0° 24.4° 21.1° 19.8° 37.9° 19.2°
Madgwick 18.2° 7.5° 7.8° 8.1° 9.4° 10.0°

Mahony 31.8° 26.1° 30.0° 19.9° 13.9° 26.6°
Renaudin 17.1° 7.0° 7.6° 8.9° 8.7° 9.5°

RenaudinExtmag 16.8° 6.4° 7.3° 8.4° 8.4° 8.9°
Sabatini 16.6° 7.0° 8.0° 8.9° 8.6° 10.1°

SabatiniExtmag 14.6° 8.7° 8.9° 6.4° 8.4° 9.0°
MichelObs 32.1° 14.0° 16.4° 14.6° 8.8° 19.1°

MichelObsExtmag 18.0° 11.9° 11.4° 7.4° 8.8° 10.3°
MichelObsExtmagWt 15.5° 9.2° 9.7° 7.1° 7.3° 10.1°

MichelObsF 10.6° 5.4° 6.0° 5.8° 7.1° 7.7°
MichelEkf 16.6° 7.0° 8.0° 8.9° 8.6° 10.1°

MichelEkfExtmag 14.2° 8.9° 9.0° 5.5° 8.6° 9.2°
MichelEkfExtmagWt 12.3° 6.3° 7.2° 5.3° 8.5° 8.7°

MichelEkfF 10.8° 5.3° 5.5° 5.7° 10.3° 7.5°

We observe that filters which implement a magnetic perturbations detector do not system-
atically exhibit a better behavior when compared to their native variant. However, if we extend
them with our technique for enforcing minimal durations (See Fig. 7), precision is systematically
improved when compared to their native variant.

RenaudinExtmag implements a different detector for magnetic perturbations based on vari-
ances which improves Renaudin. However, RenaudinExtmag is very sensitive to false detections
because Earth’s magnetic field is known only during the initial phase.

We observe that the two variants of our technique (MichelEkfF and MichelObsF) gives better
precisions for all motions except for the back pocket motion in the case of MichelEkfF. Mich-
elObsF thus stands out: it provides a significantly better precision during periods of magnetic
perturbations even with high accelerations. We also notice that precision is improved regardless
of the motion.

Figure 12 illustrates the relative improvements in precision brought by the respective com-
ponents of our new technique presented in §5, in the case of yaw.
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Figure 12: Sample run of the reprocessing technique (red) when a magnetic perturbation occurs, in comparison to ground
truth (black) and earlier techniques.

7.6. Pitch and Roll in Augmented Reality mode

In many applications which use attitude, the goal is to provide the most accurate estimation.
In Augmented Reality (AR), for example, it is interesting to use algorithms which provide good
estimations of only two of the three Euler angles in order to enhance rendering. We defined pitch
and roll as the rotations around y-axis and z-axis. As Euler angles suffer from singularity and
this singularity is a problem when the smartphone is held in AR mode we apply a rotation of
90°around x-axis then another rotation of 90°around z-axis. The smartphone is now considered
in “Camera landscape” frame, as shown in Figure 13.

y

x

z

(a) Default frame

y

x

z

(b) Camera landscape frame

Figure 13: From default frame to camera landscape frame (rotation of 90°around x-axis then another rotation of
90°around z-axis)

Table 9 shows algorithms precision during AR motions in a highly perturbated magnetic en-
vironmnent. During motions with low external accelerations, which this is especially the case
for AR motions, we can use a specific technique for limiting the impact of magnetic pertur-
bations. We use a cross product between the magnetometer and the accelerometer as yielding
our observation vector. This allows algorithms to be more robust to errors from magnetometer
mesurements on pitch and roll angles [37]. Algorithms using this technique yield better preci-
sion than others. For example, FouratiMartin is twice accurate than its classical version. The
same behavior is observed for MahonyMartin algorithm which is 5 times more accurate than the
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Table 9: Precision of attitude estimation according to Augmented Reality motions with magnetic perturbations.

QAD Yaw Pitch Roll
Choukroun 24.8° 22.1° 6.0° 6.6°

Fourati 32.1° 31.5° 2.3° 3.0°
FouratiMartin 21.7° 21.3° 1.4° 1.6°

FouratiMartinF 10.2° 9.8° 1.4° 1.6°
Madgwick 18.2° 17.1° 3.2° 3.1°

Mahony 31.8° 28.9° 6.9° 7.9°
MahonyMartin 14.4° 14.1° 1.1° 1.4°

MahonyMartinF 10.1° 9.8° 1.2° 1.5°
Martin 34.4° 34.1° 0.9° 1.2°

MichelEkfF 10.8° 10.5° 1.1° 1.4°
MichelObsF 10.7° 10.3° 1.3° 1.6°

OS 29.0° 28.9° 1.1° 1.2°
RenaudinExtmag 16.8° 16.0° 2.6° 2.9°
SabatiniExtmag 14.6° 14.3° 1.7° 1.9°

Mahony version. It is also possible to equip our filter with this technique in order to enhance
overall results (MahonyMartinF and FouratiMartinF).

It should also be noticed that embedded algorithms have a good behavior in this specific
context. It is likely that they use a similar technique.

7.7. Comparison with Device-Embedded Algorithms
Table 10 shows algorithms precision depending on the smartphone used. For each algorithm,

we observe rather similar results across the different smartphones.

Table 10: Precision according to device with all motions and with/without magnetic perturbations.

iPhone 4S iPhone 5 LG Nexus 5
OS 23.6° 28.6° 12.7°

Choukroun 8.6° 10.4° 10.9°
Mahony 10.8° 15.2° 16.6°

Madgwick 7.1° 8.7° 8.6°
Ekf 6.7° 8.7° 8.5°

MichelObsF 5.4° 6.5° 5.9°
MichelEkfF 5.6° 8.3° 7.0°

We also observe that all algorithms exhibit a similar or better precision compared to OS-
embedded algorithms. We know that this is at least partially due to a bad calibration (especially
for iPhones). Finally, we notice that MichelEkfF and MichelObsF provide much better precision
with all smartphones. Specifically, on 126 tests, we noticed that they improve the precision of
OS-embedded algorithms on iPhone 4S by 300%, iPhone 5 by 250% and Nexus 5 by 100%.
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7.8. Empirical Computational Complexity

Because of smartphone’s limited resources (e.g. battery), we study to which extent improve-
ments in precision of attitude estimation have an impact in terms of empirical computational
complexity. Figure 14 summarizes the relative times spent with each algorithm, where unit time
corresponds to the running time of Mahony. Ratios have been obtained using the offline imple-
mentations executed across all 126 datasets.

Choukroun

RenaudinExtaccExtmag
MichelEkfF
MichelObsF

Ekf
Fourati

Madgwick
Mahony 1

2.8

3.3

5.1

5.6

8.4

8.7

9

Figure 14: Relative performance in terms of CPU cost (lower is better).

We observe that all algorithms can be executed on smartphones even at much higher frequen-
cies than current sensors capabilities (see Table 3). For example, our implementation of Mahony
running on the Nexus 5 can output up to 45000 quaternions per second.

7.9. Relevant Sampling Rates

In all aforementioned results, sensors sampling rate was set to 100Hz. We studied the be-
havior of algorithms whenever the sampling rate varies. Table 11 presents precision according to
sampling rate. We observe that results with a sampling at 100Hz and 40Hz are relatively similar,
and much more precise than with lower frequencies. This suggests to implement filters with a
sampling rate of 40Hz to save smartphone’s battery life, for a negligible loss in precision.

Table 11: Precision according to sampling with all motions and with/without magnetic perturbations.

100Hz 40Hz 10Hz 2Hz
Choukroun 10.0° 10.1° 15.6° 34.7°

Mahony 14.2° 14.3° 19.7° 48.9°
Madgwick 8.1° 8.1° 17.3° 62.8°

Ekf 8.0° 8.1° 15.3° 49.5°
MichelObsF 5.9° 6.0° 14.8° 52.5°
MichelEkfF 7.0° 7.1° 14.8° 51.3°

In our specific context, we obtain a mean error of 6° using our best algorithm (MichelObsF).
When used in an AR application with geolocation and close tracked objects, this might be enough
to avoid huge offsets during rendering. This might also be suitable for a navigation application
with short trips. For longer trips, the additional use of a map-matching algorithm might be
considered.
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8. Parameter Adjustment for a Balance Between Stability and Precision

In the previous section, we evaluated algorithms using parameter values as recommended by
their authors (§ 4). If authors did not provide instructions on setting parameter values, we chose
them empirically. In the present section, we evaluate several sets of parameters for each filter in
order to observe their feasibility envelope. For the rest of the study, precision error of filters is
shown in function of the stability.

8.1. Stability of a filter

In some specific contexts, eg. AR, rendering is very important. When the device is static,
augmented point of interests should be static and not moving nor blinking. For this purpose, we
added to our benchmark the stability component. The stability is also strongly related to the noise
of the sensors and especially the noise of the magnetometer and accelerometer [40]. Precision
error’s STD cannot be used directly to know the stability of the filter. We used a moving STD
with a window of 0.1s which corresponds to the moving picture rate [47] observable by a user.
Obviously, the stability measurement makes sense only when filters assumptions are met (few
magnetic perturbations and few external accelerations).

8.2. Parameters & Algorithms

Tests have been conducted with different sets of parameter values for each algorithm on a
systematic basis. Parameter values have been chosen empirically to cover a spectrum of pos-
sibilities and show the trade-off between the stability and the precision error. We recall below
the set of parameters of each filter, and for each parameter we give the set of parameter values
tested. We consider the cartesian product of all sets of parameter values. We indicate the size of
the cartesian product (i.e. the number of configurations tested) next to each filter name.

Choukroun (125)
σacc =

[
0.1 0.2 0.3 0.4 0.5

]
σmag =

[
0.1 0.2 0.3 0.4 0.5

]
σgyr =

[
0.3 0.4 0.5 0.6 0.7

]
Ekf (125)

σacc =
[
0.3 0.4 0.5 0.6 0.7

]
σmag =

[
0.6 0.7 0.8 0.9 1.0

]
σgyr =

[
0.1 0.2 0.3 0.4 0.5

]
Fourati (125)

β =
[
0.1 0.2 0.3 0.4 0.5

]
Ka =

[
1 1.5 2 2.5 3

]
Km =

[
0.5 1 1.5 2 2.5

]

FouratiExtAcc (625)

β =
[
0.1 0.2 0.3 0.4 0.5

]
Ka =

[
1 1.5 2 2.5 3

]
Km =

[
0.5 1 1.5 2 2.5

]
γacc =

[
0.1 0.3 0.5 1 3 5

]
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FouratiMartin (125)
β =

[
0.1 0.2 0.3 0.4 0.5

]
Ka =

[
1 1.5 2 2.5 3

]
Kc =

[
0.5 1 1.5 2 2.5

]
Madgwick (28) β =

[
0 0.05 0.01 0.02 ... 0.24 0.25

]
Mahony (125)

β =
[
0.5 0.75 1 1.25 1.5

]
Ka =

[
0.5 0.75 1 1.25 1.5

]
Km =

[
0.5 0.75 1 1.25 1.5

]
MahonyMartin (125)

β =
[
0.1 0.15 0.2 0.25 0.3

]
Ka =

[
0.25 0.5 0.75 1 1.25

]
Kc =

[
0.5 0.75 1 1.25 1.5

]

MichelObsF (1944)

β =
[
0.2 0.3 0.4

]
Ka =

[
1.5 2 2.5

]
Km =

[
0.5 1 1.5 2

]
γmag =

[
12 13 14 15 16 17

]
tmag, nopert =

[
1 2 3

]
tmag, rep =

[
2 3 4

]

SabatiniExtMag (486)

σacc =
[
0.4 0.5 0.6

]
σmag =

[
0.7 0.8 0.9

]
σgyr =

[
0.2 0.3 0.4

]
γmag =

[
12 13 14 15 16 17

]
γθ =

[
8 10 12

]
For example, for MichelObsF we tested 1944 ways of setting initial parameter values, given

by all the possible combinations of the values described above for each parameter.

8.3. Augmented Reality: Parameter Adjustment for a Balance Between Stability and Precision

We have set up an online tool7 to visualize the spectrum of possibilities for each algorithm.
Figures 15 and 16 show the range of possibilities in terms of stability and precision error for
a selection of algorithms during AR trials. Each dot of the graph corresponds to the couple
(precision error, stability) for one set of parameter values.

In the case of low magnetic perturbations (Fig. 15), we observed a common behavior for
kalman filters, whose best results are obtained when σmag ≈ 2 σacc and σacc ≈ 2 σgyr. A
similar observation holds with the weights of observers (instead of variances – thus with inverted
ratios). Ratios found here between the sensors are directly related to sensor noises from the Allan
variance [40].

7http://tyrex.inria.fr/mobile/benchmarks-attitude/#comparison-parameters
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Figure 15: Spectrum of possibilities in terms of stability/precision in AR with few magnetic perturbations

Figure 16: Spectrum of possibilities in terms of stability/precision in AR with high magnetic perturbations
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In the case of high magnetic perturbations (Fig. 16), algorithms without detector exhibit a
common behavior: their best results are obtained when σacc < σmag and σgyr � σmag . That
behavior shows the impact of magnetic field measurements on the overall results. For algorithms
with a magnetic perturbations detector, σgyr � σmag is also true, but σacc ≈ 0.75 σmag .

To conclude, we observed that some filters provide a better feasibility envelope, especially
in the presence of magnetic perturbations (MichelObsExtmagWtRep). Also, it is preferable to
use a filter which deals with magnetic perturbations, this avoids to create a filter with adaptative
parameters in function of the magnetic context.

Moreover, this tool allows us to confirm that parameter values chosen empirically in § 4 are
among those that yield the best results in this study.

9. Conclusions

We investigate the use of attitude estimation algorithms in the particular context of pedes-
trians using commodity smartphones. We propose a benchmark for evaluating and comparing
the precision of attitude estimations during typical smartphone motions with and without mag-
netic perturbations. For the first time, our experiments shed light on the relative impacts of
calibrations, parameters, noises, bias, motions, magnetic perturbations, and sampling rates when
estimating attitude on smartphones. We go further in the study in the particular context of atti-
tude estimation during augmented reality motions. An online tool based on the benchmarks has
been released in order to help developers in choosing the right filter and appropriate parameter
values in function of the expected motions, device, and magnetic perturbations. We also com-
ment on lessons learned from our experiments for further research on the topic. In all cases, we
recommend developers to use custom calibration and algorithms in replacement of those pro-
vided by smartphone’s OS. Our algorithm “MichelObsF” provides significant gains in precision
when estimating attitude in the presence of magnetic perturbations. In the absence of magnetic
perturbations, it offers the same precision than the most precise algorithms.
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