A Progressive k-d tree for Approximate k-Nearest Neighbors

Abstract : We present a progressive algorithm for approximate k-nearest neighbor search. Although the use of k-nearest neighbor libraries (KNN) is common in many data analysis methods, most KNN algorithms can only be run when the whole dataset has been indexed, i.e., they are not online. Even the few online implementations are not progressive in the sense that the time to index incoming data is not bounded and can exceed the latency required by progressive systems. Exceeding this latency significantly impacts the interactivity of visualization systems especially when dealing with large-scale data. We improve traditional k-d trees for progressive approximate k-nearest neighbor search, enabling fast KNN queries while continuously indexing new batches of data when necessary. Following the progressive computation paradigm, our progressive k-d tree is bounded in time, allowing analysts to access ongoing results within an interactive latency. We also present performance benchmarks to compare online and progressive k-d trees.
Type de document :
Communication dans un congrès
Workshop on Data Systems for Interactive Analysis (DSIA), Oct 2017, Phoenix, United States
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01650272
Contributeur : Jean-Daniel Fekete <>
Soumis le : mardi 28 novembre 2017 - 13:05:56
Dernière modification le : mercredi 29 novembre 2017 - 15:40:01

Fichier

A_Progressive_KD_Tree___DSIA_V...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01650272, version 1

Collections

Citation

Jaemin Jo, Jinwook Seo, Jean-Daniel Fekete. A Progressive k-d tree for Approximate k-Nearest Neighbors. Workshop on Data Systems for Interactive Analysis (DSIA), Oct 2017, Phoenix, United States. 〈hal-01650272〉

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

13