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ABSTRACT

We present a progressive algorithm for approximate k-nearest neigh-
bor search. Although the use of k-nearest neighbor libraries (KNN)
is common in many data analysis methods, most KNN algorithms
can only be run when the whole dataset has been indexed, i.e., they
are not online. Even the few online implementations are not pro-
gressive in the sense that the time to index incoming data is not
bounded and can exceed the latency required by progressive sys-
tems. Exceeding this latency significantly impacts the interactivity
of visualization systems especially when dealing with large-scale
data. We improve traditional k-d trees for progressive approximate
k-nearest neighbor search, enabling fast KNN queries while contin-
uously indexing new batches of data when necessary. Following
the progressive computation paradigm, our progressive k-d tree is
bounded in time, allowing analysts to access ongoing results within
an interactive latency. We also present performance benchmarks to
compare online and progressive k-d trees.

Index Terms: H.3.m [Information Systems]: Information Storage
and Retrieval—Miscellaneous;

1 INTRODUCTION

Progressive data analysis has recently gained in popularity due to its
ability to deliver ongoing results before the whole computation is
completed [9, 30]. In contrast to previous computation paradigms
such as online computation [1], progressive algorithms deliver esti-
mates at a bounded rate: they are guaranteed to return a partial result
in a specified delay to comply with human attention constraints.

However, despite the advantages of progressive computation, it is
not always simple or even possible to convert a sequential algorithm
to a progressive one, and such a hurdle hinders the applicability of
progressive computation to a wider range of data analyses.

In this paper, we address one important problem: computing k-
nearest neighbors (KNN) progressively. KNN is an optimization
problem of finding the k closest points to a query point in a multidi-
mensional metric space. The KNN problem is a building block of
many computer vision and machine learning methods such as feature
matching [20], clustering [31], classification [23], projection [25],
and non-parametric density estimation [10]. Thus, designing an
efficient progressive algorithm for the KNN problem is an important
step towards extending the applicability of progressive systems.

This article presents a progressive k-d tree algorithm which can
process KNN queries while continuously indexing new batches of
data. It is based on previous work on improved k-d trees [21,28]. We
first review previous approaches made for KNN search and discuss
new challenges and requirements in interactive scenarios. Then, we
improve the sequential k-d tree algorithm to first become online and
then progressive. Finally, we report on performance benchmarks
to compare a popular open-source k-d tree implementation (i.e.,
FLANN [21]) and ours.
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2 RELATED WORK

In this section, we first introduce previous approaches to the k-
nearest neighbor problem in parallel with progressive systems for
interactive analysis. Then, we present the challenges and opportuni-
ties for designing a progressive algorithm for the KNN problem.

Formally, given N points in P = {p1, · · · , pN} and a query point
p, a KNN search finds (the indices of) the k nearest points of the
query point in P. Formally, this operation can be stated as follows:

KNNk(p) 7→ {i1, i2, · · · , i j, · · · ik} where i j ∈ [1,N]

KNNk(p) is a set of indices that satisfy the following condition:

∀i ∈ KNNk(p) ∀ j ∈ [1,N]−KNNk(p), ||p, pi|| ≤ ||p, p j||

where ||p, pi|| is the distance between p and pi.
One straightforward approach is to calculate the distances from

the query point p to every point in the dataset and take the k clos-
est. However, this method is very inefficient since it has to iterate
over all points and thus has a time complexity of θ(N). A more
efficient approach is to use a search data structure or an indexing
method. In the recent years, there has been important advances in
such data structures and algorithms to speed-up KNN queries. How-
ever, these advances have mostly focused on optimizing the query
time, considering that the indexing was done once for all and thus the
indexing time was less important than the query time [7]. However,
for progressive systems, both times are important because data can
be loaded progressively, the KNN queries can be done progressively,
and therefore the index should be updated progressively too.

A popular approach to improve the query time is to compute ap-
proximate k-nearest-neighbors instead of exact ones. Approximate
k-nearest neighbor search (AKNN) techniques are more efficient
than exact KNN but all of them also require building an index. For
example, the most efficient method to date, the hierarchical navi-
gable small-world graph (HNSW) [17], needs all data point to be
loaded upfront and a special graph structure to be built before query-
ing. From the visual analytics point of view, such a precomputation
leads to long loading times, hampering the interactivity of the entire
system. Only a few AKNN techniques, such as FLANN [21], sup-
port online updates; they allow inserting new points after an index is
built. However, this is not sufficient for interactive visual analytics
because the insertion time is not bounded. Indeed, we observed that
the FLANN algorithm pauses longer than ten seconds to update the
indexes for a few hundred thousand points, exceeding the time limit
to keep the user’s attention [22].

The simplest data structures for AKNN are space-partitioning
trees. They recursively divide a multidimensional space and build
a tree structure that can be used to accelerate searching. Initially
designed for exact KNN matches, k-d trees [5] have been one of the
most widely used methods for KNN queries. A k-d tree iteratively
splits the space with hyperplanes and builds a binary tree, allowing
a logarithmic time complexity for KNN search. At each level in
the binary tree, data is divided into two groups by the dimension in
which the data has the highest variance.

Later, variants of k-d trees have been proposed to further reduce
the query time. Beis and Lowe [4] showed that limiting the number
of visited nodes in a k-d tree could bring a large speedup in the
query time with a small loss in accuracy. For KNN search in higher



dimensional spaces, Silpa-Anan and Hartley [28] presented the idea
of multiple randomized k-d trees where data is recursively split with
a dimension that is randomly chosen from a small set of candidate
dimensions with the highest variance. Muja and Lowe [20] identified
two best algorithms for KNN querying: randomized k-d trees and
hierarchical k-means trees, and presented an algorithm that selects
optimum parameters for the algorithms in terms of speed and accu-
racy criteria. Later, they extended their work to perform distributed
nearest neighbor search on multiple machines [21].

Another body of research adopted partitioning strategies with
hyperplanes not aligned with axes. Examples include non-axis-
aligned hyperplanes [29], random projection trees [8], trinary pro-
jection tree [12], ball tree [14], and several open-source implementa-
tions [6, 19, 23, 26].

Hash-based techniques use a set of locality-sensitive hashing
(LSH) functions [2]. The core idea is that a pair of two close points
is more likely to fall into the same bucket after hashing than a pair of
two distant points. Therefore, hash-based techniques can efficiently
search for neighbors by looking up the buckets that a query point
falls into. The strength of hash-based techniques is that they can
provide a theoretical base on the search quality. Examples include
LSH forest [3], multi-probe LSH [15], and kernelized LSH [13].

Graph-based techniques model multidimensional data points as
a graph by mapping the points to vertices and the neighborhood
relationships to edges. Once the graph is built, AKNN search can be
done by exploring the graph. From the KNN graph, Sebastian and
Kimia [27] selected a few well-separated vertices (i.e., seeds) and
iteratively moved the seeds to points that are closer to the query point
until satisfactory neighbors were found. Hajebi et al. [11] provided
theoretical guarantees for the accuracy and the computational com-
plexity of such a greedy method. Wang et al. [32] proposed a new
approach to construct approximate KNN graphs by building exact
neighborhood graphs for hierarchically divided data and combining
the graphs. Recently, more sophisticated graph structures such as
navigable small world graphs are used for KNN queries. In addi-
tion to short-range links in a traditional neighbor graph, navigable
small world graphs have long-range links that connect two distant
points. Malkov et al. [16] showed that these long-range links can be
used for logarithmic scaling of neighbor exploration. Later, Malkov
and Yashunin [17] further improved the performance by introducing
hierarchical structures to navigable small world graphs. Yet, the
construction of the graphs is more costly than the other methods and
cannot easily be done online.

Throughout a few decades of KNN research, query time (i.e.,
time taken to perform a KNN search) has been the key measure for
evaluating the performance of various techniques. Indeed, in most
studies mentioned in this section, authors assumed that data points
had already been inserted to an index and measured the time taken
to process queries. This is also the case with benchmarks in the
public domain [7, 18]. However, such benchmarks are meaningful
only when the data is kept constant. In more interactive scenarios,
the data can be changed dynamically by loading new data (e.g.,
streaming) or deleting a subset of data through user interaction.
Thus, it is necessary to keep the whole process of KNN queries,
including building, and querying the index, interactive. In this
paper, inspired by Progressive Visual Analytics [30], we introduce a
progressive k-d tree for approximate k-nearest neighbor algorithm
that can keep the latency for building, maintaining, and querying
the index within a specified time bound. We chose to start with the
multiple randomized k-d tree algorithm which is simple yet one of
the most efficient algorithms for AKNN queries [20].

3 APPROACHES FOR THE APPROXIMATE K-NEAREST
NEIGHBOR PROBLEM

In this section, we first describe a sequential algorithm using ran-
domized k-d trees or a k-d forest for approximate k-nearest neighbor

(AKNN) search, and then improve it first to be online and then pro-
gressive. Among many algorithms mentioned in the related work
section, we chose the k-d forest because 1) it is known to be efficient
and yet easy to implement [20] and 2) an online version of the algo-
rithm is available in open-source [19] so we could directly compare
our progressive version to the online version.

3.1 A Sequential Algorithm
A k-d tree is a binary tree built by recursively partitioning a mul-
tidimensional space using axis-aligned hyperplanes [5] and used
thereafter to search, guaranteeing log2 N search time and N× log2 N
build time. At the root node, the algorithm chooses a cutting di-
mension which has the largest variance, and assigns points to child
nodes: the points whose value on the cutting dimension is less than
the median are assigned to the left node and the remaining points
are assigned to the right node. This procedure repeats until only
one point remains in a node. In the randomized k-d tree forest, we
randomly choose a cutting dimension among the top n (e.g., n = 5)
dimensions with the largest variance. This allows us to build multi-
ple randomized trees and represent high-dimensional spaces more
effectively. The algorithm can be described as follows:

Algorithm 1 A sequential algorithm for building a randomized k-d
tree of the given l points in L

1: procedure BUILDSEQUENTIAL(L)
Input: L is a list of l points of D dimensions.
Output: A randomized k-d tree

2: if L has only one point then
3: node← a new leaf node
4: node.point← L[0]
5: return node
6: end if
7: node← a new internal node
8: calculate the variance of each dimension in L
9: node.cutdim← a random dimension with large variance

10: node.cutval← the median of values of node.cutdim in L
11:
12: left← [p for p in L if p[node.cutdim]≤ node.cutval]
13: right← [p for p in L if p[node.cutdim]> node.cutval]
14:
15: node.left← BuildSequential(left)
16: node.right← BuildSequential(right)
17: return node
18: end procedure

Algorithm 1 has three strong limitations: First, it requires all
points to be already loaded in main memory (L) before building the
randomized k-d trees. Such a constraint forces analysts to wait until
all data is read from a disk before performing any analysis. Second,
once the data structures are built, the algorithm does not allow any
modification on them (e.g., by inserting new points). Finally, the
running time of the algorithm solely depends on the size of input
(i.e., l) and thus latency cannot be controlled.

3.2 An Online Algorithm
In contrast to a sequential algorithm, an online algorithm allows
adding new points to trees even after the trees are built. This benefits
interactive systems in that analysts do not have to wait until all data
is loaded. Rather, the data is split into mini-batches, loaded onto the
system incrementally, and can be used for further online algorithms.
Analysts can access the running result between the mini-batches,
obtaining an approximation of the final results.

However, we found such online data structures for AKNN search
was rare; the FLANN library [21] is the only one that supports online
updates. It builds a small k-d tree of the points in the first mini-batch
using the same algorithm as the sequential one (i.e., Algorithm 1).
Then, other points can be added into the tree thereafter when needed.

The insertion procedure of the FLANN library is very akin to that
of a binary tree; starting from the root node, each point moves to



either the left or the right child by comparing its value at the cutdim
dimension and cutval of an internal node until it reaches a leaf node.
Then, the leaf node becomes an internal node, and the two points
become the children of the node. Algorithm 2 describes the insertion
procedure in more detail.

Algorithm 2 An algorithm for inserting a new point p into a ran-
domized k-d tree with a root node node

1: procedure INSERT(node, p)
Input: node is the root of a k-d tree and

2: p is a new D-dimensional point
Output: p is inserted as one of the leaf nodes in the tree.

3: if node is a leaf node then
4: mark node as an internal node.
5: calculate the absolute difference between p and
6: node.point at each dimension
7: choose a cutdim dimension with the largest difference
8: cutval← (p[cutdim]+node.point[cutdim])/2
9: if p[cutdim]≤ cutval then

10: node.left← a new leaf node with a point p
11: node.right← a new leaf node with a point node.point
12: else
13: node.left← a new leaf node with a point node.point
14: node.right← a new leaf node with a point p
15: end if
16: return
17: end if
18: if p[node.cutdim]≤ node.cutval then
19: Insert(node.left, p)
20: else
21: Insert(node.right, p)
22: end if
23: end procedure

As more points are inserted to a k-d tree, the tree can become
unbalanced, deteriorating the query time. In the FLANN library, the
distribution of the points in the first mini-batch heavily affects the
overall performance since they are used to build a “skeleton” of the
tree. At worst, if all the updates after the first mini-batch are skewed
to one side of the k-d tree, all the remaining points are inserted in a
linked list and the search time becomes linear with the number of
points. This implies the need to rebalance the tree when possible.
In real cases, the unbalance is never that extreme, but can vary
substantially if the data added has a different distribution than the
original tree. The imbalance leads to a slower query time with little
degradation of the quality. On the other side, when updating a tree
for a large dataset, assuming the data is stationary, the distribution
of incoming data will at some point converge to the distribution of
the whole dataset and the tree will remain balanced after inserting
new points.

FLANN’s implementation of k-d trees uses a simple strategy for
rebalancing the trees: it re-constructs all trees each time the dataset
doubles in size from the initial dataset (i.e., the first mini-batch).
Therefore, the k-d trees can become unbalanced as new data is
loaded but eventually will be re-constructed. When loading a large
dataset progressively, even if the incoming distribution matches the
current k-d tree structure, FLANN will always re-construct its k-d
trees when the dataset doubles in size. To sum up, the FLANN
implementation suffers from three problems:

1. the k-d tree may become unbalanced when data is added, lead-
ing to longer KNN searches,

2. the k-d tree is always re-constructed when the data doubles in
size, leading to very long interruptions in the KNN search at
unpredictable moments,

3. the k-d tree is always re-created when the data doubles in size,
even when it remains balanced.

3.3 A Progressive Algorithm
To overcome the limitations of online k-d trees, we made three main
changes to the FLANN algorithm:

1. we maintain a quality measure for each k-d tree and trigger
a reconstruction process when the measure satisfies a certain
criterion,

2. when needed, we construct a fresh and balanced k-d tree with
all the points

3. the construction is done in a parallel/interleaved task using
a build queue, thus spreading the load and avoiding brutal
changes in query times. When a new k-d tree is built, we drop
the most unbalanced one and replace it with the new one,

To estimate the quality of a k-d tree, we use the following method:
assume a k-d tree of size N is balanced; its depth is dlog2 Ne. The
points are stored as leaves so accessing a point will require log2 N
operations. When a k-d tree becomes unbalanced, its depth will vary
and the query time for a point P will be proportional to the depth
of P. On average, the query time for accessing P is: φP×depth(P)
where φP is the probability to search P and depth(P) is the depth
of P in the tree. On a balanced k-d tree, the cost of querying for an
arbitrary point is log2 N whereas for a specific k-d tree T , the cost
c(T ) is:

c(T ) = ∑
p∈T

φp×depth(p) (1)

If the tree is perfectly balanced, the cost equals to log2 N, oth-
erwise, it becomes higher. The quality of a tree is thus the differ-
ence between the actual cost and the lower bound is the number
of additional operations we should perform to search a point on
average. To decide when we should trigger the computation of a
fresh tree, this loss should be compared to the cost of rebuilding
the whole tree: N log2 N. We accumulate the loss in the query time
(i.e., c(T )− log2 N) for each query and once the accumulated loss
exceeds a threshold, or a specific proportion of the rebuilding cost
(i.e., α ×N log2 N, where α is a reconstruction weight), we start
the reconstruction procedure. In practice, we do not compute Equa-
tion 1 for every update but maintain the cost incrementally. For
each point p, we maintain the depth of the point, depth(p), and
the number of times the point is searched, freq(p). Let’s define

∑ freq = ∑p∈Q freq(p), then φp can be calculated by φp =
freq(p)
∑ freq .

When a point p is searched, freq(p) will increase by one and the
updated cost C′ is computed from the the current cost C:

C′ =
∑ freq×C+depth(p)

∑ freq+1

After updating the cost, we increment freq(p) and ∑ freq by one.
When we need to re-construct a k-d tree (i.e., the accumulated

loss exceeds the threshold), we distribute the reconstruction load
across multiple iterations by building the tree incrementally. To this
end, we implement a non-recursive version of Algorithm 1 using a
build queue, allowing the whole procedure to be interleaved between
iterations. The progressive reconstruction algorithm (Algorithm 3)
is similar to Algorithm 1 except that recursive calls are replaced with
insertion on the queue.

To achieve progressiveness, the algorithm should work only for
a given number of operations and stop, allowing the user or the
system to access the ongoing results. For each iteration, a certain
number of operations are given to the algorithm and the algorithm
assigns the operations to insertion tasks and reconstruction tasks.
An insertion task reads one point from data and inserts it to the
k-d trees as described in Algorithm 2. If reconstruction is needed
after insertion, the algorithm builds a new k-d tree incrementally by
calling the function Initialize first and the function ProcessQueue
in the following iterations, as described in Algorithm 3. When the
new k-d tree is built, the algorithm replaces the most unbalanced
tree with the new one.

The number of allowed operations is a parameter specified by the
user. The algorithm can freely use this number to perform either
insertion or reconstruction tasks. In our benchmark, we used a



Figure 1: Benchmark results with one million points from the GloVe dataset [24]. FLANN’s online algorithm (the red line) rebuilds the k-d trees
each time the data size doubles. When inserting a new mini-batches of points (the leftmost chart), the online algorithm produces a delay longer
than 10 seconds which hampers the interactivity of visualization systems. Our progressive algorithms are bounded in time, yielding gains in
insertion time with a small loss in query time.

Algorithm 3 A progressive algorithm for building a new k-d tree
1: procedure INITIALIZE(L)

Input: L is a list of l points of D dimensions.
2: queue← a new work queue
3: root← a new node
4: queue.push((root,L))
5: end procedure
6:
7: procedure PROCESSQUEUE(ops)

Input: ops is the number of operations allowed for reconstruction
Output: returns true if reconstruction is done

8: count← 0
9: while count < ops and queue is not empty do

10: node,L← queue.pop()
11: count← count+1
12: if L has only one point then
13: mark node as a leaf node.
14: node.point← L[0]
15: continue
16: end if
17: calculate the variance of each dimension in L
18: node.cutdim← a random dimension with large variance
19: node.cutval← the median value of node.cutdim in L
20:
21: left← [p for p in L if p[node.cutdim]≤ node.cutval]
22: right← [p for p in L if p[node.cutdim]> node.cutval]
23:
24: node.left← a new internal node
25: node.right← a new internal node
26:
27: queue.push((node.left, left))
28: queue.push((node.right,right))
29: end while
30: return true if queue is empty
31: end procedure

simple strategy: we assigned a specific proportion (τ) of the allowed
operations to insertion tasks and 1− τ to reconstruction tasks. For
example, when τ = 0.5, half of the operations are used to insert new
points and the other half to re-construct a tree.

4 BENCHMARK

We conducted benchamarks to compare the performance of the
online and progressive k-d tree algorithms. We used the GloVe [24]
dataset that had 100 dimensions. We randomly took 1M points from
the dataset as train data (i.e., points that were inserted to k-d trees)
and 1K points as test data (i.e., points that were queried). The order
of points was kept as in the original dataset. We computed the exact
20 neighbors (i.e., k = 20) before the benchmark to measure the
quality of answers. For each iteration, we gave 5,000 operations to

both online and progressive k-d trees. The online version used up
all operations to add new points (i.e., 5,000 points were inserted to
k-d trees during one iteration). For the progressive k-d tree, we used
three different values for τ: 0.1, 0.2, and 0.3. We set the value of α

(i.e., a reconstruction weight) to 0.25.
To assess the quality of answers, we computed the mean distance

error (MDE) which is the mean ratio between the distances from each
query point to its exact k-th nearest neighbor and to its approximate k-
th nearest neighbor. An MDE of one means that the exact neighbors
were found, and an MDE of two means on average the algorithm
found neighbors that are twice farther than the exact ones.

Fig. 1 shows the results of the benchmark. Since the online ver-
sion used all 5K operations to insert new points, the corresponding
red line ends at the 200th iteration (1M / 5K = 200). The results
revealed the limitation of the online tree: at the 128th iteration, the
online tree produced a peak latency in insertion time which was
longer than 10 seconds. In contrast, the progressive trees showed
more consistent insertion time always shorter than 0.1 second.

In the online tree, we could see a performance gain in querying
speed after tree reconstruction (i.e., at the 62th and 126th iterations
in the middle chart of Fig. 1). The progressive trees showed lower
performance but the gap could narrow by adjusting the value of α

(i.e., the reconstruction weight). In terms of accuracy, the MDE
converged to near 1.06 for all algorithms. The online tree took the
smallest number of iterations to reach the final MDE because it used
all operations to insert new points from data so exact neighbors were
more likely to be in the trees and searched. However, due to its
longer insertion time, the online tree took the longest to reach the
final MDE (marked with dotted lines in Fig. 1), which suggests the
effectiveness of our progressive k-d trees.

5 CONCLUSION

In this article, we presented a progressive k-d tree algorithm for
approximate k-nearest neighbor search. We showed three major
changes to the previous k-d trees: maintaining a quality measure to
determine when to reconstruct trees, triggering the reconstruction
when really needed, and introducing a build queue to spread the
reconstruction load. In our benchmark, our progressive k-d tree
alleviated brutal changes in query time while keeping the speed
and accuracy comparable to those of online k-d trees. Due to the
limited paper length, we focused on adding points, but deletions and
filtering can also be done progressively. The implementation of our
progressive k-d tree is available at github.com/e-/PANENE.

As future work, we will integrate our progressive k-d tree to the
ProgressiVis toolkit [9]. Furthermore, we will investigate the ones
based on locality sensitive hashing (LSH) since they are very fast at
building their index.

https://github.com/e-/PANENE
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